¹⁹⁰ Re β^- decay (3.1 h) 1974 Ya02

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169,1 (2020)	15-Oct-2020

Parent: ¹⁹⁰Re: E=204 *10*; $J^{\pi}=(6^{-})$; $T_{1/2}=3.1$ h 2; $Q(\beta^{-})=3125$ 5; $\%\beta^{-}$ decay=54.4 20

¹⁹⁰Re-E, J^{π} , $T_{1/2}$, $Q(\beta^{-})$: From the Adopted Levels of ¹⁹⁰Re. Other: $Q(\beta^{-})=3070\ 70\ (2017Wa10)$.

¹⁹⁰Re- $\%\beta^-$ decay: Deduced by the evaluators from γ +ce intensity balances of γ transitions in ¹⁹⁰Os from β^- decays of the 3.0-min g.s. and the 3.1-h isomer of ¹⁹⁰Re in equilibrium (which means the total number of ¹⁹⁰Re g.s. decays is equal to the total number of ¹⁹⁰Re IT decays that feeds the g.s.) measured by 1974Ya02, based on that the 2352, 1996 and 1387 levels are the only levels fed directly by the β^- decay of the 3.0-min g.s. but not by the β^- decay of the 3.1-h isomer and the 2352 and 1996 levels are not populated in the β^- decay of the 3.1-h isomer, as claimed by 1974Ya02. So the %IT branching is determined by the total I(γ +ce) from 2352, 1996 and 1387 levels in ¹⁹⁰Re g.s. decay, divided by the total I(γ +ce) of transitions to 187 level, 558 γ and 1387 γ from β^- decays of ¹⁹⁰Re g.s. and isomer combined. This gives %IT=45.6 20 and $\%\beta^-$ =54.4 20.

1974Ya02 (also 1974YaZU, 1972Da07): sources of the ¹⁹⁰ isomer were produced by the ¹⁹⁰Os(d, α) reaction with 18 MeV deuterons provided by the ANL 152-cm cyclotron on a 50-mg target of natural osmium. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, J, π , parent T_{1/2}, configurations, γ -ray multipolarities, β -decay branching ratios. Comparisons with theoretical calculations. 1974Ya02 also report data on ¹⁹⁰Ir ε decay (11.78 d) and ¹⁸⁹Os(d,p).

Others: γ: 1972Ru06, 1972KaYS, 1964Fl02.

T_{1/2} (¹⁹⁰Re): 1974Ya02, 1973DeWI, 1972Ru06, 1966BaZY, 1962Ba60.

Total deposit energy of 1801 keV 85 calculated by RADLIST code is in agreement with expected value of 1784 81 from $Q(\beta^-)=3125$ keV 5 and the adopted branching ratio.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0+	
186.69 4	2+	
547.88 <i>5</i>	4+	
557.92 5	2+	
755.91 5	3+	
955.23 5	4+	
1050.43 10	6+	
1163.10 5	4+	
1203.82 7	5+	
1386.91 5	3-	
1446.01 6	$(5)^{+}$	
1513.9? 5	$(6^+, 5^+)$	
1583.84? <i>12</i>	4-	Population in ¹⁹⁰ Re decay is suspect since the only γ ray reported is 1036.0, other γ rays of comparable intensity such as 196.8 γ , 380.0 γ , 420.6 γ are not reported.
1666.51 17	8+	
1681.60 7	5-	
1708.2? 3	$(2^+, 3, 4^+)$	
1836.21 7	(6 ⁺)	
1872.10 12	(5) ⁻	
2061.2? 2	$(6^+, 7^-)$	
2068.79 9	(5 ⁺)	
2121.28 13	$(5,6^+)$	

¹⁹⁰Os Levels

[†] From a least-squares fit to γ -ray energies.

[‡] From the Adopted Levels.

 $[\]beta^{-}$: 1964Fl02.

$^{190}\mathrm{Re}\,\beta^-$ decay (3.1 h) 1974Ya02 (continued)

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1208 11)	2121.28	3.4 4	7.7 2	av Eβ=394 <i>35</i>
(1260 11)	2068.79	3.9 <i>3</i>	7.7 2	av E β =415 35
(1268 [‡] 11)	2061.2?	1.88 18	8.1 2	av Eβ=418 35
(1457 11)	1872.10	0.89 8	8.6 1	av E β =495 36
(1493 11)	1836.21	17.0 14	7.4 1	av $E\beta = 510 \ 36$
(1647 11)	1681.60	7.4 7	7.9 1	av Eβ=574 36
(1663 11)	1666.51	0.55 13	$9.9^{1u} 2$	av E β =569 35
(1815 [‡] 11)	1513.9?	4.7 9	8.3 2	av Eβ=644 37
(1883 11)	1446.01	1.9 6	8.7 2	av Eβ=673 37
(2125 11)	1203.82	1.8 7	8.9 2	av Eβ=776 37
(2166 [‡] 11)	1163.10	<2.7	>9.9 ¹	av Eβ=774 36
(2279 11)	1050.43	1.8 2	9.1 <i>1</i>	av $E\beta = 842 \ 38$
(2374 [‡] 11)	955.23	<2.9	$>10.1^{1u}$	av Eβ=861 37
(2781 [‡] 11)	547.88	<3.6	$>10.4^{1u}$	av Eβ=1034 <i>37</i>

