¹⁹⁰Ir ε decay (3.087 h) **1964Ha06**

	Histor	У	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169,1 (2020)	15-Oct-2020

Parent: ¹⁹⁰Ir: E=376.4 *1*; J^{π} =(11)⁻; $T_{1/2}$ =3.087 h *12*; Q(ε)=1954.2 *12*; $\%\varepsilon+\%\beta^+$ decay=91.4 2

¹⁹⁰Ir-J^π,T_{1/2}: From ¹⁹⁰Ir Adopted Levels. T_{1/2} is adopted from 1996Ga30 in this study. Others from decay study: 3.25 h 20 (1970Bo22), 3.0 h 2 (1963Gr22), 3.2 h 2 (1950Ch11).

¹⁹⁰Ir-Q(ε): From 2017Wa10.

¹⁹⁰Ir- $\%\epsilon$ + $\%\beta^+$ decay: $\%\epsilon$ =91.4 2 (1996Ga30). Other: 94.4 8 (1964Ha06).

1964Ha06: The 3.1-h isomer of ¹⁹⁰Ir produced by proton irradiation of enriched ¹⁹⁰Os at ORNL. Conversion electrons were

analyzed with photographic-recording, permanent-magnet spectrographs. Measured E(ce), I(ce). Deduced conversion sub-shell ratios. Others:

γ: 1958Sc30, 1955At32, 1960Ka14, 1959Ni30, 1958Di44.

γγ: 1955At32.

ce: 1958Di44.

T_{1/2} and production: 1996Ga30, 1970Bo22, 1963Gr22, 1950Ch11.

 $\gamma(\theta, H, t)$: 1987Be54.

Absolute K x ray(Os) measurement: 1987Re05 (% K α_2 x ray=27 4, % K α_1 x ray=47 4). Other: 1955At32. % ε branching: 1996Ga30.

%e branching. 19900a30.

¹⁹⁰Os Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments					
0.0	0+							
186.7 <i>I</i>	2+							
547.90 15	4+							
1050.40 18	6+							
1666.90 20	8+							
1705.80 22	$(10)^{-}$	9.86 min 3	$\mu = -0.56 + 8 - 12 (1987Be54)$					
			μ : from 616 $\gamma(\theta, H, t)$ (1987Be54).					

[†] From E γ data, assuming Δ E γ =0.1 keV.

[‡] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(624.8 12)	1705.80	91.4 2	4.94 1	91.4 2	ϵ K=0.7910; ϵ L=0.15817 <i>19</i> ; ϵ M+=0.05082 7 I ϵ : from 1996Ga30. Other: 94.4 8 (1964Ha06).

[†] Absolute intensity per 100 decays.

$\gamma(^{190}\text{Os})$

Quoted values of conversion-line intensities from 1960Ha06 under comments (including those given in sub-shell ratios) are normalized to 100 for 502.6 γ ce(K) line. A 15% uncertainty has been assigned according to a general statement in 1964Ha06.

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{b}	$I_{(\gamma+ce)}^{a}$	Comments
38.9 1	0.081 3	1705.80	(10)-	1666.90	8+	M2+E3	0.10 2	1.23×10 ³ 11	100	α(L)=9.1×102 8; α(M)=247 23 α(N)=61 6; α(O)=9.8 8; α(P)=0.452 7 L12/L3=1.9 4; M/L=0.36 4; N/L=0.11 3 (1958Sc30) L1:L2:L3:M=1200 180:270 41:750 113:750 113 (1964Ha06) Eγ: transition seen in ce data only (1964Ha06). Uncertainty estimated by evaluators. δ: deduced from L1:L2:L3:M in 1964Ha06 by evaluators using the BrIccMixing code. 1964Ha06 give mult=M2.
^x 116.7 ^{&} 1 186.7	70.2	186.7	2+	0.0	0^{+}	E2		0.420	100	I(ce(K))=95 <i>14</i> (1964Ha06). α (K)=0.203 <i>3</i> ; α (L)=0.1642 <i>23</i> ; α (M)=0.0415 <i>6</i> α (N)=0.00997 <i>14</i> ; α (O)=0.001503 <i>21</i> ; α (P)=1.88×10 ⁻⁵
^x 206.6 ^{&} 1 361.2	94.9	547.90	4+	186.7	2+	E2		0.0535	100	³ K:L2:L3:M=875 <i>131</i> :375 <i>56</i> :275 <i>41</i> :220 <i>33</i> (1964Ha06) I(ce(K))=35 <i>5</i> (1964Ha06). α (K)=0.0370 <i>6</i> ; α (L)=0.01254 <i>18</i> ; α (M)=0.00307 <i>5</i> α (N)=0.000741 <i>11</i> ; α (O)=0.0001168 <i>17</i> ; α (N)=2.91×10 ⁻⁶ <i>6</i>
502.5 1	97.79 4	1050.40	6+	547.90	4+	E2		0.0225	100	$\alpha(\mathbf{r}) = 5.61 \times 10^{-6} 0^{-6}$ K:L2:L3=215 32:50 8:15 2 (1964Ha06) $\alpha(\mathbf{K}) = 0.01693$ 24; $\alpha(\mathbf{L}) = 0.00426$ 6; $\alpha(\mathbf{M}) = 0.001023$ 15 $\alpha(\mathbf{N}) = 0.000248$ 4; $\alpha(\mathbf{O}) = 4.01 \times 10^{-5}$ 6; $\alpha(\mathbf{P}) = 1.80 \times 10^{-6}$ 3 K:L1 = 100.22 4 (1064Ua06)
616.5	98.6	1666.90	8+	1050.40	6+	E2		0.01386	100	K.L1=100.25 4 (1904Ha00) ce(L) line partially resolved (1964Ha06). $\alpha(K)=0.01079 \ I6; \ \alpha(L)=0.00236 \ 4; \ \alpha(M)=0.000558 \ 8$ $\alpha(N)=0.0001354 \ I9; \ \alpha(O)=2.22\times10^{-5} \ 4;$ $\alpha(P)=1.155\times10^{-6} \ I7$ K:L1=62 9:13 2 (1964Ha06)
x920 ^{@c}										ce(L) line partially resolved (1964Ha06).

*x*1090[@]*c*

 \mathbf{b}

[†] From energies of conversion electrons in 1964Ha06. Estimated $\Delta E\gamma$ =0.1 keV (evaluator).

[‡] 100/(1+α).

$\gamma(^{190}\text{Os})$ (continued)

- [#] From ce data in 1964Ha06, recommended in the Adopted Gammas.
- [@] Weak γ reported by 1955At32 only.
- [&] Composite line in ce data (1964Ha06).
- ^{*a*} For absolute intensity per 100 decays, multiply by 0.914 2.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁰Ir ε decay (3.087 h) 1964Ha06

Decay Scheme

¹⁹⁰₇₆Os₁₁₄