	Histor	У	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169,1 (2020)	15-Oct-2020

 $Q(\beta^{-})=-1954.2$ 12; S(n)=7792.34 19; S(p)=8018 8; $Q(\alpha)=1375.8$ 12 2017Wa10

S(2n)=13713.2 5, S(2p)=14618 3 (2017Wa10).

Mass measurements: 2016Ei01, 1979Ha32, 1970Mc03, 1960Bh02, 1959De36, 1957Jo08. 2011Be08: search for α decay of ¹⁹⁴Pt to ¹⁹⁰Os using a low-background HPGe detector in the underground Gran Sasso National Laboratories (LNGS) of the INFN (Italy) over 1815.4 hours. Deduced lower limits of half-lives for α decays to the low-lying excited states in ¹⁹⁰Os, with no evidence for α decay of ¹⁹⁴Pt nuclide.

2011Be32: search for $2\beta^+$, 2ε decay of ¹⁹⁰Pt to ¹⁹⁰Os at the Laboratori Nazionali del Gran Sasso, INFN-Italy. No evidence was found for this decay, and a lower limit of $T_{1/2}$ was determined. No peaks in the accumulated spectrum indicate double- β activity.

Additional information 1.

See (n, γ) :resonances for neutron resonance data of 199 resonances.

Other measurements:

2014DrZZ: ¹⁸⁶W, ¹⁸⁷Re or ¹⁹²Os beams incident on ¹⁸⁶Re target. Measured Ey, Iy, $\gamma\gamma$ -coin.

2006Av09: measured hyperfine structure, isotope shift.

1978Ba69: ¹⁸⁹Os(n, α): resonances. Measured resonances, deduced widths. Other: 1961Cr02.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for about 170 primary references dealing with nuclear structure and other calculations.

190Os Levels

Cross Reference (XREF) Flags

Α	¹⁹⁰ Re β^- decay (3.0 min)	J	189 Os(n, γ) E=6.71 eV	S	190 Os(n,n' γ),(n,n')
В	¹⁹⁰ Re β^{-} decay (3.1 h)	K	189 Os(n, γ) E=8.96 eV	Т	190 Os(p,p')
С	¹⁹⁰ Os IT decay (9.86 min)	L	189 Os(n, γ) E=10.31 eV	U	190 Os(α, α')
D	¹⁹⁰ Ir ε decay (11.78 d)	Μ	189 Os(n,n),(n, γ):resonances	V	Coulomb excitation
Е	¹⁹⁰ Ir ε decay (3.087 h)	N	¹⁸⁹ Os(d,p)	W	¹⁹¹ Ir(t, α),(pol t, α)
F	Muonic atom	0	¹⁹⁰ Os(γ, γ):Mossbauer	X	192 Os(p,t)
G	$^{186}W(^{7}Li,2np\gamma)$	Р	190 Os (γ, γ')	Y	$^{192}Os(^{12}C,^{14}C)$
Н	¹⁸⁸ Os(t,p)	Q	190 Os(γ ,xn)	Ζ	192 Os(82 Se,X γ)
I	189 Os(n, γ) E=th	R	190 Os(e,e')		

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\#}$	XREF	Comments				
0.0 [@]	0^+ 2 ⁺	stable	ABCDEFGHIJKL OPQRSTUVWXYZ	$\mu = +0.692 \ 30 \ (1992St06,2014StZZ)$				
186.718 [@] 2		371 ps 8	ABCDEFGHIJKL NOPQRSTUVWXYZ	Q=-1.18 3 (1981Ho22,2016St14)				

 J^{π} : 186.7 γ E2 to 0⁺. $T_{1/2}$: from B(E2)=2.364 50, weighted average of the following values: B(E2)=2.34 13 (2012MaZP, from T_{1/2}=375 ps 20, $\gamma\gamma$ (t) in (⁷Li,2np γ); 2.35 *16* (2001Wu03, from mean lifetime τ =540 ps 36, RDDS in Coul. ex.); 2.341 +62-34 (1996Wu07, Coul. ex.); 2.315 60 (1988Bo08, from (e,e'), uncertainty of 0.027 in 1988Bo08 increased to 0.060 by evaluators); 2.46 8 (1981Ho22, from muonic x-ray, uncertainty of 0.02 in 1981Ho22 increased to 0.06 by evaluators); 2.14 11 (1976Ba06, Coul. ex., uncertainty of 5% assigned by evaluators); 2.48 25 (1972La16, Coul. ex.); 2.37 13 (1971Mi08, Coul. ex.); 2.39 6 (1970Pr09, Coul. ex.); 2.55 25 (1969Ca19, Coul. ex., earlier value was 2.50 37 in 1967Ca08); 2.15 23 (1966Go06, from mean lifetime τ =0.58

¹⁹⁰Os Levels (continued)

E(level) [†]	J^{π}	T _{1/2} #	XREF		Comments			
					ns 6, RDDS in Coul. ex.); 2.70 27 (1961Mc18, Coul. ex., previous values were 2.53 25 in 1961Mc01 and 2.55 26 in 1958Mc02); 2.51 36 (1958Su54, from T _{1/2} =0.35 ns 5 from γγ(t) in IT decay). Others: 1.86 8 (1967As03, from mean lifetime τ =680 ps 30, RDDS in Coul. ex.); 3.38 40 (1961Re02, Coul. ex.); 1.8 +12–5 (1958Be72, from T _{1/2} =0.5 ns 2 in ε decay); 2.5 7 (1957Ba11, Coul. ex.). 2016Pr01 evaluation gives B(E2)=2.354 90 and corresponding T _{1/2} =373 ps 15. Additional information 2. μ : transient fields in Coulomb excitation (1992St06). Others: μ =+0.700 22 (1985St05) is reevaluated by 1987St14; 0.662 32 (1973BaUA; meson hyperfine structure), +0.66 6 (1972Si43,1972Si03; Coul. ex.), +0.62 3 (1970Be36,1967Gi02,1966Go06; Coul. ex.), 0.54 6 (1970Le04; IPAC in ¹⁹⁰ Ir ε decay using T _{1/2} =240 ps for 187 level). Q: muonic x-ray method (1981Ho22). Others: in Coulomb excitation, -0.99 13 (1970Pr03), -0.99 19 (1977RuZY), -0.95 21 (1972La16), -0.95 30 (1980Ba42, relative to Q=-1.47 for first 2 ⁺ state in ¹⁸⁸ Os), -0.8 3 (1980Ba42, relative to Q=-1.33 for first 2 ⁺ state in ¹⁸⁸ Os), 1.08 10 (1975Ro24, relative to 1.0 for first 2 ⁺ state in ¹⁸⁸ Os), 1.03 30 (1964Sp09, relative to 1.0 for the first 2 ⁺ state in ¹⁹² Os); in ¹⁹⁰ Os(γ,γ):Mossbauer, 0.86 5 (1972Wa24, relative to 1.0 for 155, 2 ⁺ state in ¹⁸⁸ Os).			
547.854 [@] 7	4+	13.6 ps +4-7	ABCDE GHIJKL	RS UVwXYZ	B (E2) = 1.11 +8-3 μ =+1.56 20 (1985St05,2014StZZ) J ^{π} : 361.1 γ E2, Δ J=2 to 2 ⁺ gives 0 ⁺ or 4 ⁺ ; spin=4 from $\gamma(\theta)$ in ¹⁹⁰ Ir ε decay (11.78 d); 447.8 γ (E2)-207.9 γ (E2(+M1)) cascade and 656.0 γ (E2+M1) both from 1204 level to 548 level require J(548)≥2. T _{1/2} : weighted average of 12.8 ps 7 by recoil distance and 14.2 ps +4-10 from B(E2)(from 187,2 ⁺)=1.11 +8-3 in Coulomb excitation. Others: 40 ps 20 from $\gamma\gamma$ (t) in ¹⁹⁰ Os IT decay (1958Su57). B(E2)↑: from Coul. ex for transition from 187,2 ⁺ . μ : transient fields in Coul. ex. (1985St05). Value of 1.58 given by 1985St05 relative to μ (187)=+0.700 22 is adjusted (by evaluators) for adopted μ (187)=0.692 (1992St06,2014StZZ). Other: 0.88 48 (1970Le04, IPAC in ¹⁹⁰ Ir ε decay). β_4 =-0.03 1 from (n,n'). B(E4)=0.045 5 from (e,e').			
557.978 ^{&} 5	2+	15.2 ps <i>14</i>	AB D FGHIJKL N	S UVwXY	$\mu = +0.69 \ 9 \ (1985 \text{St05}, 2014 \text{StZZ})$ $J^{\pi}: \text{E2 } \gamma \text{ to } 0^{+}.$ $T_{1/2}: \text{ from recoil distance in Coul. ex. Others: 14.8 ps}$ $+7-8 \text{ from B(E2)(from g.s.)=}0.205 + 8-6 \text{ in Coul. ex.}$ (weighted average is 14.9 ps +7-8 if averaged with the RDM result); 7.9 ps +15-11 from B(E2)(from 187,2^+)=0.42 \ 6 \text{ in muonic atom with adopted branching ratios seems discrepant.} $\mu: \text{ transient fields in Coul. ex. (1985 \text{St05}). Value of 0.69 given by 1985 \text{St05} adjusted (evaluators) for adopted$			

¹⁹⁰Os Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\#}$		XREF	Comments
					$\mu(187)=0.692$ (1992St06,2014StZZ). Q=+0.9 4 or 0.55 30 from 1980Ba42 in Coul. ex., using Q=-0.8 for 187 level.
756.016 ^{&} <i>13</i> 911.80 ^{<i>a</i>} 5	3+ 0+	14 ps +4-3	AB D	IJKL N S VW HIJKL S V X	J ^{π} : E2+M1 γ s to 2 ⁺ ; $\gamma\gamma(\theta)$ in ¹⁹⁰ Ir ε decay. J ^{π} : L(t,p)=L(p,t)=0; spin=0 from $\gamma\gamma(\theta)$ in (n, γ) E=th. T _{1/2} : B(E2)(from 558,2 ⁺)=0.030 5 in Coul. ex. and
955.375 ^{&} 14	4+	7.7 ps 6	AB D	HIJKL S UVWX	adopted branching. J^{π} : 768.6 γ and 397.4 γ E2 to 2 ⁺ ; 407.5 γ E2+M1 to 4 ⁺ ; spin=4 from $\gamma\gamma(\theta)$ in ¹⁹⁰ Ir ε decay (11.78
					d). $T_{1/2}$: others: 6.7 ps 4 from B(E2)(from $558,2^+$)=0.70 3 and 7.5 ps 6 from B(E2)(from $187,2^+$)=0.0082 +6-5 in Coul. ex. together with adopted branching.
1050.433 ^(@) 12	6+	2.36 ps 14	BCDE	IJKL SVXZ	J ^{π} : 502.6 γ E2 to 4 ⁺ ; spin=(6) from $\gamma\gamma(\theta)$ in ¹⁹⁰ Ir ε decay (11.78 d); band member; possible 631 γ from 5 ⁻ . T ₁ (2; other; 2.60 ps <i>11</i> from B(E2)(from
1114.69 ^{<i>a</i>} 4	2 ⁺			HIJKL N S X	$548,4^+$)=0.98 +4-3 in Coul. ex. J ^{π} : 1114.7 γ E2 to 0 ⁺ .
1163.182^b 20	1+ 4+	8.6 ps <i>16</i>	AB D	HIJKL SUVWX	J ^{π} : 605.2 γ E2 to 2 ⁺ ; 207.9 γ to 4 ⁺ ; 407.2 γ E2+M1 to 3 ⁺ ; E4 excitation in (α , α'). T _{1/2} : other: 6.2 ps + <i>11</i> -8 from B(E2)(from 558 2 ⁺)=0.119.15 and adopted branching
1203.83 ^{&} 5	5+		ΒD	IJKL N S	J^{π} : 447.8 γ E2 to 3 ⁺ ; 656.0 γ E2+M1 to 4 ⁺ ; spin=5 from $\gamma(\theta)$ in (n,n' γ) and ¹⁹⁰ Ir ε decay (11.78 d).
1326.9 <i>10</i> 1382.42 <i>20</i>	$1,2^{\ddagger}$ 0 ⁺			P hIJKL S X	XREF: h(1388).
1386.992 ^c 21	3-	61 ps +11-9	AB D	hIJKL RSUW	J [*] : 1195.7 γ E2 to 2 [*] ; L(p,t)=0. J ^π : 828.96 γ E1 to 2 ⁺ , 223.8 γ E1 to 4 ⁺ ; spin=3 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in ¹⁹⁰ Ir ε decay (11.78 d). T _{1/2} : from B(E3)(from g.s.)=0.154 <i>13</i> in (e,e') and adopted branchings.
1436.39 <i>4</i>	2+			HIJKL N S X	$\beta_3 = 0.06$ (from (n,n ['])). J^{π} : 877.7 γ E2(+M1) to 2 ⁺ ; 481.0 γ and 887.9 γ to 4 ⁺ , 524.0 γ to 0 ⁺ ; spin=2 from 680 $\gamma(\theta)$ in (n,n ^{'γ})
1446.24 ^b 3	(5)+		ΒD	IJKL S	J^{π} : 690.0 γ (E2) to 3 ⁺ , 490.7 γ (E2) to 4 ⁺ , 282.9 γ E2(+M1) to 4 ⁺ ; spin=(5) from 690 $\gamma(\theta)$ and evolution function in (n p ⁴)
1474.2 ^{&} 6	(6 ⁺)	2.78 ps 25		v	J^{π} : 518.8y to 4 ⁺ , 423.8y to 6 ⁺ ; probable band member.
1482.0 10	1‡			Р	$1_{1/2}$: other: 2.3 ps +6-4 from B(E2)(from 955,4 ⁺)=0.75 +7-10 and adopted branching.
1514.1? 5 1545.30 <i>16</i>	$(6^+, 5^+)$ 0^+		В	IJKL S X	J^{π} : 558.7 γ to 4 ⁺ ; log <i>ft</i> =8.3 from (6 ⁻). J^{π} : L(p,t)=0.
1547.2 <i>10</i> 1568.98 <i>13</i>	$(3)^+$			P IJKL n S w	E(level): in (d,p) and (t,α) the groups correspond to 1569 and/or 1570.