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{190}\text{Os})$

Iγ normalization: From Σ [I(γ+ce) of 558γ, 1387γ and all γ rays to 187 level]=100, Most of the unplaced intensity (49 units on relative scale) is associated with transitions of energy <800 keV, not expected to g.s. or the 187 level.

Combined intensities given under comments are the total γ intensities for the 3.1-h (isomer) and 3.0-min (g.s.) activities in equilibrium (1974Ya02), where applicable.

E_{γ}^{\dagger}	Ι _γ ‡ <i>с</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
x108.67 15 x114.18 15 x127.27 6 x163.14 6 x182.1 3	1.52 <i>14</i> 0.92 <i>15</i> 1.95 <i>17</i> 2.65 <i>17</i> 3.9 <i>4</i>							%Iy=0.31 4 %Iy=0.18 4 %Iy=0.39 4 %Iy=0.53 5 %Iy=0.78 9
186.68 4	140 [@] 7	186.69	2+	0.0 0+	E2		0.420	%I γ =28.2 <i>13</i> α (K)=0.203 <i>3</i> ; α (L)=0.1642 <i>23</i> ; α (M)=0.0415 <i>6</i> α (N)=0.00997 <i>14</i> ; α (O)=0.001504 <i>21</i> ; α (P)=1.88×10 ⁻⁵ <i>3</i>
(196.85 [#] 15)	1.9 [#] 2	1583.84?	4-	1386.91 3-	E2+M1	+1.0 5	0.59 15	% I γ =0.38 5 α (K)=0.43 16; α (L)=0.121 7; α (M)=0.0292 24 α (N)=0.0071 6; α (O)=0.00113 5; α (P)=4.8×10 ⁻⁵ 19
198.08 20	4.8 8	755.91	3+	557.92 2+	E2+M1	-9 +2-5	0.349 7	${}^{\alpha}I_{\gamma}=0.97 \ I7$ $\alpha(K)=0.180 \ 5; \ \alpha(L)=0.1277 \ I9; \ \alpha(M)=0.0321 \ 5$ $\alpha(N)=0.00773 \ I2; \ \alpha(O)=0.001171 \ I8; \ \alpha(P)=1.70\times10^{-5} \ 6$ combined intensity=8.7 \ I2.
199.3 <i>3</i>	1.3 3	955.23	4+	755.91 3+	E2		0.336	$%I_{Y}=0.267$ $\alpha(K)=0.171225; \alpha(L)=0.124620; \alpha(M)=0.03145$ $\alpha(N)=0.0075512; \alpha(O)=0.00114318; \alpha(P)=1.604\times10^{-5}24$ combined intensity=2.05.
^x 200.0 3 207.91 ^e 6	6.3 <i>4</i> 2.4 ^e 5	755.91	3+	547.88 4+	E2(+M1)	-16 +5-20	0.293	% $I\gamma$ =1.27 11 % $I\gamma$ =0.48 11 α (K)=0.155 3; α (L)=0.1045 15; α (M)=0.0263 4 α (N)=0.00632 9; α (O)=0.000959 14; α (P)=1.47×10 ⁻⁵ 3
207.91 ^e 6	0.7 ^e 2	1163.10	4+	955.23 4+	(E2)		0.291	Combined intensity=4.5 8. %Iy=0.14 4 $\alpha(K)=0.1533\ 22;\ \alpha(L)=0.1045\ 15;\ \alpha(M)=0.0263\ 4$ $\alpha(N)=0.00632\ 9;\ \alpha(O)=0.000959\ 14;\ \alpha(P)=1.446\times10^{-5}\ 21$
223.81 5	2.8 ^{<i>a</i>} 3	1386.91	3-	1163.10 4+	E1		0.0500	Combined intensity=1.0 5. %Iy=0.56 7 α (K)=0.0414 6; α (L)=0.00669 10; α (M)=0.001530 22 α (N)=0.000370 6; α (O)=6.15×10 ⁻⁵ 9; α (P)=3.76×10 ⁻⁶ 6 explained intensity (1.9.25)
242.3 3	0.71 7	1446.01	(5)+	1203.82 5+	[M1,E2]		0.32 15	combined intensity= $61.8 \ 23.$ %I γ =0.143 <i>17</i>

