¹⁹⁰Re β^- decay (3.0 min) 1974Ya02

	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169,1 (2020)	15-Oct-2020

Parent: ¹⁹⁰Re: E=0; $J^{\pi}=(2)^{-}$; $T_{1/2}=3.0 \text{ min } 2$; $Q(\beta^{-})=3125 5$; $\%\beta^{-}$ decay=100

¹⁹⁰Re-J^{π}, T_{1/2}, Q(β^{-}): From ¹⁹⁰Re Adopted Levels. Other: Q(β^{-})=3070 70 (2017Wa10).

1974Ya02 (also 1974YaZU, 1972Da07): activities of the ¹⁹⁰ g.s. were from the IT decay of ¹⁹⁰Re isomer in equilibrium with the β^- decay of the isomer, with the isomer produced by the ¹⁹⁰Os(d, α) reaction using 18 MeV deuterons provided by the ANL 152-cm cyclotron on a 50-mg target of natural osmium. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, J, π , parent T_{1/2}, configurations, γ -ray multipolarities, β -decay branching ratios. Comparisons with theoretical calculations. 1974Ya02 also report data on ¹⁹⁰Ir ε decay (11.78 d) and ¹⁸⁹Os(d,p).

Others:

γ: 1972Ru06, 1969Ha44 (also 1970HaYG), 1964Fl02, 1955At21.

γγ: 1969Ha44 (also 1970HaYG).

β⁻: 1969Ha44 (also 1970HaYG), 1955At21.

T_{1/2} (¹⁹⁰Re): 1969Ha44 (also 1970HaYG), 1973DeWI, 1964Fl02, 1962Ba60, 1955At21.

Total deposit energy of 3058 keV 130 calculated by RADLIST code is in agreement with expected value of $Q(\beta^-)=3125$ keV 5. See also ¹⁹⁰Re β^- decay (3.2 h) for 28 unplaced γ rays belonging to either or both the 3.1-min and 3.2-h isomers of ¹⁹⁰Re.

¹⁹⁰Os Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}
186.69 4	2+
547.90 <i>5</i>	4+
557.92 5	2+
755.90 6	3+
955.22 <i>5</i>	4+
1163.11 5	4+
1386.91 5	3-
1995.59 24	$(2)^{+}$
2352.36 21	$(2^+,3)$

[†] From a least-squares fit to γ -ray energies.

[‡] From the Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(773 5)	2352.36	0.9 2	5.9 1	av Eβ=252 80
(1129 5)	1995.59	1.1 2	6.4 1	av $E\beta$ =389 85
(1738 5)	1386.91	98.0 <i>3</i>	5.1 <i>1</i>	av $E\beta = 639 \ 90$
				E(decay): 1800 300 (1969Ha44), 1700 300 (1955At21).
				$I\beta^{-}$: from 100–($I\beta^{-}$ of 1996 and 2352 levels).

[†] From I(γ +ce) intensity balance at each level, unless otherwise noted.

[‡] Absolute intensity per 100 decays.

$\gamma(^{190}\text{Os})$

Iγ normalization: From $\Sigma[I(\gamma+ce)$ from 1387, 1996, 2352 levels]=100. The β^- spectrum and γ -ray data (1969Ha44) from the 3.0-min activity alone (no apparent presence of 3.1-h¹⁹⁰Re) suggest no β^- feeding to levels below 1387. Unplaced γ rays, listed in ¹⁹⁰Re β^- decay (3.1 h), are not expected to affect the normalization factor since most of these deexcite levels above 187. See also comments with ¹⁹⁰Re β^- decay (3.1 h).

Combined intensities given under comments are the total γ intensities for the 3.1-h (isomer) and 3.0-min (g.s.) activities in equilibrium (1974Ya02), where applicable.