¹⁹⁰Os Levels (continued)

E(level) [†]	J^{π}	T _{1/2} #		XREF	F				Comments
									J^{π} : 1011.0 γ E2(+M1) to 2 ⁺ , 1021.9 γ to 4 ⁺ ; spin=(3) from 1011 $\gamma(\theta)$ and excitation function in (n n' γ)
1570.3 3	(1,2)			IJKL n		S	W		J^{π} : excitation function and $\gamma(\theta)$ in $(n,n'\gamma)$.
1583.91 ^c 5	4-		B D	IJKL		S			Uncertain in (n, γ) . J ^{π} : 196.9 γ E2+M1 to 3 ⁻ , 380.0 γ E1 to 5 ⁺ , 1036.1 γ E1 to 4 ⁺ .
									Excitation considered uncertain in ¹⁹⁰ Re β^- decay
1615.97 <i>13</i>	$(2)^{+}$			IJKL		S	x		J^{π} : 1429.4 γ E2+M1 to 2 ⁺ , 1616.1 γ to 0 ⁺ and 1067.9 γ to 4 ⁺ .
1666.776 [@] 19	8+	0.71 ps 10	BC E				V	Z	J^{π} : 616.3 γ E2 to 6 ⁺ ; band member. T _{1/2} : other: 0.78 ps 4 from B(E2)(from
1675.69 <i>10</i>	(2)+			hIJKL		S	WX		T(50,6') = 1.06 + 6 - 5. XREF: h(1676)w(1684)x(1679). J^{π} : 1117.7 γ M1(+E2) to 2 ⁺ , 919.6 γ E2(+M1) to 3 ⁺ ; spin=(2) from excitation function and 920 $\gamma(\theta)$
1679.5 3	(3)			h		s	wx		in $(n,n'\gamma)$. XREF: h(1676)w(1684)x(1679).
1680.6 <i>3</i>	(1)			hIJKL n		S	wx		J ^{π} : from excitation function and $\gamma(\theta)$ in (n,n' γ). XREF: h(1676)n(1685)w(1684)x(1679).
1681.70 4	5-		ΒD	hIJKL n		S	WX		J [*] : from $\gamma(\theta)$ in (n,n' γ). XREF: h(1676)n(1685)w(1684)x(1679).
1690.09.12	(2^{\pm})			T 11/1		<u> </u>			J^{π} : E1 γ to 4 ⁺ ; 726 $\gamma(\theta,t)$ in ¹⁹⁰ Ir ε .
1089.08 12	(2^{+})			IJKL N		2	W		J ^{π} : γ s to 4 ⁺ and 0 ⁺ ; $\gamma(\theta)$ of γ to 2 ⁺ in (n,n' γ).
									On the basis of excitation function data in $(n,n'\gamma)$, two separate levels are reported, at 1688.9 (deexcited by 1131 γ and 1142 γ) and 1689.2 (deexcited by 933 γ and 1502 γ); however, the relative intensities of all the four γ rays agree well in both reactions: (n,γ) (E=th and E=res) and $(n,n'\gamma)$.
1705.7 1	10-	9.86 min <i>3</i>	CE						%IT=100 μ =-0.56 +8-12 (1987Be54,2014StZZ)
									J^{π} : 38.9 γ M2+E3 to 8 ⁺ .
									(1958Sc30), 9.85 min <i>14</i> (1964Ti01), 11 min (1962Ma24), 1961Ma31, 10 min 2 (1955At32), 9.5 min (1950Ch11).
									μ : from $\gamma(\theta,t,H)$ (1987Be54). Configuration= $\nu 9/2[505]+\nu 11/2[615]$.
1708.25 20	(2+,3,4+)		ΒD	HIJ		S	X		J^{π} : 753.2 γ to 4 ⁺ , 1150.7 γ to 2 ⁺ . 952 $\gamma(\theta)$ in (n,n' γ) disfavors 3 ⁻ . Possible population in (d,d') (priv. comm., cited by 1984KIZY) makes 3 ⁺
1724.8 10	1‡				P				unlikely.
1732.89 <i>17</i> 1777 6	0+			HIJKL H	•	S	X W		J^{π} : L(t,p)=L(p,t)=0. E(level): weighted average of 1776 8 from (t,p) and
1802.74 24	(1,2 ⁺)					S			J^{π} : excitation function and $1616\gamma(\theta)$. $J^{\pi}=1^+$ less likely if possible population in (d,d') (priv. comm.,
1813.50 22	(1+,2,3+)			IJKL		S			cited by 1984KIZY). J ^{π} : 1255 $\gamma(\theta)$ (to 2 ⁺) implying D+Q suggests

¹⁹⁰Os Levels (continued)

E(level) [†]	\mathbf{J}^{π}		XI	REF			Comments
							$J \neq 0, 1^-, 3^-$ and excitation function favors low spin (≤ 3).
1000 (5 10	(1.0)+				_		Uncertain in (n,γ) .
1823.65 18	$(1,2)^{+}$		T JKL	N	S	W	XREF: I(?). π_1 1265 7a, E2 to 2 ⁺ . In (n n'a), excitation function favore L<2 and
							$J \neq 0$ from $1266\gamma(\theta)$.
1836.39 <mark>b</mark> 6	(6+)	В				V	J ^{π} : log ft=7.4 from (6 ⁻); 673.1 γ to 4 ⁺ . Because of direct multi-step
							excitation in Coul. ex., $J=5^+$ less likely.
1859.11 <i>16</i>	(2^{+})		hIJKL		S		XREF: h(1868). I^{π_1} 1311 2x to A^+ possible 1858 8x to 0^+
1872.23 [°] 8	$(5)^{-}$	ВD	hT K	N	S	WX	XREF: h(1868).
	(-)						J^{π} : 485.2 γ E2 to 3 ⁻ , 190.5 γ M1 to 5 ⁻ , 1324.3 γ E1 to 4 ⁺ .
1884.45 22	(1,2,3)		ΙK		S		J^{π} : excitation function and $\gamma(\theta)$ in $(n,n'\gamma)$.
1002 0 2	(1, 2, 2)		TIVI		c		Uncertain in (n, γ) .
1902.0 3	(1,2,3)		LJKL		2		J [*] : excitation function and $\gamma(\theta)$ in $(n, n'\gamma)$. Uncertain in (n, γ)
1903.33 11	$(3^+, 4^-)$	D	I JKL		S		E(level): in $(n, r'\gamma)$, on the basis of excitation functions, two levels
1700100 11	(8,1)	-			-		are suggested: at 1902.9 (decaying through 1147 γ) and 1903.3
							(decaying through 740 γ). However, branching ratios of both
							transitions agree well in ¹⁹⁰ Ir ε , (n, γ) and (n,n' γ).
							J ^{π} : log ft=6.2 from 4 ⁻ ; 1147 $\gamma(\theta)$ (to 3 ⁺) in (n,n' γ) implying D+Q
1010 58 15	$(2)^{+}$		ht IVI	n	c		suggests $J \neq 5, 5$. XDEE: $h(1026)n(1012)w(1010)v(1016)$
1910.38 15	(2)		IIIJKL	n	3	WA	I^{π} : 1154 4 γ E2(+M1) to 3 ⁺ , 955.7 γ to 4 ⁺ : primary 5881.2 γ from
							1^- and 2^- resonances in (n,γ) E=res. Possible population in (d,d')
							(priv. comm., cited by 1984KIZY) makes 3 ⁺ unlikely.
1918.4 <i>4</i>	(1,2)		hIJKL	n	S	WX	XREF: $h(1926)n(1912)w(1910)x(1916)$.
							J [*] : primary 58/3.8 γ from 1 and 2 resonances in (n, γ) E=res;
1935.33 19	$(2^+, 3^+, 4)$				s		I^{π} : from $\gamma(\theta)$ in $(n, n'\gamma)$. Possible population in (d, d') (priv. comm.)
1700100 17	(2,0,1)				-		cited by 1984KIZY) makes 3 ⁺ unlikely.
1943.5 <i>4</i>	(2^{+})		IJKL		S	WX	J^{π} : 1942.6 γ to 0 ⁺ and 1395.9 γ to 4 ⁺ .
1956.6 4	0^+				_	Х	J^{π} : L(p,t)=0.
1958.1 3	$(1,2^+)$		T JKL	n	S		XREF: n(1965). Uncertain in (n a)
							I^{π} : γ to 0^+
1970.50 22	$(1^+, 2)$		IJKL	n	S	W	XREF: n(1965)W(1980).
							J^{π} : primary 5821.4 γ from 1 ⁻ and 2 ⁻ resonances in (n, γ) E=res;
							1214.3γ to 3^+ .
1992.4 <i>3</i>	(2,3)		IJKL	n	S	x	XREF: $n(1994)x(1990)$.
							J ^{γ} : excitation function gives $J \le 5$; $1250\gamma(\theta)$ (to 5 ^{γ}) suggests $J \ne 1$. Uncertain in (n γ)
1995.22 18	$(2)^{+}$	Α	hIJKL	n	S	x	XREF: $h(2006)n(1994)x(1990)$.
							J^{π} : 1437.0 γ E2(+M1) to 2 ⁺ , 1447.7 γ to 4 ⁺ ; primary 5797 γ from 1 ⁻
	.						and 2^- resonances in (n,γ) E=res.
2009.8 5	$1^{(+)}$		hIJKL	Р		WX	XREF: h(2006)w(2015)x(2018).
2025 5 2	(1, 2)		זשרד		c		J ^{<i>n</i>} : parity from 1253.0 γ to 3 ⁺ .
2023.3 3	(1,2)		IJKL		3	wx	I^{π} : excitation function and $\nu(\theta)$ in $(n n'\nu)$
							Uncertain in (n,γ) .
2042.4 16	(1,2)		hIJKL			x	XREF: h(2054)J(?)K(?)L(?)x(2054).
							E(level): from (n,γ) . This level is uncertain in (n,γ) .
2047.9.9	(1, 2)		h T JVZ				J [*] : possible primary 5749.7 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res.
∠047.ð ð	(1,2)		III JKL			x	AREF. II(2034)I(2)X(2034). J^{π} : primary 5744.8v from 1 ⁻ and 2 ⁻ in (n v) E=res
2061.2? 2	$(6^+, 7^-)$	В					J^{π} : possible 394.6y to 8 ⁺ and 379.4y to 5 ⁻ .
							- · ·

¹⁹⁰Os Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\#}$		XREF			Comments
2068.87 8	(5 ⁺)		В	n		WX	XREF: n(2068)w(2071)x(2083). J ^{π} : 387.1 γ to 5 ⁻ , 864.9 γ to 5 ⁺ , 1313.1 γ to 3 ⁺ ;
2070.2 3	(1+,2)			IJKL n	S	WX	J^{π} : excitation function in $(n, n'\gamma)$; primary 5720.7 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res: 1312.9 γ to 3 ⁺ .
2089.0 5	$(1^+, 2^+)$			I			J^{π} : 2090.8 γ to 0 ⁺ and 1333.2 γ to 3 ⁺ .
2090.2 ^{&} 12	(8+)	1.6 ps +3-4				V	J^{π} : Coul. ex. from (6 ⁺) and band member. T _{1/2} : from B(E2)(from 1474,6 ⁺)=0.52 +15-7 in Coul. ex.
2111.8 4	(1,2 ⁺)			hIJKL N	S	WX	XREF: h(2113)w(2120)x(2130). J ^{π} : primary 5680.9 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res; 2111.5 γ to 0 ⁺ .
2118.51 20	$(1^+, 2)$			hIJKL N	S	WX	XREF: h(2113)w(2120)x(2130).
2121.39 12	(5,6 ⁺)		В				J ^{<i>n</i>} : excitation function and $\gamma(\theta)$ in (n,n' γ). J ^{<i>π</i>} : log <i>ft</i> =7.7 from (6 ⁻); 1166.1 γ to 4 ⁺ , 284.9 γ to (6 ⁺).
2124.67 17	(2,3 ⁺ ,4 ⁺)			hIJKL	S	WX	XREF: h(2113)w(2120)x(2130). J ^{π} : excitation function and $\gamma(\theta)$ in (n,n' γ). Uncertain in (n, γ).
2135.5 3	$(0^+, 1, 2)$			IJKL	S		J ^{π} : excitation function in (n,n' γ); 1949.2 γ to 2 ⁺ .
2150.6 9	(1,2 ⁺)			IJKL N		WX	Sincertain in (n, γ) . XREF: w(2163)x(2161). J^{π} : 2150.6 γ to 0 ⁺ .
2175.5 10	(0 ⁺ ,1,2)			HIJKL N	S	WX	XREF: $I(?)J(?)K(?)w(2163)x(2161)$. J ^{π} : primary 5616.7 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res; 1988.8 γ to 2 ⁺ .
2191.4 4	(1,2 ⁺)			IJKL			J^{π} : 2191.4 γ to 0 ⁺ .
2198.5 6	(1,2)			iJKL		X	XREF: i(2211). I^{π} : primary 5593.7 γ from 1 ⁻ and 2 ⁻ in (n γ) E=res
2210.1 4	(1,2)			IJKL N		WX	XREF: w(2219)x(2211). J ^{π} : primary 5580.9 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res.
2224 2	(1,2)			IJKL		WX	XREF: w(2219)x(2211).
2263.5 5	(1,2 ⁺)			IJKL N		WX	J [*] : primary 5568.5 γ from 1 and 2 in (n, γ) E=res. J ^{π} : primary 5529.0 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res; possible 2261.5 γ to 0 ⁺
2288.8 6	(1,2)			HIJKL N		X	XREF: H(2299)N(2298)X(2286). J ^π : primary γs from 1 ⁻ and 2 ⁻ in (n,γ) E=res; 2287.4γ to 0 ⁺ .
2296.5 7	1‡			Р			
2307 2	(1,2)			IJKL			XREF: I(?)J(?)L(?).
2315 2	(1,2)			IJKL			J^{π} : primary 5460.17 from 1 and 2 in (n, γ) E=res. XREF: I(?)J(?)L(?). J^{π} : primary 5478.2 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res.
2328.2 10	1 [‡]			N P		Wx	XREF: x(2339).
2350.7 10	$(1,2^{+})$			hIJKL		WX	XREF: h(2358)w(2354)x(2339). J ^{π} : primary 5444.8 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res; 2352.3 γ to 0 ⁺ .
2352.45 21	(2+,3)		A	h		W	XREF: $h(2358)w(2354)$. J ^{π} : log <i>ft</i> =5.8 2 from (2) ⁻ ; 1397.1 γ to 4 ⁺ .

¹⁹⁰Os Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\#}$	X	REF		Comments
2357.7 [@] 10	(10 ⁺)	0.48 ps +11-9			V Z	J ^π : populated in Coul. ex.; 690.9γ to (8 ⁺). T _{1/2} : from B(E2)(from 1667,8 ⁺)=0.93 +22-17 in Coul. ex.
2366 6				N		
2381 2	(1,2)		IJKL			XREF: J(?)L(?). J ^{π} : primary 5409.5 γ from 1 ⁻ and 2 ⁻ in (n, γ) E=res.
2393.5 10	1 [‡]		h	Р		XREF: h(2400).
2408.0 7	1‡		h	NP	WX	XREF: h(2400)N(2417)X(2412).
2446 5	(0+)		H	N	WX	E(level): weighted average of 2451 <i>10</i> from (t,p), 2450 5 from (d,p), 2437 8 from (t, α), and 2440 <i>10</i> from (p,t). J^{π} : L(t,p)=(0).
2457.7 6	(1,2 ⁺)		I		W	XREF: w(2463). I^{π} : 2460 5v to 0 ⁺
2468 2	(1,2)		IJKL	n	W	XREF: I(?)L(?)n(2476)w(2463). J ^π : primary 5324.7γ from 1 ⁻ and 2 ⁻ in (n,γ) E=res.
2474.4 10	(0 ⁺ to 3)		hI	n		XREF: h(2484)n(2476). J ^π : primary 5318.1γ from 1 ⁻ ,2 ⁻ in (n,γ) E=th; 1917.2γ to 2 ⁺ .
2477.0 5	$(1^+, 2^+)$		hIJKL	n		XREF: $h(2484)n(2476)$. J ^{π} : 2477.0 γ to 0 ⁺ and 1720.9 γ to 3 ⁺ .
2483.5 5	0^{+}				Х	J^{π} : L(p,t)=0.
2502.7 7	$(1^+, 2^+)$		I			J^{π} : 2502.8 γ to 0 ⁺ and 1746.6 γ to 3 ⁺ .
2511 6			h	N		XREF: h(2526). E(level): from (d,p).
2539 6			h	N	WX	XREF: h(2526)N(2541)W(2535)X(2538). E(level): weighted average of 2541 <i>6</i> from (d,p), 2535 <i>8</i> from (t,α), and 2538 <i>10</i> from (p,t).
2551.8 5	$(1^+, 2^+)$		I			J^{π} : 2551.4 γ to 0 ⁺ and 1795.5 γ to 3 ⁺ .
2563.3 7	(0 ⁺ to 3)		HI		W	XREF: H(2574)W(2568). J ^π : primary 5229.7γ from 1 ⁻ ,2 ⁻ in (n,γ) E=th; 2003.4γ to 2 ⁺ .
2591.6 5	$1^{(+)}$		I	Р	x	XREF: x(2603). J^{π} : parity from 1835.5 γ to 3 ⁺ .
2622.5 5	1 ⁽⁺⁾ ‡		I	NP	Wx	XREF: $x(2603)$.
761277	1 \$			р		$y_{\text{DEE}} = \frac{1}{2}(2645)$
2045.77	1.			r N	X Wy	XREF. $x(2645)$.
2055 7				N	II A	E(level): weighted average of 2655 7 from (d,p) and 2655 8 from (t,α) .
2663.0 7	(1+,2,3)		I			J ^{π} : primary 5129.6 γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th; 2476.8 γ to 2 ⁺ and 1904.8 γ to 3 ⁺ .
2685 7				N	WX	E(level): weighted average of 2686 7 from (d,p), 2690 8 from (t,α) , and 2674 10 from (p,t) .
2704.2 6	1 ^{(+)‡}		I	Р		J ^{π} : parity from 1949.9 γ to 3 ⁺ .
2714.1 7	1‡			NP	WX	
2737.7 7	1 [‡]		I	Р	WX	
2757.7 <mark>°</mark> 15	(12^{+})				Z	J ^{π} : band assignment in (⁸² Se,X γ).
2772.2 ^{&} 16	(10 ⁺)				V	J^{π} : populated in Coul. ex. and 682γ to (8^+) .
2774.0 5	1 [‡]		I	ΝP	WX	XREF: X(2755).
2791 8					W	