 $\boldsymbol{\omega}$

From ENSDF

190 Re β^- decay (3.1 h) 1974Ya02 (continued)										
γ ⁽¹⁹⁰ Os) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments	
^x 252.65 20 ^x 255.19 10 282.93 6	0.63 7 2.42 <i>1</i> 9 11.1 8	1446.01	(5)+	1163.10	4+	E2(+M1)	>2.5	0.122 14	$\alpha(K)=0.24 \ 14; \ \alpha(L)=0.059 \ 3; \ \alpha(M)=0.01407 \ 22$ $\alpha(N)=0.00341 \ 7; \ \alpha(O)=0.00056 \ 4; \ \alpha(P)=2.7\times10^{-5} \ 18$ $\%_{I\gamma}=0.127 \ 16$ $\%_{I\gamma}=0.49 \ 5$ $\%_{I\gamma}=2.23 \ 20$	
284.9 <i>3</i> 288.22,10	2.2 <i>3</i> 2.35 <i>14</i>	2121.28 1872.10	$(5,6^+)$ $(5)^-$	1836.21 1583.84?	(6 ⁺) 4 ⁻	[D,E2] E2+M1	2.2 +11-5	0.17 <i>14</i> 0.135 <i>17</i>	$\alpha(K)=0.081 \ 13; \ \alpha(L)=0.0313 \ 8; \ \alpha(M)=0.00771 \ 16 \ \alpha(N)=0.00186 \ 4; \ \alpha(O)=0.000290 \ 9; \ \alpha(P)=8.4\times10^{-6} \ 16 \ \%1\gamma=0.44 \ 7 \ \%1\gamma=0.47 \ 4$	
^x 294.75 ^e 12	7.1 ^e 6	10/2.10		1000.011			2.2 111 0	0.100 17	$\alpha(K)=0.095 \ 16; \ \alpha(L)=0.0302 \ 10; \ \alpha(M)=0.00736 \ 18 \\ \alpha(N)=0.00178 \ 5; \ \alpha(O)=0.000282 \ 10; \ \alpha(P)=1.01\times10^{-5} \ 19 \\ \%I\gamma=1.43 \ 15$	
294.75 ^e 12 x315.56 8	6.4 ^{ed} 6	1681.60	5-	1386.91	3-	(E2)		0.0963	% $I\gamma=1.29 \ I4$ $\alpha(K)=0.0618 \ 9; \ \alpha(L)=0.0262 \ 4; \ \alpha(M)=0.00649 \ I0$ $\alpha(N)=0.001565 \ 22; \ \alpha(O)=0.000243 \ 4; \ \alpha(P)=6.19\times10^{-6} \ 9$ % $I\gamma=1.01 \ 9$	
321.81 ^{<i>f</i>} 8	3.8 4	1836.21	(6 ⁺)	1513.9?	(6+,5+)	[M1,E2]		0.14 7	% $I_{\gamma}=0.76 \ 9$ $\alpha(K)=0.11 \ 7; \ \alpha(L)=0.024 \ 5; \ \alpha(M)=0.0056 \ 9$ $\alpha(N)=0.00135 \ 23; \ \alpha(O)=0.00022 \ 5; \ \alpha(P)=1.3\times10^{-5} \ 8$	
361.09 <i>5</i>	6.0 <i>3</i> 60 <i>5</i>	547.88	4+	186.69	2+	E2		0.0535	% $I\gamma=1.21$ 9 % $I\gamma=12.1$ 10 $\alpha(K)=0.0370$ 6; $\alpha(L)=0.01255$ 18; $\alpha(M)=0.00307$ 5 $\alpha(N)=0.000742$ 11; $\alpha(O)=0.0001169$ 17; $\alpha(P)=3.82\times10^{-6}$ 6 combined intensity=93.4	
371.24 5	52 3	557.92	2+	186.69	2+	E2+M1	-8.1 8	0.0510	%I γ =10.5 8 α (K)=0.0359 6; α (L)=0.01151 17; α (M)=0.00281 4 α (N)=0.000679 10; α (O)=0.0001074 16; α (P)=3.73×10 ⁻⁶ 7 combined intensity=100.	
379.4 ^{<i>f</i>} 3 387.10 <i>12</i>	3.6 <i>3</i> 4.3 <i>4</i>	2061.2? 2068.79	(6 ⁺ ,7 ⁻) (5 ⁺)	1681.60 1681.60	5- 5-	[D,E2] [E1]		0.08 <i>6</i> 0.01349	% $I\gamma=0.72\ 8$ % $I\gamma=0.86\ 10$ $\alpha(K)=0.01125\ 16;\ \alpha(L)=0.001734\ 25;\ \alpha(M)=0.000395\ 6$ $\alpha(N)=9.58\times10^{-5}\ 14;\ \alpha(O)=1.619\times10^{-5}\ 23;$ $\alpha(D)=1.081\times10^{-6}\ 16$	
390.17 6	24.0 14	1836.21	(6+)	1446.01	(5)+	[M1,E2]		0.09 5	$%I\gamma = 4.8 \ 4$ $\alpha(K) = 0.07 \ 4; \ \alpha(L) = 0.013 \ 4; \ \alpha(M) = 0.0031 \ 8$ $\alpha(N) = 0.00075 \ 19; \ \alpha(O) = 0.00013 \ 4; \ \alpha(P) = 8.E - 6 \ 5$	
394.6 ^{<i>f</i>} 4 397.36 6	2.3 <i>4</i> 30 <i>3</i>	2061.2? 955.23	(6 ⁺ ,7 ⁻) 4 ⁺	1666.51 557.92	8 ⁺ 2 ⁺	[D,E2] E2		0.07 <i>6</i> 0.0412	%Iy=0.46 9 %Iy=6.0 7	