Eγ [†]	I_{γ} ‡ f	$E_i(level)$	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^e	δ ^e	α ⁸	Comments
186.68 4	110 [@] 6	186.69	2+	0.0 0+	E2		0.420	%Iγ=49 9 α (K)=0.203 3; α (L)=0.1642 23; α (M)=0.0415 6 α (N)=0.00997 14; α (O)=0.001504 21; α (P)=1.88×10 ⁻⁵ 3
198.08 20	3.9 ^{<i>a</i>} 7	755.90	3+	557.92 2+	E2+M1	-9 +2-5	0.349 7	Other: $E\gamma = 180.9 \ I$, $I\gamma = 140 \ I9 \ (1969Ha44)$. % $I\gamma = 1.7 \ 3$ $\alpha(K) = 0.180 \ 5$; $\alpha(L) = 0.1277 \ I9$; $\alpha(M) = 0.0321 \ 5$ $\alpha(N) = 0.00773 \ I2$; $\alpha(O) = 0.001171 \ I8$; $\alpha(P) = 1.70 \times 10^{-5} \ 6$ Other: $E\gamma = 199.3 \ I4$, weak (1969Ha44). combined intensity=8.7 \ I2.
199.3 3	0.7 ^b 2	955.22	4+	755.90 3+	E2		0.336	%I γ =0.31 9 α (K)=0.1712 25; α (L)=0.1246 20; α (M)=0.0314 5 α (N)=0.00755 12; α (O)=0.001143 18; α (P)=1.604×10 ⁻⁵ 24 combined intensity=2.0 5.
207.91 ^h 6	1.9 ^{ha} 4	755.90	3+	547.90 4+	E2(+M1)	-16 +5-20	0.293	%I γ =0.84 <i>18</i> α (K)=0.155 <i>3</i> ; α (L)=0.1045 <i>15</i> ; α (M)=0.0263 <i>4</i> α (N)=0.00632 <i>9</i> ; α (O)=0.000959 <i>14</i> ; α (P)=1.47×10 ⁻⁵ <i>3</i> combined intensity=4.3 <i>8</i> .
207.91 ^h 6	0.3 ^{<i>hc</i>} 1	1163.11	4+	955.22 4+	(E2)		0.291	%Iγ=0.13 5 α (K)=0.1533 22; α (L)=0.1045 15; α (M)=0.0263 4 α (N)=0.00632 9; α (O)=0.000959 14; α (P)=1.446×10 ⁻⁵ 21 combined intensity=1.0 3.
223.81 5	59.0 ^d 24	1386.91	3-	1163.11 4+	E1		0.0500	%I γ =26.1 <i>13</i> α (K)=0.0414 <i>6</i> ; α (L)=0.00669 <i>10</i> ; α (M)=0.001530 22 α (N)=0.000370 <i>6</i> ; α (O)=6.15×10 ⁻⁵ <i>9</i> ; α (P)=3.76×10 ⁻⁶ <i>6</i> Other: E γ =224.1 <i>1</i> (1969Ha44); all I γ values in 1969Ha44 are re-normalized by the evaluators to I γ =59.0 24 of this γ here. combined intensity=61.8 25.
361.09 5	33 2	547.90	4+	186.69 2+	E2		0.0535	%I γ =14.6 10 $\alpha(K)$ =0.0370 6; $\alpha(L)$ =0.01255 18; $\alpha(M)$ =0.00307 5 $\alpha(N)$ =0.000742 11; $\alpha(O)$ =0.0001169 17; $\alpha(P)$ =3.82×10 ⁻⁶ 6 I $_{\gamma}$: from total I(γ +ce) feeding to 548 level in this decay.