¹⁹⁰Os Levels (continued)

2840.0 9 $1^{\frac{1}{2}$ I N P N 2820.6 4 (0 ⁺ to 3) I N P primary 4971.7y from 1-,2 ⁻ in (n,y) E=th; 2262.6y 2877.0 10 (1,2 ⁺) I N P P: 2376.0y to 0 ⁺ . 2914 8 (1,2 ⁺) I N X P: 2980.0y to 0 ⁺ . 2924 7 I N X P: 2980.0y to 0 ⁺ . P: 2980.0y to 0 ⁺ . 2935 0 (2 ⁺) I N X P: 2980.0y to 0 ⁺ . P: 2980.0y to 0 ⁺ . 2937 0 (12 ⁺) I N X P: 2980.0y to 0 ⁺ . P: 2980.0y	E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\#}$		XREF		Comments
2820.6 4 (0* to 3) I I P: primary 4971.7y from 1 ⁻ ,2 ⁻ in (n,y) E=th; 2262.6y 2871.0 10 (1,2 ⁺) I W P: 2878.0 yr 0.0 ⁺ . 2914 8 (1,2 ⁺) I W P: 2980.0 yr 0.0 ⁺ . 2914 8 (1,2 ⁺) I N X P: 2980.0 yr 0.0 ⁺ . 2953 0 5 (2 ⁺) I N X P: 2980.0 yr 0.0 ⁺ . 2953 0 5 (2 ⁺) I N X P: 2980.0 yr 0.0 ⁺ . 2993 0 0 1 N X P: 2980.0 yr 0.0 ⁺ . 201.7 2993 0 0.1 ⁺ . N V P: populate in Coul. ex; 654y to (10 ⁺). T _{1/2} ; 0.7 pr to 1.9 pr from B(E2)(from 2357.10 ⁺)=0.32. to 0.7 in Coul. ex; 164y.0323). 3015.7 1 [±] n P X XREF: x(3045). 3023.0 1 [±] n P X XREF: x(3045). 3045.4 6 1 [±] p P 3126.17 1 [±] P 3126.17 1 [±] p P XREF: x(3045). T _{1/2} : 0.4 s to 4.8 pr from B(E2)(from 10 ⁺). T _{1/2} : 0.4 s to 4.8 pr from	2816.0 9	1‡		I	NP	W	
2877.0 $(1,2^*)$ I R J^* : 2878.0 yr 0.0°. 2914 8 $(1,2^*)$ I N K Effective: weighted average of 2914 8 from (t,a) and 2915 J^0 from $(p,1)$. 2963 8 $(1,2^*)$ I N K J^* : 2945.1 yr to 0°. 2963 0 S (2^*) I F: 2940.0 yr to 0°. 2425.3 yr to 4°. 2973 0 S (2^*) I F: 2980.0 yr to 0°. 2425.3 yr to 4°. 3011.7 15 (12^*) <1.9 ps N F: 2980.0 yr to 0°. 2425.3 yr to 4°. 3015.7 7 I P propulated in Coul. ex.: 654 yr to (10°). $T_{1/2}$: 0.7 ps to 1.9 ps from B(E2)(from 2357,10*)=0.32 ro 0.7 in Coul. ex. 3015.7 7 I P X XEF: x(3023). To 0.7 in Coul. ex. 3015.7 7 I P X XEF: x(3045). W 3017.1 10 I P X XEF: x(3045). W 3126.7 15 (12*) <4.8 ps	2820.6 4	(0 ⁺ to 3)		Ī			J ^{π} : primary 4971.7 γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th; 2262.6 γ to 2 ⁺ .
2914 8 E(leve): weighted average of 2914 8 from (i,a) and 2915 10 from (p,i). 2943,7 8 (1,2 ⁺) I N X F : 2945,17 to 0 ⁺ . 2953,0 5 (2 ⁺) I F P (2980,07 to 0 ⁺ , 2425,37 to 4 ⁺ . 2952,0 7 (1 ²) (12 ⁺) <1.9 ps F (100 E(2))(from 2357,10 ⁺)=0.32 10 (17) 17 (12 ⁺) <1.9 ps F (100 E(2))(from 2357,10 ⁺)=0.32 10 (17) 17 (12 ⁺) <1.9 ps F (17) E(2) (17) 19 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (12) (17) 12 (17)	2877.0 10	$(1,2^+)$		I		W	J^{π} : 2878.0 γ to 0 ⁺ .
2944.7 8 (1.2 ⁺) I N X J ⁷ : 2945.1 γ to 0 ⁺ . 2953.6 (2 ⁺) I N X J ⁷ : 2945.1 γ to 0 ⁺ . 2972.10 N J ² : 5980.0 γ to 0 ⁺ , 2425.3 γ to 4 ⁺ . 3011.7 15 (12 ⁺) <1.9 ps N V J ⁷ : populated in Coul. ex. (54 γ to (10 ⁺). T _{1/2} : 0.7 ps to 1.9 ps form B(E2)(from 2357.10 ⁺)=0.32 to 0.7 in Coul. ex. Either of the 3011 or 3126 levels may be member of g.s. band. 3015.7 7 1 [‡] P X XREF: x(3023). 3023.0 7 1 [‡] P X XREF: x(3045). 3054.6 1 [‡] I n P XREF: n(3045)x(3023). 3056.8 V J ⁴ : 3076.8 V J ⁴ : populated in Coul. ex.; 769 γ to (10 ⁺). T _{1/2} : 0.4 ρ to 4.8 ρ F N N N N N N N N N N N N N N N N N N	2914 8					WX	E(level): weighted average of 2914 8 from (t,α) and 2915 10 from (p,t) .
2963.8 (2 ⁺) I J^{\pm} : 2980.0y to 0 ⁺ , 2425.3y to 4 ⁺ . 2992.10 N J^{\pm} : populated in Coul. ex.; 654y to (10 ⁺). 3011.7 15 (12 ⁺) <1.9 ps	2944.7 8	$(1,2^+)$		I	N	Х	J^{π} : 2945.1 γ to 0 ⁺ .
297:03 (2') 1 $F: 290.09 to 0', 242.3y to 4'.$ 3011.7 15 (12*) <1.9 ps	2963 8	(2+)		-		W	
227175 (12^+) $<1.9 \text{ ps}$ Y $J^{\#}$: populated in Coul. ex.; 654y to (10^+) , T _{1/2} : 0.7 ps to 1.9 ps from B(E2)(from 2357,10^+)=0.32 to 0.76 in Coul. ex 3015.77 1^{\ddagger} P x XREF: x(3023). 3023.07 1^{\ddagger} n P x XREF: x(3023). 3023.07 1^{\ddagger} n P x XREF: x(3023). 3023.07 1^{\ddagger} n P x XREF: x(3045). 3023.07 1^{\ddagger} n P x XREF: x(3045). 3023.07 1^{\ddagger} n P x XREF: x(3045). 3025.07 1^{\ddagger} p XREF: x(3045). x 3126.17 1^{\ddagger} p x XREF: x(3045). x 3126.7 1^{\ddagger} p x XREF: x(3405). x 3142.0 1^{\ddagger} p x XREF: x(3336). x 3142.0 1^{\ddagger} p x XREF: x(3430). x 3142.0 1^{\ddagger} p x XREF: x(3430). x 3142.0 1^{\ddagger} p x XREF: x(34	2975.0 5	(2^{+})		1	N		$J^{*}: 2980.0\gamma$ to $0^{\circ}, 2425.3\gamma$ to 4° .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3011.7 15	(12+)	<1.9 ps		и	v	 J^π: populated in Coul. ex.; 654γ to (10⁺). T_{1/2}: 0.7 ps to 1.9 ps from B(E2)(from 2357,10⁺)=0.32 to 0.76 in Coul. ex. Either of the 3011 or 3126 levels may be member of g.s. band.
3023.07 $1^{\frac{5}{4}}$ n P x XREF: n(3045)x(3023). 3045.46 $1^{\frac{5}{4}}$ I n P XREF: n(3045). 3076.8 w N XREF: n(3045). 3076.8 w N N $317.1.10$ $1^{\frac{5}{4}}$ P N 3126.17 $1^{\frac{5}{4}}$ P N $3126.77.5$ (12^+) <4.8 ps	3015.7 7	1‡			Р	x	XREF: x(3023).
3045.4.6 $1^{\frac{1}{2}}$ I n P XREF: n(3045). 3076.8 W W 3117.1 1 ^{$\frac{1}{4}$} P 3126.7 1 ^{$\frac{1}{4}$} P 3120.0 1 ^{$\frac{1}{4}$} P 3142.0 1 ^{$\frac{1}{4}$} P 3244.6 10 1 ^{$\frac{1}{4}$} P 3278 X X X 3278 X X X 3346.7 ^{e 1^{$\frac{1}{4}$} P X 344.8 10 1^{$\frac{1}{4}$} P X 344.5.9 1^{$\frac{1}{4}$} P X XREF: X(3336). 3445.9 1^{$\frac{1}{4}$} P X XREF: W(3455)x(3430). 3445.9 1^{$\frac{1}{4}$} P X XREF: W(3455)x(3430). 347.00 1^{$\frac{1}{4}$} P X XREF: X(3525). 3577.10 X X <}	3023.0 7	1‡			n P	x	XREF: n(3045)x(3023).
3076 8 N 3117.1 0 $1^{\frac{1}{4}}$ P 3126.7 7 $1^{\frac{1}{4}}$ P 3126.7 5 (1^2^+) <4.8 ps	3045.4 6	1 [‡]		I	n P		XREF: n(3045).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3076 8					W	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3117.1 10	1‡			Р		
3126.7 15 (12^+) <4.8 ps	3126.1 7	1‡			Р		
3142.0 10 $1^{\frac{3}{4}}$ P 3189.3 10 $1^{\frac{3}{4}}$ P 3244.6 10 $1^{\frac{1}{4}}$ P 3278 10 X 3346.7 18 (14^+) Z J^{π} : band assignment in ($^{82}Se, Xy$). 3348.3 10 $1^{\frac{1}{4}}$ P X XREF: X(3336). 341.8 10 $1^{\frac{3}{4}}$ P X XREF: x(3430). 3445.9 7 $1^{\frac{3}{4}}$ P X XREF: W(3455)x(3430). 345.4 10 $1^{\frac{3}{4}}$ P X XREF: W(3455)x(3430). 3467.4 10 $1^{\frac{3}{4}}$ P X XREF: X(3525). 3577 10 X XREF: X(3525). X 3595 10 X X X 3724 10 X X X 3781 10 X X X 3784.9 10 $1^{\frac{3}{4}}$ P X 3869.9 10 $1^{\frac{3}{4}}$ P X 3981.9 10 $1^{\frac{3}{4}}$ P X 3981.9 10 $1^{\frac{3}{4}}$ P X 3981.9 10 $1^{$	3126.7 15	(12 ⁺)	<4.8 ps			V	J^{π} : populated in Coul. ex.; 769 γ to (10 ⁺). T _{1/2} : 0.4 ps to 4.8 ps from B(E2)(from 10 ⁺ level)=0.048 to 0.55 in Coul. ex.
3189.3 10 $1^{\frac{1}{2}}$ P 3244.6 10 $1^{\frac{1}{2}}$ P 3278 10 X 3278 10 X 3278 10 X 3278 10 X 3346.7 18 (14 ⁺) 348.3 10 $1^{\frac{1}{2}}$ 348.3 10 $1^{\frac{1}{2}}$ 344.8 10 $1^{\frac{1}{2}}$ 9 X 3445.9 7 $1^{\frac{1}{2}}$ 9 X 3467.4 10 $1^{\frac{1}{2}}$ 9 X 3516.6 10 $1^{\frac{1}{2}}$ 9 X 3628 10 X 3748.9 10 $1^{\frac{1}{2}}$ 9 X 3748.9 10 $1^{\frac{1}{2}}$ 9 X 3869.9 10 $1^{\frac{1}{2}}$ 9 X 3981.9 10 $1^{\frac{1}{2}}$ <	3142.0 10	1‡			Р		
3244.6 10 $1^{\frac{1}{2}}$ P 3278 10 X 3346.7 $^{\circ}$ 18 (14^{+}) Z J^{π} : band assignment in (82 Se,Xy). 3348.3 10 $1^{\frac{1}{2}}$ P X XREF: X(3336). 3414.8 10 $1^{\frac{1}{2}}$ P X XREF: X(3430). 3445.9 7 $1^{\frac{1}{2}}$ P X XREF: X(3430). 3467.4 10 $1^{\frac{1}{2}}$ P X XREF: X(3430). 3467.4 10 $1^{\frac{1}{2}}$ P X XREF: X(355). 3577.10 X X XREF: X(3525). X 3595.10 X X X XREF: X(3525). X 3748.9 10 $1^{\frac{1}{2}}$ P X XREF: X(3525). X 3748.9 10 $1^{\frac{1}{2}}$ P X X X 3995.7 10 $1^{\frac{1}{2}}$ P X X X 3994.8 10 $1^{\frac{1}{2}}$ P X XREF: X(3978). X 391.9 10 $1^{\frac{1}{2}}$ P X XREF: X(3978). X 4012.7 e^{20}	3189.3 10	1‡			Р		
$3278 \ 10$ X $3346.7^e \ 18$ (14^+) Z J^π : band assignment in ($^{82}Se,Xy$). $3348.3 \ 10$ $1^{\frac{5}{4}}$ P X XREF: X(3336). $3414.8 \ 10$ $1^{\frac{5}{4}}$ P X XREF: X(3430). $3445.9 \ 7$ $1^{\frac{5}{4}}$ P W XREF: W(3455)x(3430). $3467.4 \ 10$ $1^{\frac{5}{4}}$ P X XREF: W(3455)x(3430). $3467.4 \ 10$ $1^{\frac{5}{4}}$ P X XREF: X(3525). 577.10 X XREF: X(3525). X $3728.7 \ 10$ X X XREF: X(3525). $3748.9 \ 10$ $1^{\frac{5}{4}}$ P X 3781.10 X X X 3990.10 $1^{\frac{5}{4}}$ P X 3990.10 $1^{\frac{5}{4}}$ P XREF: X(3978). 3990.10 $1^{\frac{5}{4}}$ P X $391.9 \ 10$ $1^{\frac{5}{4}}$ P X $3924.8 \ 10$ $1^{\frac{5}{4}}$ P X $4012.7^e 20$ (16^+) X X <td< td=""><td>3244.6 10</td><td>1[‡]</td><td></td><td></td><td>Р</td><td></td><td></td></td<>	3244.6 10	1 [‡]			Р		
3346.7^e 18 (14 ⁺) Z J ^{\pi} : band assignment in ($^{82}Se,Xy$). 3348.3 10 1 [‡] P X 3441.8 10 1 [‡] P X 3445.9 7 1 [‡] P X 3457.4 10 1 [‡] P X 3516.6 10 1 [‡] P X 3577.10 X XREF: X(3525). 3577.10 X X 3595.10 X X 3724.10 X X 3787.70 X X $3788.7.10$ 1 [‡] P 3990.10 1 [‡] P 3990.10 1 [‡] P 3990.10 1 [‡] P 3990.10 1 [‡] P $3991.9.10$ 1 [‡] P $391.9.10$ 1 [‡] P $491.7e^2.20$ (16 ⁺) Z $497.7d^2.23$ (18 ⁺) Z $4497.7d^2.25$ (19 ⁺) Z $394.800.7d^2.5$ (19 ⁺) X	3278 10					X	
3348.3 10 $1^{\frac{3}{4}}$ P X XREF: X(3336). 3414.8 10 $1^{\frac{1}{4}}$ P x XREF: x(3430). 3445.9 7 $1^{\frac{1}{4}}$ P w XREF: w(3455)x(3430). 3467.4 10 $1^{\frac{1}{4}}$ P w XREF: w(3455)x(3430). 3467.4 10 $1^{\frac{1}{4}}$ P X XREF: w(3455)x(3430). 3467.4 10 $1^{\frac{1}{4}}$ P X XREF: w(3455)x(3430). 3467.4 10 $1^{\frac{1}{4}}$ P X XREF: x(3525). 3575 10 x X XEF: w(3452). X 3595 10 x X XREF: x(3525). X 3724 10 x X X X 3748.9 10 $1^{\frac{1}{4}}$ P X X 3798.7 10 $1^{\frac{1}{4}}$ P X X 3900 10 x X Y Y 3924.8 10 $1^{\frac{1}{4}}$ P X XREF: x(3978). 4012.7 ^e 20 (16 ⁺) Z J ^π : band assignment in (⁸² Se, Xy). 4497.7 ^d 23 (18 ⁺)<	3346.7 ^e 18	(14^{+})				Z	J^{π} : band assignment in (⁸² Se,X γ).
3414.8 10 $1^{\frac{1}{2}}$ P x XREF: x(3430). 3445.9 7 $1^{\frac{1}{2}}$ P Wx XREF: W(3455)x(3430). 3467.4 10 $1^{\frac{1}{2}}$ P X XREF: W(3455)x(3430). 3467.4 10 $1^{\frac{1}{2}}$ P X XREF: W(3455)x(3430). 3467.4 10 $1^{\frac{1}{2}}$ P X XREF: X(3525). 3577 10 X X X X 3595 10 X X X X 3628 10 X X X X 3724 10 X X X X 3781 10 X X X X 3798.7 10 $1^{\frac{1}{2}}$ P X X 3900 10 X X X X 3924.8 10 $1^{\frac{1}{2}}$ P X XREF: X(3978). 4012.7 ^e 20 (16 ⁺) Z J ^π : band assignment in (⁸² Se, Xγ). 4497.7 ^d 23 (18 ⁺) Z J ^π : band assignment in (⁸² Se, Xγ). 4809.7 ^d 25 (19 ⁺) Z J ^π : band assignment in (⁸² Se, X	3348.3 10	17			Р	Х	XREF: X(3336).
3445.9 7 1^{\ddagger} P $\forall x$ XREF: W(3455)x(3430). 3467.4 10 1^{\ddagger} P x XREF: W(3455)x(3430). 35467.4 10 1^{\ddagger} P x XREF: X(3525). 3577 10 x x 3595 10 x 3595 10 x x x 3595 10 x 3628 10 x x x x 3628 10 x 3724 10 x x x x x x 3748.9 10 1^{\ddagger} P x x x x 3781 10 x x x x x x $3798.7 10$ 1^{\ddagger} P x x x $3900 10$ x x x x x $3924.8 10$ 1^{\ddagger} P x x x $4012.7^{e} 20$ (16^{+}) x x x $4497.7d^{2} 23$ (18^{+}) x x x $4497.7d^{2}$	3414.8 10	17			Р	x	XREF: x(3430).
$3467.4\ 10$ $1^{\frac{1}{2}}$ P $3516.6\ 10$ $1^{\frac{1}{2}}$ P X $3577\ 10$ X $3577\ 10$ X $3595\ 10$ X $3595\ 10$ X $3628\ 10$ X $3724\ 10$ X $3724\ 10$ X $3748\ 9\ 10$ $1^{\frac{1}{2}}$ $788\ 10$ X $3788\ 7\ 10$ $1^{\frac{1}{2}}$ $900\ 10$ X $3924\ 8\ 10$ $1^{\frac{1}{2}}$ $990\ 10$ X $3924\ 8\ 10$ $1^{\frac{1}{2}}$ $981\ 9\ 10$ $1^{\frac{1}{2}}$ $981\ 9\ 10$ $1^{\frac{1}{2}}$ $4012\ 7^{e}\ 20$ (16^{+}) $4497\ 7^{d}\ 23$ (18^{+}) $4497\ 7^{d}\ 25$ (19^{+}) $4809\ 7^{d}\ 25$ (19^{+})	3445.9 7	17			Р	Wx	XREF: W(3455)x(3430).
3516.6 10 1 [‡] P X XREF: X(3525). 3577 10 X X 3595 10 X X 3628 10 X X 3724 10 X X 3724 10 X X 3710 1 [‡] P X 3781 10 X X 3798.7 10 1 [‡] P 3869.9 10 1 [‡] P 3900 10 X X 3924.8 10 1 [‡] P 3981.9 10 1 [‡] P 3981.9 10 1 [‡] P 3981.9 10 1 [‡] P 4012.7 ^e 20 (16 ⁺) Z J ^π : band assignment in (⁸² Se,X\gamma). 4497.7 ^d 23 (18 ⁺) Z J ^π : band assignment in (⁸² Se,X\gamma). 4809.7 ^d 25 (19 ⁺) Z J ^π : band assignment in (⁸² Se,X\gamma).	3467.4 10	1‡			Р		
3577 10 X 3595 10 X 3628 10 X 3724 10 X 371 1 [‡] 910 1 [‡] 92 1 [‡] 93 1 [‡] 900 10 X 3924.8 10 1 [‡] 9900 10 X 3924.8 10 1 [‡] 9901 0 X 3981.9 10 1 [‡] 9 X 3981.9 10 1 [‡] 9 X 4012.7 ^e 20 (16 ⁺) 4497.7 ^d 23 (18 ⁺) 4497.7 ^d 23 (18 ⁺) 4809.7 ^d 25 (19 ⁺) 2 J ^π : band assignment in (⁸² Se,Xγ).	3516.6 10	1‡			Р	X	XREF: X(3525).
3595 10 X 3628 10 X 3724 10 X 3724 10 X 3748.9 10 1 [‡] 3781 10 X 3798.7 10 1 [‡] 3669.9 10 1 [‡] 3900 10 X 3924.8 10 1 [‡] 9900 10 X 3924.8 10 1 [‡] 910 1 [‡] P 3924.8 10 1 [‡] 10 X 3924.8 10 1 [‡] 9 X 391.9 10 1 [‡] 12.7 ^e 20 (16 ⁺) 4497.7 ^d 23 (18 ⁺) 4497.7 ^d 23 (18 ⁺) 4499.7 ^d 25 (19 ⁺) X J ^π : band assignment in (⁸² Se,Xγ). 4809.7 ^d 25 (19 ⁺) X J ^π : band assignment in (⁸² Se,Xγ).	3577 10					X	
$3724\ 10$ X $3724\ 10$ X $3748.9\ 10$ 1 [‡] $3781\ 10$ X $3798.7\ 10$ 1 [‡] $3798.7\ 10$ 1 [‡] $369.9\ 10$ 1 [‡] $3900\ 10$ X $3924.8\ 10$ 1 [‡] $3924.8\ 10$ 1 [‡] $3924.8\ 10$ 1 [‡] $4012.7^{e}\ 20$ (16 ⁺) $4012.7^{e}\ 20$ (16 ⁺) $4497.7^{d}\ 23$ (18 ⁺) $4499.7^{d}\ 25$ (19 ⁺) 2 J ^{\pi} : band assignment in (⁸² Se,X\gamma). $4809.7^{d}\ 25$ (19 ⁺)	3595 10					X	
$3748.9 \ 10$ 1^{\ddagger} P $3781 \ 10$ X $3798.7 \ 10$ 1^{\ddagger} P $3798.7 \ 10$ 1^{\ddagger} P $3869.9 \ 10$ 1^{\ddagger} P $3900 \ 10$ X 3924.8 \ 10 1^{\ddagger} $3924.8 \ 10$ 1^{\ddagger} P $3981.9 \ 10$ 1^{\ddagger} P $4012.7^{e} \ 20$ (16^{+}) Z J ^{\pi} : band assignment in (⁸² Se, X\gamma). $4015 \ 10$ X Z J ^{\pi} : band assignment in (⁸² Se, X\gamma). $4497.7^{d} \ 23$ (18^{+}) Z J ^{\pi} : band assignment in (⁸² Se, X\gamma). $4809.7^{d} \ 25$ (19^{+}) Z J ^{\pi} : band assignment in (⁸² Se, X\gamma).	3724 10					X	
3781 10 X 3798.7 10 1 [‡] 3798.7 10 1 [‡] 9869.9 10 1 [‡] 3900 10 X 3924.8 10 1 [‡] 981.9 10 1 [‡] 910.1 [‡] P X XREF: X(3978). 4012.7 ^e 20 (16 ⁺) 4497.7 ^d 23 (18 ⁺) 4497.7 ^d 23 (18 ⁺) 4809.7 ^d 25 (19 ⁺) Z J ^π : band assignment in (⁸² Se,Xγ). Z J ^π : band assignment in (⁸² Se,Xγ).	3748 9 10	1‡			Р	-	
$3798.7 \ 10$ 1^{\ddagger} P $3869.9 \ 10$ 1^{\ddagger} P $3900 \ 10$ X $3924.8 \ 10$ 1^{\ddagger} P $3981.9 \ 10$ 1^{\ddagger} P $4012.7^{\ell} \ 20$ (16^+) Z J ^{\pi} : band assignment in (⁸² Se,X\cap). $4015 \ 10$ X $4497.7^d \ 23$ (18^+) Z J ^{\pi} : band assignment in (⁸² Se,X\cap). $4809.7^d \ 25$ (19^+) Z J ^{\pi} : band assignment in (⁸² Se,X\cap).	3781 10	1				X	
3869.9 10 1^{\ddagger} P 3900 10 X 3924.8 10 1^{\ddagger} P 3981.9 10 1^{\ddagger} P 3981.9 10 1^{\ddagger} P 4012.7 ^e 20 (16 ⁺) Z J ^{\pi} : band assignment in (⁸² Se,X\gamma). 4015 10 X Z J ^{\pi} : band assignment in (⁸² Se,X\gamma). 4497.7 ^d 23 (18 ⁺) Z J ^{\pi} : band assignment in (⁸² Se,X\gamma). 4809.7 ^d 25 (19 ⁺) Z J ^{\pi} : band assignment in (⁸² Se,X\gamma).	3798.7 10	1‡			Р		
3900 10 X 3924.8 10 1 [‡] 3981.9 10 1 [‡] 4012.7 ^e 20 (16 ⁺) 4015 10 X 4497.7 ^d 23 (18 ⁺) 4809.7 ^d 25 (19 ⁺) X Z J ^π : band assignment in (⁸² Se,Xγ). X Z J ^π : band assignment in (⁸² Se,Xγ).	3869.9 10	1‡			Р		
3924.8 IO 1 [‡] P 3981.9 IO 1 [‡] P X XREF: X(3978). 4012.7 ^e 20 (16 ⁺) Z J ^π : band assignment in (⁸² Se,X γ). 4015 IO X X 4497.7 ^d 23 (18 ⁺) Z J ^π : band assignment in (⁸² Se,X γ). 4809.7 ^d 25 (19 ⁺) Z J ^π : band assignment in (⁸² Se,X γ).	3900 10					X	
3981.9 IO 1 [‡] P X XREF: X(3978). 4012.7 ^e 20 (16 ⁺) Z J ^{π} : band assignment in (⁸² Se,X γ). 4015 IO X 4497.7 ^d 23 (18 ⁺) Z J ^{π} : band assignment in (⁸² Se,X γ). 4809.7 ^d 25 (19 ⁺) Z J ^{π} : band assignment in (⁸² Se,X γ).	3924.8 10	1‡			Р		
4012.7^{e} 20 (16 ⁺) Z J^{π} : band assignment in ($^{82}Se,X\gamma$). 4015 10 X 4497.7^{d} 23 (18 ⁺) Z J^{π} : band assignment in ($^{82}Se,X\gamma$). 4809.7^{d} 25 (19 ⁺) Z J^{π} : band assignment in ($^{82}Se,X\gamma$).	3981.9 <i>10</i>	1‡			Р	Х	XREF: X(3978).
4015 10 X 4497.7 ^d 23 (18 ⁺) Z J ^{π} : band assignment in (⁸² Se,X γ). 4809.7 ^d 25 (19 ⁺) Z J ^{π} : band assignment in (⁸² Se,X γ).	4012.7 ^e 20	(16 ⁺)				Z	J ^{π} : band assignment in (⁸² Se,X γ).
4497.7^d 23 (18^+) Z J^{π} : band assignment in (82 Se,X γ). 4809.7^d 25 (19^+) Z J^{π} : band assignment in (82 Se,X γ).	4015 10					Х	
4809.7 ^{<i>d</i>} 25 (19 ⁺) Z J ^{π} : band assignment in (⁸² Se,X γ).	4497.7 ^d 23	(18 ⁺)				Z	J^{π} : band assignment in (⁸² Se,X γ).
5130.6? 8 (0 ⁺ to 3) I J^{π} : primary 2662.0 γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th; 4573.0 γ	4809.7 ^d 25 5130.6? 8	(19 ⁺) (0 ⁺ to 3)		I		Z	J ^{π} : band assignment in (⁸² Se,X γ). J ^{π} : primary 2662.0 γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th; 4573.0 γ