 $^{190}_{76}\mathrm{Os}_{114}\text{-}4$

 $^{190}_{76}\mathrm{Os}_{114}\text{-}4$

From ENSDF

					190 Re β^- d	lecay (3.1 h)	1974Ya02 (cor	ntinued)
						$\gamma(^{190}\text{Os})$ (co	ontinued)	
E_{γ}^{\dagger}	Ι _γ ‡ <i>c</i>	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
407.22 ^e 6	21 ^e 4	955.23	4+	547.88 4+	E2+M1	-3.4 +6-9	0.045 3	$\begin{aligned} &\alpha(\text{K})=0.0293 \ 5; \ \alpha(\text{L})=0.00904 \ 13; \ \alpha(\text{M})=0.00220 \ 3\\ &\alpha(\text{N})=0.000532 \ 8; \ \alpha(\text{O})=8.44\times10^{-5} \ 12; \ \alpha(\text{P})=3.05\times10^{-6} \ 5\\ &\text{combined intensity}=48.5 \ 29.\\ &\%\text{Iy}=4.2 \ 8\\ &\alpha(\text{K})=0.0330 \ 23; \ \alpha(\text{L})=0.0089 \ 3; \ \alpha(\text{M})=0.00214 \ 6\\ &\alpha(\text{N})=0.000517 \ 14; \ \alpha(\text{O})=8.3\times10^{-5} \ 3; \ \alpha(\text{P})=3.5\times10^{-6} \ 3 \end{aligned}$
407.22 ^e 6	41 ^e 4	1163.10	4+	755.91 3+	E2+M1	-2.6 +8-14	0.048 8	combined intensity=34 5. %I γ =8.2 8 α (K)=0.036 8; α (L)=0.0092 8; α (M)=0.00220 16 α (N)=0.00053 4; α (O)=8.6×10 ⁻⁵ 8; α (P)=3.9×10 ⁻⁶ 9 survival intensity 6.26
431.62 7	1.8 ^{<i>a</i>} 2	1386.91	3-	955.23 4+	[E1]		0.01056	combined intensity=63 6. %I γ =0.36 5 α (K)=0.00882 13; α (L)=0.001348 19; α (M)=0.000307 5 α (N)=7.44×10 ⁻⁵ 11; α (O)=1.261×10 ⁻⁵ 18; α (P)=8.55×10 ⁻⁷ 12
447.81 8	14.3 8	1203.82	5+	755.91 3+	E2		0.0301	combined intensity=40.1 24. %I γ =2.88 22 $\alpha(K)$ =0.0221 3; $\alpha(L)$ =0.00611 9; $\alpha(M)$ =0.001475 21 $\alpha(K)$ =0.002157 5: $\alpha(O)$ 5 73: 10 ⁻⁵ 8: $\alpha(D)$ 2 23: 10 ⁻⁶ 4
477.8 <i>3</i>	2.1 9	1681.60	5-	1203.82 5+	[E1]		0.00845	$\alpha(N)=0.0003575; \alpha(O)=5.72\times10^{-5}8; \alpha(P)=2.32\times10^{-5}4$ %Iy=0.42 19 $\alpha(K)=0.00707 10; \alpha(L)=0.001072 15; \alpha(M)=0.000244 4$ (N)=5.01×10 ⁻⁵ 0 (O) 1.005×10 ⁻⁵ 15 (P) (.00×10 ⁻⁷ 10)
485.23 20	0.68 7	1872.10	(5)-	1386.91 3-	E2		0.0245	$\alpha(N) = 5.91 \times 10^{-6} 9$; $\alpha(G) = 1.005 \times 10^{-7} 15$; $\alpha(P) = 6.89 \times 10^{-7} 10^{-7} 10^{-7} (K) = 0.001141 16$ $\alpha(K) = 0.0183 3$; $\alpha(L) = 0.00474 7$; $\alpha(M) = 0.001141 16$ $\alpha(N) = 0.000276 4$; $\alpha(Q) = 4.45 \times 10^{-5} 7$; $\alpha(M) = 1.04 \times 10^{-6} 2$
490.76 7	17.3 9	1446.01	(5) ⁺	955.23 4+	(E2)		0.0239	$\alpha(N)=0.0002764; \alpha(O)=4.45\times10^{-7}; \alpha(P)=1.94\times10^{-7} 3$ $\%_{I}\gamma=3.53$ $\alpha(K)=0.01793; \alpha(L)=0.004587; \alpha(M)=0.00110116$ $\alpha(N)=0.0002774; \alpha(O)=4.20\times10^{-5} 6; \alpha(D)=1.80\times10^{-6} 3$
502.55 8	16.8 5	1050.43	6+	547.88 4+	E2		0.0225	$\alpha(N)=0.0002674; \alpha(O)=4.30\times10^{-5} 6; \alpha(P)=1.89\times10^{-5} 3$ %I $\gamma=3.3821$ $\alpha(K)=0.0169324; \alpha(L)=0.004266; \alpha(M)=0.00102215$ $\alpha(N)=0.0002484; \alpha(Q)=4.00\times10^{-5} 6; \alpha(D)=1.80\times10^{-6} 2$
518.55 7	33.2 23	1681.60	5-	1163.10 4+	E1(+M2)	+0.010 15	0.00711 14	$\begin{array}{l} \alpha(N)=0.000248\ 4;\ \alpha(O)=4.00\times10^{-6}\ 6;\ \alpha(P)=1.80\times10^{-5}\ 5\\ \Re[\gamma=6.7\ 6\\ \alpha(K)=0.00595\ 11;\ \alpha(L)=0.000897\ 19;\ \alpha(M)=0.000204\ 5\\ \alpha(K)=0.00595\ 10^{-5}\ 10^{-$
x539.21 25 557.95 7	1.1 <i>3</i> 70 <i>6</i>	557.92	2+	0.0 0+	E2		0.01748	$\alpha(N)=4.95\times10^{\circ} II; \alpha(O)=8.42\times10^{\circ} I9; \alpha(P)=5.84\times10^{\circ} I3$ %I $\gamma=0.22$ 7 %I $\gamma=14.1$ 12 $\alpha(K)=0.01340$ 19; $\alpha(L)=0.00312$ 5; $\alpha(M)=0.000745$ 11 $\alpha(N)=0.000181$ 3; $\alpha(O)=2.94\times10^{-5}$ 5; $\alpha(P)=1.430\times10^{-6}$ 20 combined intensity=135 8.
558.7 ^f 5	27 4	1513.9?	$(6^+, 5^+)$	955.23 4+	[E2]		0.01743	%Iy=5.4 8

