142 Nd(52 Cr,4n γ) **2003Va05,2001Ju09**

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, ¹ and Jun Chen² NDS 169, 1 (2020) 15-Oct-2020

2003Va05, 2001Ju09 (also 2001Ju03, 2002Ju12): E=255 MeV 52 Cr beam was produced from the 130-MeV cyclotron at the Accelerator Laboratory of the University of Jyvaskyla. Measured E γ , $\gamma\gamma$ using JUROSPHERE array in conjunction with gas-filled recoil separator RITU. The recoils were implanted into a position-sensitive silicon strip detector. Recoil-decay tagging technique used in which α decays were time and position correlated with recoils and subsequent prompt γ rays from the recoils. Deduced levels, J, π , band structure. Systematics of neighboring Po isotopes.

¹⁹⁰Po Levels

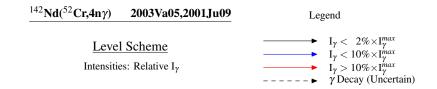
E(level) [†]	$J^{\pi \#}$		
0@	0+		
233 [@]	(2^{+})		
532 [@]	(4^{+})		
901 [@]	(6^{+})		
1338	(8^{+})		
1822? ^{‡@}	(10^{+})		
2376? ^{‡@}	(12^{+})		

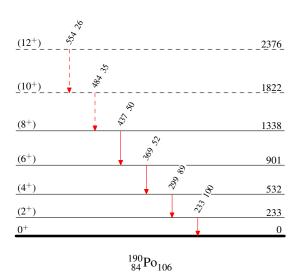
[†] From Eγ data.

 $\gamma(^{190}\text{Po})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
233	100 20	233	(2^{+})	0	0+
299	89 20	532	(4^{+})	233	(2^{+})
369	52 25	901	(6^{+})	532	(4^{+})
437	50 25	1338	(8^{+})	901	(6^{+})
484 ^{‡#}	35 20	1822?	(10^{+})	1338	(8^{+})
554 ^{‡#}	26 20	2376?	(12^+)	1822?	(10^+)

[†] From 2003Va05 (also 2001Ju09).


[‡] Levels not included in the Adopted Levels, since deexciting γ rays 484 and 554 not confirmed by 2007Wa11 in 144 Sm(49 Ti,3n γ), instead the two corresponding γ rays are reported at 498.5 and 565.0 keV from the two levels.


[#] As proposed by 2003 Va05, based on $\gamma\gamma$ coin and relative intensities of γ rays.

[@] Band(A): g.s. band.

 $^{^{\}ddagger}$ γ not confirmed by 2007Wa11 in 144 Sm(49 Ti,3n γ), instead 498.5 γ and 565.0 γ are proposed from (10⁺) and (12⁺) levels, respectively.

[#] Placement of transition in the level scheme is uncertain.

142 Nd(52 Cr,4n γ) 2003Va05,2001Ju09

Band(A): g.s. band