¹⁹⁰Os Levels (continued)

E(level) [†]	J^{π}	XREF		Comments
				to 2 ⁺ .
5248 ^d 3	(20^{+})	:	Ζ	J^{π} : band assignment in (⁸² Se,X γ).
5834 ^d 3	(21^{+})		Z	J^{π} : band assignment in (⁸² Se,X γ).
(7792.2 2)	1-,2-	I		J ^{π} : s-wave neutron capture in ¹⁸⁹ Os ($J^{\pi}(g.s.)=3/2^{-}$). E(level): S(n)=7792.34 <i>19</i> (2017Wa10).
S(n)+0.00671	1-	J		Additional information 3.
				E(level): S(n)+E(n), where S(n)=7792.34 <i>19</i> (2017Wa10), E(n)=6.71 eV <i>1</i> (2018MuZZ).
				J ^{π} : s-wave neutron capture in ¹⁸⁹ Os (g.s. $J^{\pi}=3/2^{-}$) and γ -ray intensity ratios (1976St14,1975Na02), same J^{π} in 2018MuZZ.
S(n)+0.00896	2-	K		Additional information 4.
				E(level): S(n)+E(n), where S(n)=7792.34 <i>19</i> (2017Wa10), E(n)=8.96 eV 2 (2018MuZZ).
				J ^{π} : s-wave neutron capture in ¹⁸⁹ Os (g.s. $J^{\pi}=3/2^{-}$) and γ -ray intensity ratios (1976St14,1975Na02), same J^{π} in 2018MuZZ.
S(n)+0.01031	1-	L		Additional information 5.
				E(level): S(n)+E(n), where S(n)=7792.34 <i>19</i> (2017Wa10), E(n)=10.31 eV <i>3</i> (2018MuZZ).
				J ^{π} : s-wave neutron capture in ¹⁸⁹ Os (g.s. $J^{\pi}=3/2^{-}$) and γ -ray intensity ratios (1976St14,1975Na02), same J^{π} in 2018MuZZ.
12680		Q		
14400		Q		
23800		Q		Giant-quadrupole resonance.

[†] From a least-squares fit to γ -ray energies; for levels with no known deexciting transitions, weighted averages of available level energies are taken.

- [‡] Dipole (scissors mode) excitation and $\gamma\gamma(\theta)$ in (γ,γ') .
- [#] From recoil-distance method in Coulomb excitation, unless otherwise stated.
- [@] Band(A): $K^{\pi}=0^+$, g.s. band.
- [&] Band(B): $K^{\pi}=2^+ \gamma$ band.

^{*a*} Band(C): $K^{\pi}=0^+\beta$ band.