2

From ENSDF

190 Re β^- decay (3.0 min) 1974Ya02 (continued)									
γ ⁽¹⁹⁰ Os) (continued)									
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^e	δ^{e}	α^{g}	Comments	
	108 2						0.0510	Other: $E\gamma = 361.4 \ I$, $I\gamma = 74 \ I5 \ (1969Ha44)$. combined intensity=93 4.	
371.24 5	48 3	557.92	21	186.69 21	E2+M1	-8.1 8	0.0510	%1γ=21.3 13 α (K)=0.0359 6; α (L)=0.01151 17; α (M)=0.00281 4 α (N)=0.000679 10; α (O)=0.0001074 16; α (P)=3.73×10 ⁻⁶ 7 Other: Eγ=371.5 1, Iγ=68 7 (1969Ha44). combined intensity=100.	
397.36 6	18.1 ^b 19	955.22	4+	557.92 2+	E2		0.0412	%I γ =8.0 9 α (K)=0.0293 5; α (L)=0.00904 13; α (M)=0.00220 3 α (N)=0.000532 8; α (O)=8.44×10 ⁻⁵ 12; α (P)=3.05×10 ⁻⁶ 5 Other: E γ =397.4 3, I γ =30 3 (1969Ha44). combined intensity=48.5 29.	
407.22 ^h 6	13 ^{hb} 2	955.22	4+	547.90 4+	E2+M1	-3.4 +6-9	0.045 3	%I γ =5.8 9 α (K)=0.0330 23; α (L)=0.0089 3; α (M)=0.00214 6 α (N)=0.000517 14; α (O)=8.3×10 ⁻⁵ 3; α (P)=3.5×10 ⁻⁶ 3 Other: E γ =407.3 3, I γ =48 6 for doublet (1969Ha44). combined intensity=34 5.	
407.22 ^h 6	22 ^{hc} 3	1163.11	4+	755.90 3+	E2+M1	-2.6 +8-14	0.048 8	%I γ =9.7 13 α (K)=0.036 8; α (L)=0.0092 8; α (M)=0.00220 16 α (N)=0.00053 4; α (O)=8.6×10 ⁻⁵ 8; α (P)=3.9×10 ⁻⁶ 9 combined intensity=63 6.	
431.62 7	38.3 ^d 23	1386.91	3-	955.22 4+	[E1]		0.01056	%I γ =17.0 <i>11</i> α (K)=0.00882 <i>13</i> ; α (L)=0.001348 <i>19</i> ; α (M)=0.000307 <i>5</i> α (N)=7.44×10 ⁻⁵ <i>11</i> ; α (O)=1.261×10 ⁻⁵ <i>18</i> ; α (P)=8.55×10 ⁻⁷ <i>12</i> Other: E γ =431.7 2, I γ =50 6 (1969Ha44). combined intensity=40.1 <i>24</i> .	
557.95 7	65 ^{&} 6	557.92	2+	0.0 0+	E2		0.01748	%I γ =29 21 α (K)=0.01340 19; α (L)=0.00312 5; α (M)=0.000745 11 α (N)=0.000181 3; α (O)=2.94×10 ⁻⁵ 5; α (P)=1.430×10 ⁻⁶ 20 Other: E γ =557.7 2, I γ =107 10 (1969Ha44). combined intensity=135 8	
569.30 7	56 ^a 7	755.90	3+	186.69 2+	E2+M1	-9.8 10	0.01699 25	%Iy=25 24 $\alpha(K)=0.01310 \ 20; \ \alpha(L)=0.00298 \ 5; \ \alpha(M)=0.000709 \ 10$ $\alpha(N)=0.0001720 \ 25; \ \alpha(O)=2.81\times10^{-5} \ 4; \ \alpha(P)=1.401\times10^{-6} \ 21$ Other: Ey=569.1 2, Iy=77 8 (1969Ha44). combined intensity=125 6.	
605.14 7	38 ^c 3	1163.11	4+	557.92 2+	E2		0.01447	%I γ =16.8 13 α (K)=0.01123 16; α (L)=0.00248 4; α (M)=0.000589 9 α (N)=0.0001427 20; α (O)=2.34×10 ⁻⁵ 4; α (P)=1.202×10 ⁻⁶ 17	