S

From ENSDF

 $^{190}_{76}\mathrm{Os}_{114}$ -5

I.

					19	0 Re β^{-} deca	y (3.1 h)	1974Ya02 (cor	ntinued)	
γ ⁽¹⁹⁰ Os) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments	
569.30 7	69 7	755.91	3+	186.69	2+	E2+M1	-9.8 10	0.01699 25	$\begin{aligned} \alpha(\text{K}) = 0.01336 \ 19; \ \alpha(\text{L}) = 0.00311 \ 5; \ \alpha(\text{M}) = 0.000742 \ 11 \\ \alpha(\text{N}) = 0.000180 \ 3; \ \alpha(\text{O}) = 2.93 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 1.426 \times 10^{-6} \ 21 \\ \% \text{Iy} = 13.9 \ 13 \\ \alpha(\text{K}) = 0.01310 \ 20; \ \alpha(\text{L}) = 0.00298 \ 5; \ \alpha(\text{M}) = 0.000709 \ 10 \\ \alpha(\text{N}) = 0.0001720 \ 25; \ \alpha(\text{O}) = 2.81 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 1.401 \times 10^{-6} \ 21 \end{aligned}$	
605.14 7	73 4	1163.10	4+	557.92	2+	E2		0.01447	combined intensity=125 6. %I γ =14.7 10 α (K)=0.01123 16; α (L)=0.00248 4; α (M)=0.000589 9 α (N)=0.0001427 20; α (O)=2.34×10 ⁻⁵ 4; α (P)=1.202×10 ⁻⁶ 17 combined intensity=111 5.	
(615.39 [#] <i>15</i>)	0.86 [#] 8	1163.10	4+	547.88	4+	[M1,E2]		0.026 13	%Iy=0.173 19 α (K)=0.021 11: α (L)=0.0037 14: α (M)=0.0009 3	
616.08 14	5.1 4	1666.51	8+	1050.43	6+	E2		0.01389	$\begin{aligned} \alpha(\mathbf{N}) = 0.0021 \ 17, \ \alpha(\mathbf{L}) = 0.0037 \ 14, \ \alpha(\mathbf{M}) = 0.0007 \ 5 \\ \alpha(\mathbf{N}) = 0.00021 \ 8; \ \alpha(\mathbf{O}) = 3.5 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) = 2.4 \times 10^{-6} \ 13 \\ \% I_{\gamma} = 1.03 \ 10 \\ \alpha(\mathbf{K}) = 0.01081 \ 16; \ \alpha(\mathbf{L}) = 0.00236 \ 4; \ \alpha(\mathbf{M}) = 0.000559 \ 8 \end{aligned}$	
630.91 <i>16</i>	1.9 ^{<i>a</i>} 3	1386.91	3-	755.91	3+	[E1]		0.00472	$\alpha(N)=0.0001357 \ 19; \ \alpha(O)=2.23\times10^{-5} \ 4; \ \alpha(P)=1.157\times10^{-6} \ 17$ %Iy=0.38 7 $\alpha(K)=0.00396 \ 6; \ \alpha(L)=0.000588 \ 9; \ \alpha(M)=0.0001335 \ 19$ $\alpha(N)=3.24\times10^{-5} \ 5; \ \alpha(O)=5.54\times10^{-6} \ 8; \ \alpha(P)=3.92\times10^{-7} \ 6$	