^b Band(D): $K^{\pi}=4^+$ band. Based on B(E2) values in Coulomb excitation, 2001Wu03 interpret the bandhead as a dominant two-phonon γ -vibrational excitation, but B(E4) strength ($\beta_4=0.019$) in (α,α') (1978Bu21) and 2-quasiparticle ($\pi 5/2[402]+\pi 3/2[402]$) strength ($\approx 54\%$) in (t, α) (2000BuZU, also comments in Phys. Rev. C66, 038901, 039802 (2002) on 2001Wu03) are in conflict, and reveal that a dominant g-boson or hexadecapole contribution is more likely, together with the presence of smaller components of two-phonon γ -vibrations. See also 1997Bu10 and 1994Bu16 for discussion of the lowest $K^{\pi}=4^+$ bands in even-even nuclides in this mass region.

- ^{*c*} Band(E): $K^{\pi} = 3^{-}$ octupole band.
- ^d Band(F): $\Delta J=1$ band based on (18⁺).
- ^e Band(G): t-band.

Adopted Levels, Gammas (continued)										
	γ ⁽¹⁹⁰ Os)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments		
186.718	2+	186.718 2	100	0.0 0+	E2		0.420	B(E2)(W.u.)=72.9 <i>16</i> E _{γ} : other precise values: 186.718 <i>2</i> from (n,n' γ), 186.720 <i>10</i> from ¹⁹⁰ Os IT decay.		
547.854	4+	361.136 6	100	186.718 2+	E2		0.0535	 Mult.: also from ce data in (n,γ) E=th and Coulomb excitation. B(E2)(W.u.)=99 +5-3 E_γ: other precise values: 361.139 9 from (n,n'γ), 361.121 14 from ¹⁹⁰Os IT decay. Mult.: also from ce data in (n γ) E=th: ΔI=2 from γ(θ) in ¹⁹⁰Ir. 		
557.978	2+	371.260 5	72.5 11	186.718 2+	E2+M1	-8.1 8	0.0510	ε decay (11.78 d). B(M1)(W.u.)=1.73×10 ⁻⁴ 38; B(E2)(W.u.)=32.6 34 E _γ : other precise values: 371.257 6 from (n,n'γ). 372.93 12 from Muonic atom is discrepant. I _γ : from (n,n'γ). Others: 74 from ¹⁹⁰ Re β ⁻ decay (3.0-min and 3.1-h combined), 76 from ¹⁹⁰ Ir ε decay (11.78 d), 67 from (n,γ) (E=th and E=res). δ: others (Coul. ex.): -8.5 +3-2 (1971Mi08), -11 +6-4 (1969Ca19),		
		557.965 14	100 8	0.0 0+	E2		0.01748	from $\gamma(\theta)$. B(E2)(W.u.)=6.0 6 E _{γ} : weighted average of 557.972 <i>14</i> from (n, γ) E=th and 557.956 <i>16</i> from (n,n' γ). 559.32 <i>12</i> from Muonic atom is discrepant. I _{γ} : from (n,n' γ). Others: 100 6 from ¹⁹⁰ Re β^- decay (3.0-min and 3.1-h combined), 100 <i>3</i> from ¹⁹⁰ Ir ε decay (11.78 d), 100 7 from (n, γ) (E=th and E=res).		
756.016	3+	197.89 20	6.7 7	557.978 2+	E2+M1	-9 +2-5	0.350 7	Mult.: also from ce data in (n,γ) E=th. $\alpha(K)=0.180 5; \alpha(L)=0.1282 19; \alpha(M)=0.0323 5$ $\alpha(N)=0.00776 12; \alpha(O)=0.001175 18; \alpha(P)=1.71\times10^{-5} 6$ E_{γ} : weighted average of 198.08 20 from ¹⁹⁰ Re β^{-} decay (3.0 min) and 197.7 2 from (n,γ) E=th. I_{γ} : weighted average of 6.8 8 from ¹⁹⁰ Ir ε decay (11.78 d), 4.6 7 from (n,γ) E=6.7 eV, 6.1 8 from (n,γ) E=9.0 eV, 5.8 10 from (n,γ) E=10.3 eV, 8.0 10 from (n,γ) E=th, and 7.0 10 from ¹⁹⁰ Re β^{-} decay (3.0 m and 3.1 h combined)		
		207.96 ^d 8	3.9 ^d 6	547.854 4+	E2(+M1)	-16 +5-20	0.293 5	E _γ : weighted average of 207.91 <i>6</i> from ¹⁹⁰ Re β^- decay (3.0 min) and 208.1 <i>I</i> from (n,γ) E=th. I _γ : weighted average of 4.2 <i>6</i> from ¹⁹⁰ Ir ε decay (11.78 d) 3.4 7 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined). Others: 1.14 <i>I</i> 0, 1.14 8, 1.23 <i>I</i> 0, 1.22 8 from (n,γ) (E=th and E=res) are		
		569.304 14	100 3	186.718 2+	E2+M1	-9.8 10	0.01699 25	discrepant. E_{γ} : weighted average of 569.310 <i>14</i> from (n,γ) E=th and 569.291 <i>20</i> from $(n,n'\gamma)$.		

10

 $^{190}_{76}\mathrm{Os}_{114}$ -10

Т

Adopted Levels, Gammas (continued)											
							$\gamma(^{190}$	Ds) (continu	ued)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{C}	Comments		
911.80	0+	353.86 7	28.3 19	557.978	2+	(E2)		0.0567	I _γ : from ¹⁹⁰ Ir ε decay (11.78 d). δ: other: δ (E2/M1)>4 from γ(θ) in (n,γ) E=th. B(E2)(W.u.)=24 +10−7 E _γ : other: 353.84 7 from (n,n'γ). I _γ : weighted average of 27.7 <i>19</i> from (n,γ) E=6.7 eV, 25 5 from (n,γ) E=9.0 eV, 31 3 from (n,γ) E=10.3 eV, 31 3 from (n,γ) E=th, and 18 6 from (n n'γ)		
		725.07 8	100 7	186.718	2+	E2		0.00967	Mult.: from ce data in (n,γ) E=th. B(E2)(W.u.)=2.4 +8-6 E _{γ} : other: 725.0 2 from $(n,n'\gamma)$. I _{γ} : from $(n,n'\gamma)$. Other: 100 8 from (n,γ) E=th.		
955.375	4+	199.3 <i>3</i>	3.3 9	756.016	3+	E2		0.336	Mult.: from ce and $\gamma\gamma(\theta)$ data in (n,γ) E=th. B(E2)(W.u.)=54 +24-19 $\alpha(K)=0.1712 \ 25; \ \alpha(L)=0.1246 \ 20; \ \alpha(M)=0.0314 \ 5$ $\alpha(N)=0.00755 \ 12; \ \alpha(O)=0.001143 \ 18; \ \alpha(P)=1.604\times10^{-5} \ 24$ E to from ¹⁹⁰ Pa θ^{-}_{2} decay and ¹⁹⁰ Pa θ^{-}_{2} decay. Other, 107.7.2 is		
		207 200 17	100.2	557 078	2+	ED		0.0412	E_{γ} : from - Re β decay and - If ε decay. Other: 197.7.2 is discrepant and inconsistent with level-energy difference. I _{γ} : weighted average of 3.5 <i>11</i> from ¹⁹⁰ Ir ε decay (11.78 d), 2.1 <i>11</i> from (n, γ) E=6.7 eV, 3.3 9 from (n, γ) E=9.0 eV, 2.8 9 from (n, γ) E=10.3 eV, 4.1 <i>12</i> from (n, γ) E=th, and 4.1 <i>10</i> from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined).		
		597.588 17	100 5	551.918	2	E2		0.0412	I_{γ} : from ¹⁹⁰ Ir ε decay (11.78 d). Others: 100 7 from (n, γ) E=th, 100 4 from Coul. ex., 100 9 from (n,n' γ), 100 6 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined).		
		407.543 25	71 4	547.854	4+	E2+M1	-3.4 +6-9	0.044 3	Mult.: also from ce data in (n,γ) E=th. B(M1)(W.u.)=0.0011 +7-5; B(E2)(W.u.)=31 5 E _{γ} : others: 407.22 6 from ¹⁹⁰ Re β^- decay and ¹⁹⁰ Ir ε decay, 407.33 10 are discrepant. Unweighted average of the three values is 407.36 10.		
		768.61 8	35.6 14	186.718	2+	E2		0.00853	 I_γ: weighted average of 70 <i>11</i> from ¹⁹⁰Ir ε decay (11.78 d), 69 <i>10</i> from (n,γ) E=6.7 eV, 68 9 from (n,γ) E=9.0 eV, 68 9 from (n,γ) E=10.3 eV, 66 <i>10</i> from (n,γ) E=th, 78 <i>11</i> from (n,n'γ), 72 4 from Coulomb excitation, and 70 <i>10</i> from ¹⁹⁰Re β⁻ decay (3.0-m and 3.1-h combined). δ: other: -3.5 +7-<i>19</i> from E2 and M1 matrix elements in Coul. ex.; >3.5 from ce data in (n,γ) E=th. B(E2)(W.u.)=0.69 6 E_γ: weighted average of 768.57 8 from ¹⁹⁰Re β⁻ decay and ¹⁹⁰Ir ε decay (11.78 d), 768.68 <i>10</i> from (n,γ) E=th, and 768.6 2 from (n,n'γ). I_γ: weighted average of 33.8 <i>14</i> from ¹⁹⁰Ir ε decay (11.78 d), 43 3 from (n,γ) E=6.7 eV, 38 3 from (n,γ) E=9.0 eV, 44 4 from (n,γ) E=10.3 		

11

 $^{190}_{76}\mathrm{Os}_{114}\text{--}11$

					Adop	oted Levels, Ga	<mark>mmas</mark> (contir	nued)
						$\gamma(^{190}\text{Os})$ (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α ^C	Comments
1050 422	6+	(05.0)	0.0012.7	055 275 4+	[[2]]		5 27	eV, 38 3 from (n,γ) E=th, 38 3 from $(n,n'\gamma)$, 31.0 20 from Coulomb excitation, and 35.1 21 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined). Mult.: also from ce data in (n,γ) E=th. P(E2)(Ww) = 5.6 + 4.5 - 3.6
1030.433	0	(93.0)	0.0012 /	955.575 4	[E2]		3.57	$E_{\gamma}I_{\gamma}$: from Coulomb excitation.
		502.578 10	100 4	547.854 4+	E2		0.0225	B(E2)(W.u.)=113 7 E _γ : from ¹⁹⁰ Ir IT decay. Others: 502.55 8 from ¹⁹⁰ Re β ⁻ and ¹⁹⁰ Ir ε decay (11.78 d), 502.5 <i>I</i> from ¹⁹⁰ Ir ε decay (3.087 h), 502.6 3 from (n,γ) E=th, 502.4 3 from (n,n'γ). L _γ : from Coulomb excitation.
1114.69	2+	203.1 [#] 1	5.8 [#] 6	911.80 0+	[E2]		0.315	I _{γ} : weighted average of 6.0 <i>6</i> from (n, γ) E=6.7 eV, 5.6 <i>6</i> from (n, γ) E=9.0 eV, 5.5 <i>10</i> from (n, γ) E=10.3 eV, and 6.0 <i>6</i> from (n, γ) E=th.
		358.69 [#] 4	37 [#] 3	756.016 3+	E2+M1	1.9 4	0.077 10	I _{γ} : weighted average of 36 <i>3</i> from (n, γ) E=6.7 eV, 39 <i>4</i> from (n, γ) E=9.0 eV, 38 <i>4</i> from (n, γ) E=10.3 eV, and 35 <i>4</i> from (n, γ) E=th.
		927.92 12	100 5	186.718 2+	E2+M1	1.5 +10-4	0.0082 14	Mult., δ : from ce data in (n,γ) E=th. I _{γ} : from $(n,n'\gamma)$. Other: 100 7 from (n,γ) E=th. Mult., δ : from ce data in (n,γ) E=th.
1115.5	1	1114.7 2 1115.5	57 4	$\begin{array}{ccc} 0.0 & 0^+ \\ 0.0 & 0^+ \end{array}$	E2		0.00401	Mult.: from ce data in (n,γ) E=th.
1163.182	4+	207.96 ^d 8	2.1 ^{<i>d</i>} 3	955.375 4+	(E2)		0.291	B(E2)(W.u.)=32 +15-10 α(K)=0.1532 22; α(L)=0.1044 15; α(M)=0.0263 4 α(N)=0.00632 9; α(O)=0.000958 14; α(P)=1.445×10 ⁻⁵ 21 E _γ : weighted average of 207.91 6 from ¹⁹⁰ Re β ⁻ decay and ¹⁹⁰ Ir ε decay (11.78 d), 208.1 1 from (n,γ) E=th. I _γ : unweighted average of 0.9 3 from ¹⁹⁰ Ir ε decay (11.78 d), 2.4 8 from (n,γ) E=6.7 eV, 2.5 4 from (n,γ) E=9.0 eV, 3.1 8 from (n,γ) E=10.3 eV, 2.7 5 from (n,γ) E=th, 2.0 4 from Coulomb excitation, and 0.9 3 from ¹⁹⁰ Re β ⁻ decay (3.0-m and 3 1-h combined)
		407.183 25	58 <i>3</i>	756.016 3+	E2+M1	-2.6 +8-14	0.048 8	B(M1)(W.u.)=0.0017 +23-11; B(E2)(W.u.)=27 +11-8 E _γ : weighted average of 407.22 <i>6</i> from ¹⁹⁰ Re β ⁻ decay and ¹⁹⁰ Ir ε decay (11.78 d), and 407.176 25 from (n,γ) E=th. Other: 407.33 10 from (n,n'γ). I _γ : weighted average of 60 3 from ¹⁹⁰ Ir ε decay (11.78 d), 57 6 from (n,γ) E=6.7 eV, 57 5 from (n,γ) E=9.0 eV, 57 6 from (n,γ) E=10.3 eV, 56 5 from (n,γ) E=th, 50 8 from (n,n'γ), 60 15 from Coulomb excitation, and 57 6 from ¹⁹⁰ Re β ⁻ decay

L

$\gamma(^{190}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α ^{C}	Comments
1163.182	4+	605.20 7	100 4	557.978 2+	E2		0.01446	(3.0-m and 3.1-h combined). δ : other: >3.5 from ce data in (n, γ) E=th. B(E2)(W.u.)=7.3 +21-14 E _{γ} : weighted average of 605.14 7 from ¹⁹⁰ Re β^- decay and ¹⁹⁰ Ir ε decay (11.78 d), 605.26 7 from (n, γ) E=th, and 605.2 1 from (n,n' γ). I _{γ} : from ¹⁹⁰ Ir ε decay (11.78 d). Others: 100 5 from ¹⁹⁰ Re β^- decay (3.0 m and 3.1 h combined). 100.7 from (n, α) (E=th and E=rec). 100.8
		615.42 <i>15</i>	1.9 7	547.854 4+	[E2]		0.01392	from $(n,n'\gamma)$, 100 13 from Coul. ex. Mult.: also from ce data in (n,γ) E=th. B(E2)(W.u.)=0.13 +10-6 E _{γ} : weighted average of 615.39 15 from ¹⁹⁰ Ir ε decay (11.78 d) and 615.6 4 from $(n,n'\gamma)$.
		976.4 <i>3</i>	4.6 5	186.718 2+	[E2]		0.00521	I _γ : unweighted average of 1.18 7 from ¹⁹⁰ Ir ε decay (11.78 d) and 2.6 6 from (n,n'γ). B(E2)(W.u.)=0.031 +13-9 I _γ : weighted average of 8.1 16 from (n,γ) E=6.7 eV, 2.9 7 from (n,γ) E=9.0 eV, 4.8 11 from (n,γ) E=10.3 eV, 4.8 5 from (n,γ) E=th, 5.4 8 from (n, n'γ) and 5.0 11 from Coulomb excitation. Others: 0.14.4 from
1203.83	5+	447.81 8	100 5	756.016 3+	E2		0.0301	¹⁹⁰ Ir ε decay (11.78 d). $E_{\gamma,I\gamma}$: from ¹⁹⁰ Ir ε decay (11.78 d). Other: $E\gamma$ =447.8 <i>I</i> , $I\gamma$ =100 8 from (n γ) E=th: $I\gamma$ =100 9 from (n n' γ)
		655.99 8	44 <i>3</i>	547.854 4+	E2+M1	-1.7 14	0.017 14	E _γ : weighted average of 656.02 8 from ¹⁹⁰ Re β ⁻ decay (3.1 h) and ¹⁹⁰ Ir ε decay (11.78 d), 655.8 <i>3</i> from (n,γ) E=th, and 655.9 2 from (n,n'γ). I _γ : weighted average of 37 <i>3</i> from ¹⁹⁰ Re β ⁻ decay (3.1 h), 46 <i>3</i> from ¹⁹⁰ Ir ε decay (11.78 d), 48 7 from (n,γ) E=6.7 eV, 44 4 from (n,γ)
1226.0	1.0	1226.0		0.0 0+				E=9.0 eV, 46 6 from (n,γ) E=th, and 53 4 from $(n,n'\gamma)$.
1320.9	$1,2 \\ 0^+$	1326.9 1195.7 2	100	186.718 2 ⁺	E2		0.00350	E _{γ} : weighted average of 1195.8 2 from (n, γ) E=th and 1195.6 3 from (n,n' γ).
1386.992	3-	223.811 7	100 4	1163.182 4+	E1		0.0500	Mult.: from ce data in (n,γ) E=th. B(E1)(W.u.)=7.4×10 ⁻⁵ +21–17 I _{γ} : from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined). Others: 100 5 from
		431.62 7	76 4	955.375 4+	[E1]		0.01056	For ε decay (11.78 d), 100 / from (n,γ) (E=th and E=res), 100 8 from (n,n'γ). B(E1)(W.u.)=7.9×10 ⁻⁶ +23-19 E _γ : from ¹⁹⁰ Re β ⁻ decay and ¹⁹⁰ Ir ε decay (11.78 d). Other: 431.6 1
								from (n,γ) E=th. I _{γ} : weighted average of 73 4 from ¹⁹⁰ Ir ε decay (11.78 d), 86 6 from (n,γ) E=9.0 eV, 82 7 from (n,γ) E=10.3 eV, 88 7 from (n,γ) E=th, 89 7 from (n,γ) E=6.7 eV, 73 6 from $(n,n'\gamma)$, and 65 4 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined).