ω

Т

						190 Re β^- d	¹⁹⁰ Re β^- decay (3.0 min) 1974Ya02 (continued)			
γ ⁽¹⁹⁰ Os) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_f^{π}	Mult. ^e	δ^{e}	$\alpha^{\mathbf{g}}$	Comments	
((15.20#)	0.45#	11/2 11	4	5.47.00	4.4		_	0.00(1)	Other: $E\gamma = 605.3 \ 3$, $I\gamma = 47 \ 6 \ (1969Ha44)$. combined intensity=111 5.	
(615.39")	0.45"	1163.11	4'	547.90 2	4'	[M1,E2]		0.026 13	$%1\gamma$ =0.199 8 α (K)=0.021 11; α (L)=0.0037 14; α (M)=0.0009 3 α (N)=0.00021 8; α (O)=3.5×10 ⁻⁵ 13; α (P)=2.4×10 ⁻⁶ 13	
630.91 <i>16</i>	40 ^d 6	1386.91	3-	755.90	3+	[E1]		0.00472	%I γ =17.7 23 α (K)=0.00396 6; α (L)=0.000588 9; α (M)=0.0001335 19 α (N)=3.24×10 ⁻⁵ 5; α (O)=5.54×10 ⁻⁶ 8; α (P)=3.92×10 ⁻⁷ 6 Other: E γ =630.6 3, I γ =50 6 (1969Ha44). combined intensity=42 6.	
768.57 8	6.3 ^b 7	955.22	4+	186.69 2	2+	E2		0.00853	%Iγ=2.8 4 α (K)=0.00682 10; α (L)=0.001318 19; α (M)=0.000309 5 α (N)=7.50×10 ⁻⁵ 11; α (O)=1.250×10 ⁻⁵ 18; α (P)=7.32×10 ⁻⁷ 11 Other: Eγ=768.9 5, weak (1969Ha44). combined intensity=17.0 10.	
828.99 7	52 ^d 5	1386.91	3-	557.92 2	2+	E1		0.00276	%Iγ=23.0 19 α (K)=0.00232 4; α (L)=0.000339 5; α (M)=7.68×10 ⁻⁵ 11 α (N)=1.87×10 ⁻⁵ 3; α (O)=3.20×10 ⁻⁶ 5; α (P)=2.33×10 ⁻⁷ 4 Other: Eγ=828.9 2, Iγ=84 10 (1969Ha44). combined intensity=55 5.	
839.14 <i>12</i>	18.1 ^d 9	1386.91	3-	547.90 4	4+	(E1)		0.00270	%I γ =8.0 5 α (K)=0.00227 4; α (L)=0.000331 5; α (M)=7.50×10 ⁻⁵ 11 α (N)=1.82×10 ⁻⁵ 3; α (O)=3.13×10 ⁻⁶ 5; α (P)=2.27×10 ⁻⁷ 4 Other: E γ =838.8 4, I γ =17 6 (1969Ha44). combined intensity=19.0 9.	
1200.24 12	7.2 ^d 8	1386.91	3-	186.69 2	2+	(E1)			$\%$ I γ =3.2 4 Other: E γ =1200.3 6, weak (1969Ha44). combined intensity=7.5 8.	
1386.95 <i>12</i>	3.0 ^{<i>d</i>} 4	1386.91	3-	0.0 (0+	(E3)			$\%$ I γ =1.33 <i>19</i> Other: E γ =1387.7 <i>15</i> , weak (1969Ha44). combined intensity=3.1 <i>4</i> .	
1397.1 4 1437.5 3 1447.7 5 1596.4 5 1794.5 3 1809.3 5 2165.5 7	0.35 <i>12</i> 1.5 <i>3</i> 0.52 <i>16</i> 0.33 <i>10</i> 1.2 <i>3</i> 0.40 <i>12</i> 0.13 <i>6</i>	2352.36 1995.59 1995.59 2352.36 2352.36 1995.59 2352.36	$(2^+,3) (2)^+ (2^+,3) (2^+,3) (2^+,3) (2^+,3)$	955.22 4 557.92 2 547.90 4 755.90 2 557.92 2 186.69 2 186.69 2	4 ⁺ 2 ⁺ 4 ⁺ 3 ⁺ 2 ⁺ 2 ⁺ 2 ⁺	E2(+M1)	>2		$\% I\gamma = 0.16 6$ $\% I\gamma = 0.66 14$ $\% I\gamma = 0.23 8$ $\% I\gamma = 0.15 5$ $\% I\gamma = 0.53 14$ $\% I\gamma = 0.18 6$ $\% I\gamma = 0.06 3$	

4

From ENSDF

γ ⁽¹⁹⁰Os) (continued)