≈633	53	1836.21	(6+)	1203.82	5+	[M1,E2]		≈0.025	combined intensity=42 6. %I γ =1.0 6 α (K) \approx 0.020; α (L) \approx 0.0034; α (M) \approx 0.0008	
656.02 8	5.3 4	1203.82	5+	547.88	4+	E2+M1	-1.7 14	0.017 14	$\alpha(N) \approx 0.00019; \ \alpha(O) \approx 3.3 \times 10^{-3}; \ \alpha(P) \approx 2.2 \times 10^{-6}$ % $I\gamma = 1.07 \ 10$ $\alpha(K) = 0.014 \ 12; \ \alpha(L) = 0.0026 \ 15; \ \alpha(M) = 0.0006 \ 4$ $\alpha(N) = 0.00015 \ 0 \ \alpha(D) = 2.5 \times 10^{-5} \ 15 \ \alpha(D) = 1.5 \times 10^{-6} \ 14$	
673.10 <i>10</i>	46.9 24	1836.21	(6+)	1163.10	4+	[E2]		0.01138	$\alpha(N)=0.00015 \ 9; \ \alpha(O)=2.5\times10^{-5} \ 15; \ \alpha(P)=1.5\times10^{-5} \ 14^{-7} \ \alpha(K)=0.00896 \ 13; \ \alpha(L)=0.00186 \ 3; \ \alpha(M)=0.000438 \ 7^{-7} \ 14^{$	
675.2 <i>6</i> 690.04 <i>8</i>	2.6 <i>10</i> 7.0 <i>6</i>	2121.28 1446.01	(5,6 ⁺) (5) ⁺	1446.01 755.91	(5) ⁺ 3 ⁺	[D,E2] (E2)		0.018 <i>14</i> 0.01077	$\alpha(N)=0.0001005 15, \alpha(O)=1.750 10 25, \alpha(I)=5.01 10 14$ %I γ =0.52 21 %I γ =1.41 15 $\alpha(K)$ =0.00851 12; $\alpha(L)$ =0.001738 25; $\alpha(M)$ =0.000409 6	
726.22 8	2.21 12	1681.60	5-	955.23	4+	E1		0.00357	$\alpha(N)=9.94\times10^{-5}$ 14; $\alpha(O)=1.645\times10^{-5}$ 23; $\alpha(P)=9.12\times10^{-7}$ 13 %I $\gamma=0.44$ 4 $\alpha(K)=0.00300$ 5; $\alpha(L)=0.000441$ 7; $\alpha(M)=9.99\times10^{-5}$ 14	
^x 739.73 <i>10</i> 768.57 8	3.8 2 10.7 8	955.23	4+	186.69	2+	E2		0.00853	$\alpha(N)=2.43\times10^{-5} 4; \ \alpha(O)=4.16\times10^{-6} 6; \ \alpha(P)=2.98\times10^{-7} 5$ %Iy=0.76 6 %Iy=2.15 20 $\alpha(K)=0.00682 \ 10; \ \alpha(L)=0.001318 \ 19; \ \alpha(M)=0.000309 \ 5$ $\alpha(N)=7.50\times10^{-5} \ 11; \ \alpha(O)=1.250\times10^{-5} \ 18; \ \alpha(P)=7.32\times10^{-7} \ 11$ combined intensity=17.0 10.	