13

From ENSDF

$\gamma(^{190}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{c}	Comments
1386.992	3-	630.91 13	80 9	756.016	3+	[E1]	0.00472	B(E1)(W.u.)=2.7×10 ⁻⁶ +9-7 E_{γ} : from ¹⁹⁰ Re β^- decay and ¹⁹⁰ Ir ε decay (11.78 d). Other: 630.9 2 from (n, γ) E=th. I _{γ} : weighted average of 79 9 from ¹⁹⁰ Ir ε decay (11.78 d), 91 9 from (n, γ) E=6.7 eV, and 68 10 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined). Others: 69 5 from (n,n' γ) for a doublet; 137 10 from (n, γ) E=9.0 eV, 133 10 from (n, ε) E=10.2 eV and 151 16 from (n, γ) E=5.0 eV, 133
		828.96 7	91 7	557.978	2+	E1	0.00276	B(E1)(W.u.)=1.33×10 ⁻⁶ +41-32 E _γ : weighted average of 828.99 7 from ¹⁹⁰ Re β ⁻ decay and ¹⁹⁰ Ir ε decay (11.78 d), 828.89 <i>II</i> from (n,γ) E=th, and 828.9 2 from (n,n'γ). I _γ : weighted average of 93 7 from ¹⁹⁰ Ir ε decay (11.78 d) and 89 8 from ¹⁹⁰ Re β ⁻ decay (3.0-m and 3.1-h combined). Others: 130 9 from (n,γ) E=9.0 eV, 121 8 from (n,γ) E=10.3 eV, 135 <i>10</i> from (n,γ) E=th, 135 <i>11</i> from (n,γ) E=6.7 eV, and 135 8 from (n,n'γ). $\delta(M2/E1)=-0.015$ from $\gamma\gamma(\theta)$ in ¹⁹⁰ Ir ε decay (11.78 d), 0.19 3 from ce
		839.12 <i>12</i>	32.1 12	547.854	4+	(E1)	0.00270	data in (n,γ) E=th. B(E1)(W.u.)=4.5×10 ⁻⁷ +14-11 E _{γ} : weighted average of 839.14 12 from ¹⁹⁰ Re β^- decay and ¹⁹⁰ Ir ε decay (11.78 d), 839.0 3 from (n,γ) E=th, and 839.1 2 from $(n,n'\gamma)$. I _{γ} : weighted average of 30.5 12 from ¹⁹⁰ Ir ε decay (11.78 d), 34 3 from (n,γ) E=9.0 eV, 34 3 from (n,γ) E=10.3 eV, 36 3 from (n,γ) E=th, 40 4 from (n,γ) E=6.7 eV, 38 4 from $(n,n'\gamma)$, and 30.7 15 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined)
		1200.12 20	12.4 9	186.718	2+	(E1)	1.42×10 ⁻³	B(E1)(W.u.)= $6.0 \times 10^{-8} + 21 - 16$ E _{γ} : weighted average of 1200.24 <i>12</i> from ¹⁹⁰ Re β^- decay and ¹⁹⁰ Ir ε decay (11.78 d), 1200.0 5 from (n, γ) E=th, and 1199.4 3 from (n, $n'\gamma$). I _{γ} : weighted average of 11.8 6 from ¹⁹⁰ Ir ε decay (11.78 d), 22 4 from (n, γ) E=9.0 eV, 13 5 from (n, γ) E=10.3 eV, 21 7 from (n, γ) E=6.7 eV, 19.0 24 from (n, $n'\gamma$), and 12.1 <i>13</i> from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined).
		1386.97 <i>12</i>	4.2 3	0.0	0+	(E3)	0.00542	B(E3)(W.u.)=9.8 +34-26 E _{γ} : weighted average of 1386.95 <i>12</i> from ¹⁹⁰ Re β^- decay and ¹⁹⁰ Ir ε decay (11.78 d) and 1387.4 6 from (n, γ) E=th. I _{γ} : weighted average of 4.1 3 from ¹⁹⁰ Ir ε decay (11.78 d) and 5.0 7 from ¹⁹⁰ Re β^- decay (3.0-m and 3.1-h combined). Others: 28 4 from (n, γ) E=9.0 eV, 30 5 from (n, γ) E=10.3 eV, 17 4 from (n, γ) E=th, 25 4 from (n, α) E=67 aV are discrepant
1436.39	2^{+}	321.701 15	43 8	1114.69	2^{+}			E_{γ} : from (n,n' γ). Other: 321.2 2 from (n, γ).

14

					Adop	oted Levels, Ga	<mark>mmas</mark> (contin	nued)
						γ ⁽¹⁹⁰ Os) (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments
1436.39	2+	481.0 9	13.3 13	955.375 4+				I _γ : unweighted average of 59 4 from (n, γ) E=9.0 eV, 37 3 from (n, γ) E=10.3 eV, 63 5 from (n, γ) E=th, 38 4 from (n, γ) E=6.7 eV, and 18 8 from $(n, n' \gamma)$. I _γ : weighted average of 13.8 13 from (n, γ) E=9.0 eV, 10 3 from
		524.0 2	28 4	911.80 0+				(n, γ) E=th, and 13.8 22 from (n, γ) E=6.7 eV. E _{γ} : weighted average of 524.0 2 from (n, γ) E=th and 524.1 5 from (n,n' γ). I _{γ} : unweighted average of 26.3 25 from (n, γ) E=9.0 eV, 34 3
		679.75 9	55 4	756.016 3+	E2(+M1)	2.3 +19-6	0.0141 20	from (n,γ) E=10.3 eV, 33 3 from (n,γ) E=th, 35 4 from (n,γ) E=6.7 eV, and 14 6 from $(n,n'\gamma)$. E _{γ} : poor-fit, level-energy difference=680.37.
		877 73 12	69.5	557 078 2+	$F_{2}(+M_{1})$	>1	0.0088.23	r_{γ} : unweighted average of 50 4 from $(n,\gamma) = 9.0 \text{ eV}$, 65 5 from $(n,\gamma) = 10.3 \text{ eV}$, 55 5 from $(n,\gamma) = 10.3 \text{ eV}$, 55 5 from $(n,\gamma) = 10.3 \text{ eV}$, 55 5 from $(n,\gamma) = 10.3 \text{ eV}$, 57 from $(n,\gamma) = 10.3 \text{ eV}$, 58 from $(n,\gamma) = 10.3 \text{ eV}$, 59 from $(n,\gamma) = 10.3 \text{ eV}$, 51 from $(n,\gamma) = 10.3$
		011.15 12	09 5	551.916 2	L2(+W11)	~1	0.0088 25	I_{γ} : pool-fit, tevel-energy underlife=576.41. I_{γ} : unweighted average of 65 5 from (n,γ) E=9.0 eV, 81 7 from (n,γ) E=10.3 eV, 72 7 from (n,γ) E=th, 73 6 from (n,γ) E=6.7 eV, and 53 4 from $(n,n'\gamma)$.
		888.3 2	51 4	547.854 4+				E _y : weighted average of 887.9 <i>3</i> from (n,γ) E=th and 888.4 2 from $(n,n'\gamma)$. I _y : from $(n,n'\gamma)$, I _y <50 in (n,γ) .
		1249.1 <i>3</i>	100 6	186.718 2+				E _{γ} : weighted average of 1249.2 3 from (n, γ) E=th and 1249.0 3 from (n,n' γ). I _{γ} : from (n,n' γ). Other: 100 8 from (n, γ) E=th.
1446.24	(5)+	242.3 3	4.1 4	1203.83 5+	[M1,E2]		0.32 15	E_{γ} , I_{γ} : seen only in ¹⁹⁰ Re β^- decay (3.1 h).
		283.07 2	67 5	1163.182 4+	E2(+M1)	>2.5	0.122 14	E_{γ} : weighted average of 282.93 <i>6</i> from ¹⁹⁰ Ir ε decay (11.78 d), 282.9 2 from (n,γ) E=th, and 283.080 <i>16</i> from (n,n'γ).
								I_{γ} : weighted average of 64 5 from ¹⁵⁰ Re β ⁻ decay (3.1 h), 61 12 from ¹⁹⁰ Ir ε decay (11.78 d), 68 5 from (n,γ) E=9.0 eV, and 72 6 from (n,γ) E=th. Others: 30 5 from (n,γ) E=10.3 eV, 103 12 from (n,n'γ) are discrepant.
		490.71 <i>10</i>	100 5	955.375 4+	(E2)		0.0239	E_{γ} : weighted average of 490.76 7 from ¹⁹⁰ Ir ε decay (11.78 d), 490.7 3 from (n, γ) E=th, and 490.3 2 from (n,n' γ).
		690.08 12	42 4	756.016 3+	(E2)		0.01077	I _γ : from ^{1,0} Ir ε decay (11.78 d). Other: 100 8 from (n,γ) E=th. E _γ : weighted average of 690.04 8 from ¹⁹⁰ Ir ε decay (11.78 d), 691.0 4 from (n,γ) E=th, and 690.1 2 from (n,n'γ). I _γ : weighted average of 40 4 from ¹⁹⁰ Re β ⁻ decay (3.1 h), 36 4 from ¹⁹⁰ Ir ε decay (11.78 d), 59 9 from (n,γ) E=9.0 eV, 60 7 from (n,γ) E=10.3 eV, and 38 6 from (n,n'γ). Others: 103 8 from (n, α) E=th 280 40 from (n, α)=6.7 eV are discrement
1474.2	(6 ⁺)	423.8	17 3	1050.433 6+	[E2]		0.0347	B(E2)(W.u.)=30 + 16 - 11

15

I.

$\gamma(^{190}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f J	\int_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments
1474.2	(6^{+})	518.8	100 12	955.375 4	μ+ ΓF	E21		0.0208	B(E2)(Wu) = 64 + 16 - 13
1.17.112		926.3	<20	547.854 4	+ E	E2]		0.00579	B(E2)(W.u.) < 0.8
1482.0	1	1482.0		0.0 0)+				
1514.1?	$(6^+, 5^+)$	558.7 <mark>°</mark> 5	100	955.375 4	1+				E_{γ} : from ¹⁹⁰ Re β^- decay (3.1 h).
1545.30	0+	987.26 16	100 8	557.978 2	2+ E	2		0.00509	E'_{γ} : weighted average of 987.33 13 from (n,γ) E=th and 986.9 3 from $(n,n'\gamma)$.
		1360.3 9		186.718 2	2+				A complex γ reported in (n,γ) (E=th and E=res) only, with $I\gamma$ =33-152.
1547.2	1	1547.2		0.0 0)+				
1568.98	$(3)^{+}$	182.0 [#] 2	120 [#] 10	1386.992 3	3-				
		812.7 [#] 4	21 [#] 2	756.016	3+				
		1011.0 2	100 6	557.978 2	2 ⁺ E	2(+M1)	>1.2	0.0061 13	I_{γ} : from $(n,n'\gamma)$. Other: 100 8 from (n,γ) E=th.
									Mult., δ : from ce data in (n, γ) E=th.
		1021.5 5	21 4	547.854 4	1 +				E_{γ} : weighted average of 1021.0 4 from (n,γ) E=th and 1021.9 4 from $(n,n'\gamma)$.
									I _{γ} : weighted average of 26 5 from (n, γ) E=9.0 eV and 18 4 from (n,n' γ).
1570.3	(1,2)	1383.6 <i>3</i>	100	186.718 2	2+				E_{γ} : in (n, γ), the placements from 1383 and 1942 levels (1979Ca02) are considered incorrect on the basis of excitation
1583-01	4-	107 3 1	100.10	1386 002 3	е- Б	2+M1	105	0.58.15	function data in (n,n γ) (1984KIZ Y).
1505.91	7	197.5 4	100 10	1500.992		271111	±1.0 J	0.56 15	$\alpha(\mathbf{N}) = 0.0070 \ 6; \ \alpha(\mathbf{O}) = 0.00112 \ 5; \ \alpha(\mathbf{D}) = 4.8 \times 10^{-5} \$
									$u(1)=0.00700, u(0)=0.001120, u(1)=4.8\times10^{-19}$
									d) and 197.7.2 from (n_{γ}) E-th
									L: from 190 Ir s decay (11.78 d). Others: 100 11 from 190 Re β^-
		200 11 4	77.0	1002.02	-+ T	1		0.01406	decay (3.1 h), 100 <i>II</i> from (n,γ) E=th.
		380.11 4	// 8	1203.83)' E	1		0.01406	E_{γ} : weighted average of 380.03 12 from 101 ϵ decay (11.78 d), 380.1 3 from (n, γ) E=th, and 380.12 4 from (n,n' γ).
									I _γ : unweighted average of 59 <i>3</i> from ¹⁹⁰ Ir ε decay (11.78 d), 80 <i>11</i> from (n,γ) E=10.3 eV, 100 <i>15</i> from (n,γ) E=6.7 eV, 75 <i>5</i> from (n,γ) E=9.0 eV, 53 <i>5</i> from (n,γ) E=th, and 95 <i>18</i> from (n n'a)
		420.66 12	46.3 24	1163.182 4	4 ⁺ [F	E1]		0.01119	E_{γ} : weighted average of 420.63 <i>12</i> from ¹⁹⁰ Ir ε decay (11.78 d),
									420.0 4 IFOM (\mathbf{n}, γ) E=1n, and 420./1 18 IFOM $(\mathbf{n}, \mathbf{n}' \gamma)$.
									I_{γ} : weighted average of 48.0 20 from (n a) E=6.7 eV 47.5
									from (n,γ) E=9.0 eV, 36 4 from (n,γ) E=th, and 59 14 from (n,γ) E=9.0 eV, 36 4 from (n,γ) E=th, and 59 14 from
		$628.4^{\textcircled{0}}{3}$	22° 3	955 375	1+				(
		≈828 [@]	$17^{@} 4$	756.016	3+				