- [†] From 1974Ya02, obtained by the author from weighted averages when possible from ¹⁹⁰Ir ε decay (11.78 d) and ¹⁹⁰Re β^- decay (3.2 h and 3.1 min). 28 unplaced weak γ rays, belonging to ¹⁹⁰Re (3.1 min) and/or ¹⁹⁰Re (3.2 h) are given in ¹⁹⁰Re β^- decay (3.2 h).
- [‡] From decomposition (by evaluators) of the combined intensities given by 1974Ya02 for the 3.1-h (isomer) and 3.0-min (g.s.) activities in equilibrium, unless otherwise noted. Note that the combined intensities are listed for ¹⁹⁰Re isomer β^- decay in 1974Ya02 but are actually for the combination of two activities, with the ground state fed by the IT decays of ¹⁹⁰Re isomer in equilibrium. The combined intensities are given under comments for transitions seen in both activities. The unplaced γ rays belong to ¹⁹⁰Re (3.0 min) and/or ¹⁹⁰Re (3.1 h). The decomposition of the combined intensities is based on that 2352, 1996 and 1387 levels are the only levels fed directly by the β^- decay of the 3.0-min g.s. but not by the β^- decay of the 3.1-h isomer and the 2352 and 1996 levels are not populated in the β^- decay of the 3.1-h isomer, as claimed by 1974Ya02, and it is performed from higher levels to lower levels. Intensity values in 1974Ya02 are relative to combined I(371.2 γ)=100. Values are also reported by 1969Ha44 for intense transitions only, relative to I(224 γ)=100, and they agree well with the values given here after being renormalized to I(224 γ)=59.0 24 here, as given under comments.

[#] γ ray reported in ¹⁹⁰Ir ε decay (12 d) (1974Ya02). I γ deduced from branching ratios in ¹⁹⁰Ir ε decay and I γ value of the strongest branch from the parent level in this decay.

^(a) From intensity balance at 187 level. This value agrees with 140 *19* from 1969Ha44, but disagrees with 170 *23* obtained from 310 *22* (1974Ya02) combined for 3.1-h ¹⁹⁰Re and 3.1-min ¹⁹⁰Re in equilibrium and 140 7 for 3.1-h ¹⁹⁰Re. The combined intensity of 310 *22* from 1974Ya02 is probably in error since it implies β^- feeding of $\approx 28\%$ to 187 level in this decay, too high to be explained by the β^- spectrum given by 1969Ha44 which essentially indicates only one β^- group (to 1387 level). The 1387 level is claimed to be the only level that is strongly fed in this decay also by 1974Ya02.

& Corrected for I(γ +ce from 558 level) equal to the total I(γ +ce) of 198.1 γ , 397.4 γ , 605.1 γ , 829.0 γ , 1437.5 γ , and 1794.5 γ that feed the 756 level in this decay in decomposition of combined intensities.

^{*a*} Corrected for I(γ +ce from 756 level) equal to the total I(γ +ce) of 199.3 γ , 407.2 γ , 630.9 γ , and 1596.4 γ that feed the 756 level in this decay in decomposition of combined intensities.

^b Corrected for I(γ +ce from 955 level) equal to the total I(γ +ce) of 207.9 γ , 431.6 γ , and 1397.1 γ that feed the 955 level in this decay in decomposition of combined intensities.

^c Corrected for I(γ +ce from 1163 level)=I(γ +ce)(223.8 γ) in this decay in decomposition of combined intensities.

^d Corrected for a 4.6% 4 contribution from the decay of the 3.1-h ¹⁹⁰Re isomer in decomposition of combined intensities, which is from a total I(γ +ce)=10.6 7 of 197 γ , 295 γ and 485 γ to 1387 level from higher levels only populated in that decay. See ¹⁹⁰Re β^- decay (3.1 h) for I γ values for those γ rays. The total I(γ +ce) of γ transitions from 1387 level for combined activities is 232 9.

^e From the Adopted Gammas.

S

- ^f For absolute intensity per 100 decays, multiply by 0.443 17.
- ^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*h*} Multiply placed with intensity suitably divided.

¹⁹⁰Re β^- decay (3.0 min) 1974Ya02