From ENSDF

 $^{190}_{76}\mathrm{Os}_{114}$ -6

 $^{190}_{76}\mathrm{Os}_{114}$ -6

Т

					¹⁹⁰ F	β^{-} deca	ny (3.1 h) 1	974Ya02 (continued)
							$\gamma(^{190}\text{Os})$ (con	tinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments
828.99 7	2.6 ^{<i>a</i>} 3	1386.91	3-	557.92	2+	E1	0.00276	%Iy=0.52 7 $\alpha(K)=0.00232 4; \alpha(L)=0.000339 5; \alpha(M)=7.68\times10^{-5} 11$ $\alpha(N)=1.87\times10^{-5} 3; \alpha(O)=3.20\times10^{-6} 5; \alpha(P)=2.33\times10^{-7} 4$
839.14 <i>12</i>	0.9 ^a 1	1386.91	3-	547.88	4+	(E1)	0.00270	combined intensity=55 5. %Iy=0.181 23 $\alpha(K)=0.00227 4; \alpha(L)=0.000331 5; \alpha(M)=7.50\times10^{-5} 11$ $\alpha(N)=1.82\times10^{-5} 3; \alpha(O)=3.13\times10^{-6} 5; \alpha(P)=2.27\times10^{-7} 4$ combined intensity=19.0.9
864.85 20 881.10 14 *889.07 15	3.1 2 3.9 4 2.2 4	2068.79 1836.21	(5^+) (6^+)	1203.82 955.23	5+ 4+			% $I_{\gamma}=0.62 \ 6$ % $I_{\gamma}=0.78 \ 9$ % $I_{\gamma}=0.44 \ 9$
905.75 76 952.3 ^f 3 958.20 14 ×965.1 4	6.5 7 0.81 <i>10</i> 9.8 6 2.1 <i>4</i>	2068.79 1708.2? 2121.28	(5^+) $(2^+,3,4^+)$ $(5,6^+)$	755.91 1163.10	4 ⁺ 3 ⁺ 4 ⁺	(M1)		$\%_{1}\gamma=1.31\ 16$ $\%_{1}\gamma=0.163\ 22$ $\%_{1}\gamma=1.97\ 16$ $\%_{1}\gamma=0.42\ 9$
1010.9 ^f 3	3.0 4	2061.2?	$(6^+, 7^-)$	1050.43	6+			%Iγ=0.60 <i>9</i>
1036.05 ^{<i>f</i>} 20	1.35 14	1583.84?	4-	547.88	4+	E1	0.00182	%I γ =0.27 4 α (K)=0.001539 22; α (L)=0.000222 4; α (M)=5.01×10 ⁻⁵ 7 α (N)=1.218×10 ⁻⁵ 17; α (O)=2.10×10 ⁻⁶ 3; α (P)=1.550×10 ⁻⁷ 22
1113.6 <i>4</i> <i>x</i> 1155.6 <i>5</i>	2.0 <i>2</i> 1.34 <i>17</i>	2068.79	(5 ⁺)	955.23	4+			%Iy=0.40 5 %Iy=0.27 4
1166.1 <i>3</i> <i>x</i> 1194.2 <i>3</i>	2.03 22 1.01 <i>10</i>	2121.28	(5,6 ⁺)	955.23	4+			%Iy=0.41 5 %Iy=0.203 23
1200.24 <i>12</i>	0.34 ^{<i>a</i>} 5	1386.91	3-	186.69	2+	(E1)	1.42×10 ⁻³	% i_{γ} =0.068 <i>11</i> α (K)=0.001184 <i>17</i> ; α (L)=0.0001693 <i>24</i> ; α (M)=3.82×10 ⁻⁵ 6 α (N)=9.30×10 ⁻⁶ <i>13</i> ; α (O)=1.603×10 ⁻⁶ <i>23</i> ; α (P)=1.196×10 ⁻⁷ <i>17</i> ; α (IPF)=1.82×10 ⁻⁵ <i>3</i> combined intensity=7 5.8
^x 1250.2 4	1.4 3							$\%$ I γ =0.28 7
^x 1265.9 5	0.41 12							%Iy=0.082 25
1313.1 2	3.2 5	2068.79	(5^+)	755.91	3+	T 1	1.25.10-3	%Iγ=0.64 <i>11</i>
1324.30 18	1.07 22	1872.10	(5)	547.88	4'	EI	1.25×10 ⁻⁵	$\alpha(K)=0.205$ $\alpha(K)=0.000997 \ 14; \ \alpha(L)=0.0001419 \ 20; \ \alpha(M)=3.20\times10^{-5} \ 5$ $\alpha(N)=7.80\times10^{-6} \ 11; \ \alpha(O)=1.345\times10^{-6} \ 19; \ \alpha(P)=1.010\times10^{-7} \ 15; \ \alpha(IPF)=7.06\times10^{-5} \ 10$
x1382.7 5 1386.95 12	0.34 <i>12</i> 0.14 ^{<i>a</i>} 2	1386.91	3-	0.0	0^{+}	(E3)	0.00542	%Iy=0.068 25 %Iy=0.028 5

 $^{190}_{76}\mathrm{Os}_{114}\text{-}8$

¹⁹⁰**Re** β^{-} decay (3.1 h) **1974Ya02** (continued)