16

	Adopted Levels, Gammas (continued)											
						$\gamma(^{190}\text{Os})$ (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments				
1583.91	4-	1036.00 20	85 7	547.854 4+	E1		0.00182	E _γ : weighted average of 1036.05 20 from ¹⁹⁰ Ir ε decay (11.78 d), 1036.0 3 from (n,γ) E=th, and 1035.9 3 from (n,n'γ). I _γ : unweighted average of 71 7 from ¹⁹⁰ Re β ⁻ decay (3.1 h), 71 4 from ¹⁹⁰ Ir ε decay (11.78 d), 105 10 from (n,γ) E=9.0 eV, 79 11 from (n,γ) E=th, and 100 9 from (n,n'γ). Other: 180 30 from (n,γ) E=6.7 eV,				
1615.97	(2)+	1397.24 [@] 14 859.8 4	4.4 [@] 3 18.6 <i>18</i>	186.718 2 ⁺ 756.016 3 ⁺	(M2)		0.01158	E _γ : weighted average of 859.9 4 from (n, γ) E=th and 859.6 6 from $(n, n' \gamma)$. I _γ : weighted average of 20 3 from (n, γ) E=10.3 eV, 21.1 18 from (n, γ) E=6.7 eV, 18 3 from (n, γ) E=9.0 eV, 16.1 18 from (n, γ) E=th, and 17 5 from $(n, n' \gamma)$.				
		1057.8 <i>3</i>	53 <i>3</i>	557.978 2+				I _{γ} : weighted average of 50 5 from (n, γ) E=10.3 eV, 44 4 from (n, γ) E=6.7 eV, 38.8 25 from (n, γ) E=9.0 eV, and 42 3 from (n, γ) E=th. Other: 79 5 from (n,n' γ) is discrepant.				
		1067.9 <i>3</i> 1429.4 <i>2</i>	34 <i>3</i> 100 <i>7</i>	547.854 4 ⁺ 186.718 2 ⁺	E2+M1	1.2 4	0.0034 5	E _γ ,I _γ : from (n,n'γ). Uncertain in (n,γ); Iγ<40 in (n,γ) E=th. I _γ : from (n,γ) E=9.0 eV. Others: 100 9 from (n,γ) E=th, 100 12 from (n,n'γ). Mult.,δ: from ce data in (n,γ) E=th.				
		1616.1 ^{<i>d</i>} 3	73 ^d 12	0.0 0+				I_{γ} : from $(n,n'\gamma)$; intensity split for doublet. Others: 108-128 in (n,γ) (E=th and E=res) are probably not divided for possible doublet				
1666.776	8+	616.342 15	100	1050.433 6+	E2		0.01387	B(E2)(W.u.)=136 +22-17 E _γ : from ¹⁹⁰ Os IT decay (9.86 min). Other: 616.08 14 from ¹⁹⁰ Re $β^-$ decay (3.1 h).				
1675.69	(2)+	919.56 <i>14</i>	44 3	756.016 3+	E2(+M1)	>0.8	0.0083 25	Mult.: from ce data in ¹⁹⁰ Os IT decay (9.86 min). $\alpha(K)=0.0068\ 21;\ \alpha(L)=0.0011\ 3;\ \alpha(M)=0.00026\ 7$ $\alpha(N)=6.4\times10^{-5}\ 16;\ \alpha(O)=1.1\times10^{-5}\ 3;\ \alpha(P)=7.5\times10^{-7}\ 25$ E_{γ} : weighted average of 919.64 <i>14</i> from (n, γ) E=th and 919.4 2 from (n,n' γ). I_{γ} : weighted average of 44 3 from (n, γ) E=6.7 eV, 44 4 from				
		1117.7 2	100 5	557.978 2+	M1(+E2)	<0.35	0.0083 3	(n, γ) E=9.0 eV, 47 5 from (n, γ) E=10.3 eV, 42 3 from (n, γ) E=th, and 46 5 from (n,n' γ). Mult., δ : from ce data in (n, γ) E=th. α (K)=0.00689 23; α (L)=0.00106 4; α (M)=0.000241 8 α (N)=5.89×10 ⁻⁵ 19; α (O)=1.02×10 ⁻⁵ 4; α (P)=7.7×10 ⁻⁷ 3; α (IPF)=5.72×10 ⁻⁷ 15				
		1489.2 2	87 <i>5</i>	186.718 2+	E2(+M1)	>0.6	0.0031 7	I_{γ} : from (n,n' γ). Other: 100 / from (n,γ) E=th. Mult.,δ: from ce data in (n,γ) E=th. α (K)=0.0025 6; α (L)=0.00039 9; α (M)=8.8×10 ⁻⁵ 19				

17

From ENSDF

 $^{190}_{76}\mathrm{Os}_{114}\text{-}17$

Т

h and ,γ) I 177		
051 4		

 $^{190}_{76}\mathrm{Os}_{114}\text{--}18$

					$\gamma(^{190}$	Os) (continue	d)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments
1679.5 1680.6	(3) (1)	1492.8 <i>3</i> 1680.6 <i>3</i>	100 100	186.718 2 ⁺ 0.0 0 ⁺				$\begin{aligned} \alpha(N) &= 2.1 \times 10^{-5} 5; \ \alpha(O) &= 3.7 \times 10^{-6} 9; \\ \alpha(P) &= 2.7 \times 10^{-7} 7; \ \alpha(IPF) &= 7.5 \times 10^{-5} 11 \\ I_{\gamma}: \text{ weighted average of } 81 6 \text{ from } (n,\gamma) \text{ E=th and} \\ 91 5 \text{ from } (n,n'\gamma). \text{ Others: } 175 14 \text{ from } (n,\gamma) \\ \text{E=} 6.7 \text{ eV}, 109 8 \text{ from } (n,\gamma) \text{ E=} 9.0 \text{ eV}, \text{ and } 177 \\ 14 \text{ from } (n,\gamma) \text{ E=} 10.3 \text{ eV} \text{ seem discrepant.} \\ \text{Mult.,} \delta: \text{ from ce data in } (n,\gamma) \text{ E=th.} \\ \text{E}_{\gamma}: \text{ from } (n,n'\gamma). \\ \text{E}_{\gamma}: \text{ from } (n,n'\gamma). \end{aligned}$
1681.70	5-	97.93 [@] 15	0.28 [@] 4	1583.91 4-	M1+E2	0.40 12	5.80 13	α (K)=4.4 4; α (L)=1.10 17; α (M)=0.26 5 α (N)=0.064 11; α (O)=0.0104 15; α (P)=0.00051 4
		$235.50^{@}$ 12	$1.25^{@} 10$	1446.24 (5) ⁺	E1		0.0441	E
		294.74 12	19.0 18	1360.992 3	(E2)		0.0903	E _γ : weighted average of 294.75 12 from $(n,n'\gamma)$. I _γ : weighted average of 19.3 18 from ¹⁹⁰ Re β ⁻ decay (3.1 h), 19.5 20 from ¹⁹⁰ Ir ε decay (11.78 d), and 32 10 from (n,n'γ).
		477.7 2	5.4 6	1203.83 5+				E _γ : weighted average of 477.8 3 from ¹⁹⁰ Ir ε decay (11.78 d) and 477.7 2 from (n,n'γ). I _γ : weighted average of 6 3 from ¹⁹⁰ Re β^- decay (3.1 h) and 5.4 6 from ¹⁹⁰ Ir ε decay (11.78 d). Others: 23 4 in (n,n'γ) seems discrepant.
		518.55 7	100 3	1163.182 4+	E1(+M2)	+0.010 15	0.00711 14	I _{γ} : from ¹⁹⁰ Ir ε decay (11.78 d). Others: 100 7 from ¹⁹⁰ Re β^- decay (3.1 h), 100 8 from (n,n' γ).
		≈631	2.5 7	1050.433 6+				E_{γ} , I_{γ} : from ¹⁹⁰ Ir ε decay (11.78 d). Other: I_{γ} =109.8 for a doublet at 630.9 in (n, n' γ).
		726.22 8	8.9 22	955.375 4+	E1		0.00357	E_{γ} : from ¹⁹⁰ Ir ε decay (11.78 d). I_{γ} : unweighted average of 6.7 4 from ¹⁹⁰ Re β ⁻ decay (3.1 h) and 11.1 3 from ¹⁹⁰ Ir ε decay (11.78 d).
		1123.8 [@] _3	0.094 [@] 20	557.978 2+	[E3]		0.00856	
		1133.77 [@] 20	1.26 [@] 7	547.854 4+	E1		1.55×10^{-3}	
		1494.9 [@] 3	$0.18^{\textcircled{0}}{3}$	186.718 2+	[E3]		0.00464	
1689.08	(2+)	574.6 ^{#e} 5	61# 11	1114.69 2+				I _{γ} : unweighted average of 48 4 from (n, γ) E=6.7 eV, 73 9 from (n, γ) E=9.0 eV, 84 11 from (n, γ) E=10.3 eV, and 39 8 from (n, γ) E=th.
		933.1 2	43 4	756.016 3+				E _{γ} : weighted average of 932.9 4 from (n, γ) E=th and 933.2 2 from (n,n' γ).

18

Adopted Levels, Gammas (continued)

					Adopted	Levels, G	ammas (continu	ued)
						γ(¹⁹⁰ Os) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α ^{<i>c</i>}	Comments
1689.08	(2+)	1131.1 2	80 8	557.978 2+				$I_{\gamma}: \text{ weighted average of } 37 \text{ 4 from } (n, \gamma) \text{ E=}6.7 \text{ eV}, 41 \text{ 5} \\ \text{from } (n, \gamma) \text{ E=}9.0 \text{ eV}, 53 \text{ 11 from } (n, \gamma) \text{ E=}10.3 \text{ eV}, 62 \text{ 10} \\ \text{from } (n, \gamma) \text{ E=}th, \text{ and } 56 \text{ 8 from } (n, n' \gamma). \\ \text{E}_{\gamma}: \text{ weighted average of } 1131.2 \text{ 4 from } (n, \gamma) \text{ E=}th \text{ and} \\ 1131.0 \text{ 2 from } (n, n' \gamma). \\ \text{I}_{\gamma}: \text{ weighted average of } 56 \text{ 11 from } (n, \gamma) \text{ E=}6.7 \text{ eV}, 91 \text{ 9} \\ \end{cases}$
		1141.2 <i>3</i>	52 5	547.854 4+				from $(n,\gamma) E=9.0 \text{ eV}$, 68 <i>11</i> from $(n,\gamma) E=10.3 \text{ eV}$, 90 <i>10</i> from $(n,\gamma) E=$ th, and 84 8 from $(n,n'\gamma)$. E_{γ} : weighted average of 1141.8 4 from $(n,\gamma) E=$ th and 1141.0 2 from $(n,n'\gamma)$. I_{γ} : weighted average of 41 8 from $(n,\gamma) E=6.7 \text{ eV}$, 59 9 from $(n,\gamma) E=9.0 \text{ eV}$, 53 <i>11</i> from $(n,\gamma) E=10.3 \text{ eV}$, 52 5
		1502.4 3	100 10	186.718 2+				from (n,γ) E=th, and 56 8 from $(n,n'\gamma)$. E _{γ} : weighted average of 1502.1 4 from (n,γ) E=th and 1502.5 3 from $(n,n'\gamma)$
		1687.6 [#] 10		$0.0 0^+$				1502.5 5 Holl (I,II 7).
1705.7	10-	38.9 1	100	1666.776 8+	M2+E3	0.10 2	1.23×10 ³ 11	B(M2)(W.u.)= $1.43 \times 10^{-8} + 23 - 19$; B(E3)(W.u.)= $5.7 \times 10^{-5} + 40 - 26$
1708.25	(2+,3,4+)	753.2 4	34 7	955.375 4+				 α(L)=9.1×10² 8; α(M)=247 23 α(N)=61 6; α(O)=9.8 8; α(P)=0.452 7 E_γ: from energy of conversion line, seen in ce data only and no uncertainty given, 0.1 keV estimated by evaluators. Mult.,δ: from ce data in ¹⁹⁰Ir ε decay (3.087 h). E_γ: weighted average of 753.0 4 from ¹⁹⁰Ir ε decay (11.78 d) and 753.6 6 from (n,γ) E=th. I_γ: weighted average of 26 7 from ¹⁹⁰Ir ε decay (11.78 d) and 40.6 from (n, γ) E=th.
		951.9 <i>3</i>	100 8	756.016 3+	(M1)			and 40 6 from (n,γ) E=th. E _{γ} : weighted average of 952.3 3 from ¹⁹⁰ Ir ε decay (11.78 d) 951.8.5 from (n,γ) E=th and 951.6.3 from $(n,n'\gamma)$
		1150.7 5	35 9	557.978 2+				I_{γ} : from ¹⁹⁰ Ir ε . Not reported in (n, γ). Probably contributed by an impurity in (n,n' γ) since I_{γ} =124 12.
1724.8	1	1160.4 [@] 5 1724.8	30 [@] 9	$\begin{array}{cccc} 547.854 & 4^+ \\ 0.0 & 0^+ \end{array}$				
1732.89	0+	1174.6 <i>3</i>	64 4	557.978 2+				I _γ : unweighted average of 63 5 from (n, γ) E=6.7 eV, 64 5 from (n, γ) E=9.0 eV, 69 9 from (n, γ) E=10.3 eV, 74 6 from (n, γ) E=th, and 51 3 from $(n, n'\gamma)$.
		1546.3 2	100 5	186.718 2+				I_{γ} : from $(n,n'\gamma)$. Other: 100 8 from (n,γ) E=th.
1802.74	$(1,2^+)$	1244.6 ^a 4	15 ^a 3	557.978 2+				
1010 50	(1+	1616.1 ^{<i>da</i>} 3	100 ^{<i>da</i>} 12	186.718 2+				
1813.50	$(1^+, 2, 3^+)$	1255.4 <i>3</i> 1626.9 <i>3</i>	$ 100 12 \\ 32 3 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				E_{γ},I_{γ} : from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$.