$\gamma(^{190}\text{Os})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
x1499.4 5 1521.1 4 x1536.5 8 x1564.9 3 x1573.7 3 x1616.4 3 x1725.2 5 x1745.4 5 x1882.3 7 x2023.4 8	0.25 8 0.41 12 0.24 7 0.59 15 1.3 3 0.70 18 0.29 9 0.20 6 0.15 5 0.10 5	2068.79	(5 ⁺)	547.88	3 4+	$ \begin{array}{l} \hline \alpha(\text{K})=0.00434 \ 6; \ \alpha(\text{L})=0.000818 \ 12; \ \alpha(\text{M})=0.000191 \ 3 \\ \alpha(\text{N})=4.66\times10^{-5} \ 7; \ \alpha(\text{O})=7.86\times10^{-6} \ 11; \ \alpha(\text{P})=5.00\times10^{-7} \ 7; \ \alpha(\text{IPF})=1.382\times10^{-5} \ 20 \\ \text{combined intensity}=3.1 \ 4. \\ \hline \% \text{I}\gamma=0.050 \ 17 \\ \hline \% \text{I}\gamma=0.082 \ 25 \\ \hline \% \text{I}\gamma=0.048 \ 15 \\ \hline \% \text{I}\gamma=0.048 \ 15 \\ \hline \% \text{I}\gamma=0.12 \ 3 \\ \hline \% \text{I}\gamma=0.26 \ 7 \\ \hline \% \text{I}\gamma=0.14 \ 4 \\ \hline \% \text{I}\gamma=0.058 \ 19 \\ \hline \% \text{I}\gamma=0.040 \ 13 \\ \hline \% \text{I}\gamma=0.030 \ 11 \\ \hline \% \text{I}\gamma=0.020 \ 11 \end{array} $
 [†] From 19 3.1 min) [‡] From de otherwiss the grou quoted in in the de belong the combine [#] γ ray reg this deca [@] From in intensitie would in decay in ^{&} Total Iγ ^a Deduced transition decays c ^b From th ^c For abso d Total the multipol 	p74Ya02, ob ecomposition e noted. No nd state fed ntensities for ecompositio o 190 Re (3.0 d I(371.2 γ) ported in 19 ay. tensity bala es for feedin nply a large 1969Ha44 =13.5 8. I γ d from the t ns from upp of 3.1-h (iso e Adopted 0 oblute intensi eoretical int arities, and	ptained by the n (by evaluation to the that the c by the IT d or the β^- dec n of combined 0 min) and/or =100. ⁰ Ir ε decay for the case of the the the the provided on the the the the the the per levels that mer) and 3.0 Gammas. ty per 100 d ernal conver- mixing ratio	e author tors) of ombine ecays o cay of the ed inten r ¹⁹⁰ Re (12 d) (evel. The s in 197 to 187 02. the basi to the 1 that are po o-min (g	r from w the com d intensi f ¹⁹⁰ Re i e isome sities in (3.1 h), 1974Ya0 e corresp 4Ya02, t level in t s of bran 1387 leve gulated i g.s.) in e nultiply efficients s otherw	veighte bined ties are isomer r decay the da with q 2). I γ pondin but is i the dec nching el in th only in quilibr by 0.2 , calcu	d averages when possible from their measurements of ¹⁹⁰ Ir ε decay (11.78 d) and ¹⁹⁰ Re β^- decay (3.2 h and intensities given by 1974Ya02 for the 3.1-h (isomer) and 3.0-min (g.s.) activities in equilibrium, unless e quoted as for ¹⁹⁰ Re isomer β^- decay in 1974Ya02 but are actually for the combination of two activities, with in equilibrium. The combined intensities are given under comments for transitions seen in both activities. The y here are obtained by removing the contributions from the b ⁻ decay of the g.s. that are already deduced first taset of ¹⁹⁰ Re β^- decay (3.0 m). See that dataset for how the decomposition is performed. The unplaced γ rays puoted intensities being the original values in 1974Ya02. Intensity values in 1974Ya02 are relative to deduced from branching ratios in ¹⁹⁰ Ir ε decay and I γ value of the strongest branch from the parent level in g combined intensity (3.1-h and 3.0-min in equilibrium) is 249 5 from intensity balance using combined neonsistent with the measured value of 310 22 in 1974Ya02, The latter value is probably in error since it ray of ¹⁹⁰ Re g.s. other than the 1387 level which is claimed to be the only level that is strongly fed in that ratio from ¹⁹⁰ Ir ε decay (11.78 d). uis decay and the branching ratios from combined intensities, considering that the 1387 level is fed only by γ in this decay. Those γ feedings account for a 4.6% 4 contribution to the population of the 1387 level in the ium.

 ∞

¹⁹⁰**Re** β^- decay (3.1 h) **1974Ya02** (continued)

 γ (¹⁹⁰Os) (continued)

^e Multiply placed with intensity suitably divided.

^{*f*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

01-₄₁₁ sO⁰⁰¹ ₈₀