19

Т

					Adop	ted Levels,	Gammas (cont	tinued)	
						$\gamma(^{190}\mathrm{Os})$	(continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments
1823.65	$(1,2)^+$	1067.9 ^{de} 3	<6 ^d	756.016 3+	-				I_{γ} : from $(n,n'\gamma)$. Other: <29 for possible doublet in (n,γ) .
		1265.7 2 1636.8 4	100 5 22 3	557.978 2 ⁺ 186.718 2 ⁺	-	E2(+M1)	>0.6	0.0043 12	I _y : from $(n,n'\gamma)$. Other: 100 8 from (n,γ) . E _y : weighted average of 1637.2 6 from (n,γ) E=th and 1636.6 4 from $(n,n'\gamma)$. I _y : weighted average of 23 4 from (n,γ) E=9.0 eV, 16 3 from (n,γ) E=th, and 24 8 24 from $(n,n'\gamma)$.
1836.39	(6^{+})	321.81 <mark>&e</mark> 8	8.1 ^{&} 9	1514.1? (6	$^{+}.5^{+})$	[M1.E2]		0.14 7	
1000107	(0)	390.17 ^{&} 6	51 ^{&} 3	1446.24 (5) ⁺	[M1.E2]		0.09.5	
		≈633 ^{&}	11 <mark>&</mark> 7	1203.83 5+	-	[M1.E2]		≈0.025	
		673.10 10	100 5	1163.182 4+	-	[E2]		0.01138	E_{γ} : other: 673.2 from Coul. ex.
		881.10 ^{&} 14	8.3 ^{&} 9	955.375 4+	-				
1859.11	(2 ⁺)	903.6 [#] <i>e</i> 4	15 [#] 5	955.375 4+	-				I _{γ} : unweighted average of 20 <i>3</i> from (n, γ) E=6.7 eV and 10.0 <i>10</i> from (n, γ) E=th.
		1103.4 <i>3</i>	51 4	756.016 3+	-				E _{γ} : weighted average of 1103.1 <i>3</i> from (n, γ) E=th and 1103.6 <i>3</i> from (n,n' γ). I _{γ} : weighted average of 47 <i>5</i> from (n, γ) E=6.7 eV, 50 <i>4</i> from (n, γ) E=10.3 eV, 50 <i>4</i> from (n, γ) E=th, and 65 7 from (n,n' γ). Other: 97 8 from (n, γ) E=0.0 eV
		1300.7 3	58 5	557.978 2+	-				E _{γ} : weighted average of 1301.0 <i>3</i> from (n, γ) E=th and 1300.4 <i>3</i> from (n,n' γ). I _{γ} : weighted average of 60 <i>5</i> from (n, γ) E=6.7 eV, 54 <i>6</i> from (n, γ) E=10.3 eV, and 60 <i>5</i> from (n, γ) E=th. Others: 111 <i>11</i> from (n, γ) E=9.0 eV, 113 <i>10</i> in (n, n)
		1311.2 4	52 9	547.854 4+	-				In (n,n γ). E_{γ} : weighted average of 1311.5 3 from (n, γ) E=th and 1310.6 4 from (n,n' γ). I_{γ} : unweighted average of 47 5 from (n, γ) E=6.7 eV, 75 8 from (n, γ) E=10.3 eV, 54 4 from (n, γ) E=th, and 32 10 from (n n' γ)
		1672.6 <i>3</i>	100 7	186.718 2+	-				E _{γ} : weighted average of 1672.5 <i>3</i> from (n, γ) E=th and 1672.7 <i>3</i> from (n,n' γ). L _{γ} : other: 100 <i>10</i> from (n,n' γ).
		1858.8 [#] 6		0.0 0+	-				
1872.23	(5) ⁻	190.52 [@] 20	8.2 [@] 15	1681.70 5-	-	M1		0.903	α (K)=0.747 <i>11</i> ; α (L)=0.1204 <i>18</i> ; α (M)=0.0276 <i>4</i> α (N)=0.00675 <i>10</i> ; α (O)=0.001165 <i>17</i> ; α (P)=8.68×10 ⁻⁵ <i>13</i>
		288.49 14	100 6	1583.91 4-	-	E2+M1	2.2 +11-5	0.134 17	E _γ : unweighted average of 288.22 <i>10</i> from ¹⁹⁰ Ir ε decay (11.78 d), 288.6 4 from (n,γ) E=th, and

20

 $^{190}_{76}\mathrm{Os}_{114}$ -20

Т

	Adopted Levels, Gammas (continued)												
					$\gamma(^{190}$	Os) (con	ntinued)						
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$. Mult. [‡]	δ^{\ddagger}	α ^C	Comments					
1972.22	(5)-	426.2@ 4	15@6	1446.24 (5)	+			288.66 4 from (n,n'γ). I _γ : from ¹⁹⁰ Re β^- decay (3.1 h).					
1072.23	(3)	420.2 <i>4</i> 484.9 <i>4</i>	30 3	1386.992 3-	E2		0.0246	E _γ : unweighted average of 485.23 20 from ¹⁹⁰ Ir ε decay (11.78 d) and 484.5 3 from (n,n'γ). I _γ : weighted average of 29 3 from ¹⁹⁰ Re β^- decay (3.1 h) and 44 10 from ¹⁹⁰ Ir ε decay (11.78 d). Other: 100 17 from (n,n'γ).					
		668.1 [@] 3	3.2 [@] 8	1203.83 5+									
		709.1 [@] 3	4.4 [@] 7	1163.182 4+									
		821.78 [@] 14	19.7 [@] 13	1050.433 6+									
		916.75 [@] 25	7.6 [@] 8	955.375 4+				100					
		1324.30 18	32 6	547.854 4+	E1		1.25×10^{-3}	I _{γ} : weighted average of 46 9 from ¹⁹⁰ Re β^- decay (3.1 h) and 29 4 from ¹⁹⁰ Ir ε decay (11.78 d).					
1884.45	(1,2,3)	1127.9 ^{<i>a</i>} 3	28^{a} 7	756.016 3+									
		1327.0 3	100 10	557.978 21				E _{γ} : weighted average of 1327.1.5 from (n, γ) E=th and 1326.9.3 from (n,n' γ).					
1902.0	(1,2,3)	1715.3 3	100	186.718 2+				E_{γ} : weighted average of 1715.2 3 from (n,γ) E=th and 1715.4 4 from $(n,n'\gamma)$.					
1903.33	(3+,4-)	740.18 14	100 8	1163.182 4+				E _γ : weighted average of 740.19 <i>14</i> from ¹⁹⁰ Ir ε decay (11.78 d), 740.3 <i>3</i> from (n,γ) E=10.3 eV, and 740.1 2 from (n,n'γ). L: from ¹⁹⁰ Ir ε decay (11.78 d)					
		948.1 <i>3</i>	35 6	955.375 4+				E _y : weighted average of 948.0 3 from ¹⁹⁰ Ir ε decay (11.78 d) and 948.9 7 from (n, γ) E=9.0 eV.					
		1147.1 2	74 5	756.016 3+				E_{γ} : weighted average of 1147.3 <i>3</i> from ¹⁹⁰ Ir ε decay (11.78 d), 1147.3 <i>4</i> from (n, γ) E=9.0 eV, and 1146.9 2 from (n, $\eta'\gamma$).					
		1355.6 [@] 3	35 [@] 4	547.854 4+									
1910.58	$(2)^{+}$	955.5 <i>3</i>	25 3	955.375 4+				E _{γ} : weighted average of 955.1 5 from (n, γ) E=th and 955.7 3 from (n,n' γ).					
								I_{γ} : unweighted average of 26 6 from (n,γ) E=6.7 eV, 17.0 21 from (n,γ) E=9.0 eV, 33 8 from (n,γ) E=10.3 eV, 27.5 20 from (n,γ) E=th, and 20 3 from (n.n'γ).					
		1154.4 2	100 5	756.016 3+	E2(+M1)	>1.4	0.0044 7	I_{γ} : from $(n,n'\gamma)$. Other: 100 8 from (n,γ) E=th.					
		1352.6 4	20 5	557.978 2+				E_{γ} : weighted average of 1353.0 9 from (n,γ) E=th and					

From ENSDF

	γ ⁽¹⁹⁰ Os) (continued)											
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments				
					<u> </u>			1352.5 4 from $(n,n'\gamma)$.				
1010 58	$(2)^{+}$	1362 89 1	30 <mark>0</mark> 5	517 851	<u>4</u> +			I_{γ} : from $(n,n'\gamma)$.				
1910.30	(2)	$1302.8 \ 4$	52 5	557.079	4 2+							
1918.4	(1,2)	1360.7" 8	100	557.978 186 718	2 · 2+							
1035 33	$(2^+ 3^+ 4)$	$979.6^{a}.3$	32 ^{<i>a</i>} 6	955 375	$\frac{2}{4^+}$							
1955.55	(2,,5,,+)	1179.7^{a} 4	32^{a} 6	756 016	3+							
		1387.6^{a} 3	100^{a} 9	547.854	4+							
1943.5	(2+)	1395.9 ^{<i>a</i>} 4	57 ^a 13	547.854	4+			Placement of a 1383 γ with 1943 level (in (n, γ)) not supported by excitation function data in (n,n' γ).				
		1942.6 7	100 13	0.0	0^{+}			E _{γ} : weighted average of 1942.5 7 from (n, γ) E=th and 1942.8 8 from (n,n' γ). I _{γ} : from (n,n' γ).				
1958.1	$(1,2^+)$	1046.3 ^{<i>a</i>} 3	55 ^a 9	911.80	0^+							
		1771.5 5	100 9	186.718	2^{+}			E_{γ} , I_{γ} : from (n,n' γ).				
1970.50	(1+,2)	1214.3 3	82 9	756.016	3+			E _{γ} : weighted average of 1214.7 4 from (n, γ) E=th and 1214.0 3 from (n,n' γ). I _{γ} : weighted average of 86 7 from (n, γ) E=6.7 eV, 70 9 from (n, γ) E=9.0 eV, 100 17 from (n α) E=10 3 eV 77 9 from (n α) E=th and 87 10 from (n γ'_{γ})				
		1412.7 3	100 9	557.978	2+			I_{γ} : weighted average of 100 9 from (n,γ) E=th and 100 10 from $(n,n'\gamma)$. I_{γ} : other: 100 10 from $(n,n'\gamma)$.				
1992.4	(2,3)	1236.4 <i>3</i>	100	756.016	3+							
		1804.7 [#] 11		186.718	2^{+}							
1995.22	$(2)^{+}$	1437.1 2	100 7	557.978	2+	E2(+M1)	>2	E _γ : weighted average of 1437.5 <i>3</i> from ¹⁹⁰ Re $β^-$ decay (3.0 min), 1437.0 2 from (n,γ) E=th, and 1436.7 <i>3</i> from (n,n'γ). L: from (n,γ) E=6.7 eV. Others: 100.20 from ¹⁹⁰ Re $β^-$ decay (3.0 min).				
		1447.7.5	35 11	547,854	4^{+}			E _a L _a : γ reported in ¹⁹⁰ Re β^- (3.0 min) only.				
		1809.2 6	17 3	186.718	2+			E _y : weighted average of 1807.7 6 from (n,γ) E=th and 1808.9 7 from $(n,n'\gamma)$. I _y : weighted average of 27 8 from ¹⁹⁰ Re β^- decay (3.0 min), 17 3 from (n,γ) E=6.7 eV, 19 4 from (n,γ) E=th, and 13 4 from $(n,n'\gamma)$.				
2009.8	$1^{(+)}$	1253.0 [#] 6		756.016	3+							
		2011.3 8		0.0	0^{+}			E_{γ} : other: 2011.0 in (γ, γ') .				
2025.5	(1,2)	1467.5 <i>3</i>	69 6	557.978	2^{+}			E_{γ} , I_{γ} : from (n, n' γ). Other: 1467.5 9 from (n, γ) E=th.				
		1838.8 7	100 8	186.718	2+			I_{γ} : from $(n,n'\gamma)$.				
2047.8	(1,2)	1490.3 ^e 11	0	557.978	2+							
2061.2?	$(6^+, 7^-)$	379.4 ^{&e} 3	100 & 8	1681.70	5-							
		394.6 ^{&e} 4	64 ^{&} 11	1666.776	8+							
		1010.9 ^{&e} 3	83 <mark>&</mark> 11	1050.433	6+							
2068.87	(5^{+})	387.10 ^{&} 12	66 <mark>&</mark> 6	1681.70	5-							
		864.85 ^{&} 20	48 ^{&} 3	1203.83	5+							

Adopted Levels, Gammas (continued)

	Adopted Levels, Gammas (continued)												
	γ ⁽¹⁹⁰ Os) (continued)												
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	α^{c}	Comments					
2068.87	(5 ⁺)	905.75 ^{&} 16	100 & 11	1163.182	4+								
	× /	1113.6 <mark>&</mark> 4	31 & 3	955.375	4+								
		1313.1 ^{&} 2	49 ^{&} 8	756.016	3+								
		1521.1 ^{&} 4	6.3 ^{&} 19	547.854	4+								
2070.2	$(1^+ 2)$	$1312.9^{\#}$ 13	0.0 17	756.016	3+								
2070.2	(1,2)	1512.1 3	100 8	557.978	2^{+}			$E_{\nu}I_{\nu}$; from $(n,n'\gamma)$.					
		1883.9 5	60 6	186.718	2^{+}			I_{γ} : from $(n,n'\gamma)$. Other: 110 9 from (n,γ) E=th.					
2089.0	$(1^+, 2^+)$	1333.2 6		756.016	3+								
		1900.4 8		186.718	2^+								
2000.2	(8^{+})	2090.8 9		0.0	(6^+)	[E2]	0.01380	$B(E2)(W_{11}) - 61 + 21 - 10$					
2090.2	(1.2^+)	1925.4.5	100	186.718	2^+	[L2]	0.01569	D(L2)(w.u.) = 01 + 21 - 10					
211110	(1,2)	$21115^{\#}4$	100	0.0	-0^{+}								
2118.51	$(1^+, 2)$	1560.5 2	61 <i>6</i>	557.978	2^{+}			E_{γ}, I_{γ} : from $(n, n'\gamma)$.					
		1932.1 7	100 6	186.718	2^{+}			E_{γ}, I_{γ} : from $(n, n'\gamma)$.					
2121.39	$(5,6^+)$	284.9 <mark>&</mark> <i>3</i>	22 ^{&} 3	1836.39	(6+)								
		675.2 ^{&} 6	27 ^{&} 10	1446.24	$(5)^{+}$								
		958.20 ^{&} 14	100 <mark>&</mark> 6	1163.182	4+								
		1166.1 ^{&} 3	21 ^{&} 2	955.375	4+								
2124.67	$(2,3^+,4^+)$	1368.6 <i>3</i>	58 15	756.016	3+			E_{γ}, I_{γ} : from $(n, n'\gamma)$.					
0105.5	(0+10)	1566.7 2	100 8	557.978	2+			E_{γ}, I_{γ} : from $(n, n'\gamma)$.					
2135.5	$(0^+, 1, 2)$	1577.5 3	42 11	557.978	2+			$E_{\gamma} I_{\gamma}$: from $(n, n' \gamma)$.					
2150.6	$(1 2^+)$	1949.2 8	100 10	186 718	$\frac{2}{2^{+}}$			E_{γ}, i_{γ} . Irom (ii,ii γ).					
2130.0	(1,2)	2150.6 11		0.0	$\tilde{0}^{+}$								
2175.5	$(0^+, 1, 2)$	1622.0 [#] <i>e</i> 11		557.978	2+			E_{ν} : poor-fit, level-energy difference=1617.5.					
	~ / / /	1988.8 10	100	186.718	2^{+}			E_{γ} : from (n,n' γ). Other: 1988.6 4, uncertain γ in (n, γ) E=res.					
2191.4	$(1,2^{+})$	2191.4 4		0.0	0^{+}								
2198.5	(1,2)	1640.5 ^e 6	100	557.978	2^+								
2210.1	(1,2) $(1,2^+)$	2023.3 4	100	186./18	2+								
2203.3	(1,2)	2076.8.5		186.718	$\frac{2}{2^{+}}$								
		2261.5^{e} 5	100	0.0	$\tilde{0}^{+}$								
2288.8	(1,2)	1732.6 8		557.978	2^{+}								
		2287.4 7		0.0	0^{+}								
2296.5	1	2109.8	98 41	186.718	2^+			E_{γ}, I_{γ} : from (γ, γ') .					
2328.2	1	2296.5	100	0.0	0' 0+			E_{γ}, I_{γ} : Irom (γ, γ) .					
2320.2	1	2320.2		0.0	U								

Т

$\gamma(^{190}\text{Os})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{c}	Comments
2350.7	(1,2 ⁺)	2161.8 <i>15</i> 2352.3 <i>13</i>		186.718 0.0	$\frac{2^{+}}{0^{+}}$			
2352.45	$(2^+,3)$	1397.1 ^b 4	29 <mark>b</mark> 10	955.375	4^{+}			
		1596.4 <mark>b</mark> 5	28 <mark>b</mark> 8	756.016	3+			
		1794.5 <mark>b</mark> 3	100 ^b 25	557.978	2^{+}			
		2165 5 <mark>b</mark> 7	11^{b} 5	186 718	2+			
2357.7	(10^{+})	690.9	11 5	1666.776	2 8 ⁺	[E2]	0.01074	B(E2)(Wu) = 114 + 27 - 22
2381	(1,2)	2192.1 ^e 4	100	186.718	2^{+}	[22]	0.01071	
2393.5	1	2393.5		0.0	0^{+}			E_{γ} : from (γ, γ') .
2408.0	1	2221.3	64 16	186.718	2^{+}			E_{γ}, I_{γ} : from (γ, γ') .
		2408.0	100	0.0	0^{+}			E_{γ}, I_{γ} : from (γ, γ') .
2457.7	$(1,2^{+})$	1899.1 <i>10</i>		557.978	2+			
		2267.7 12		186.718	2+			E_{γ} : level-energy difference=2270.9.
2474 4	$(0^{+}, t_{-}, 2)$	2460.5 10		0.0	0^+			E_{γ} : level-energy difference=2457.7.
2474.4	(0, to 3)	1917.272		35/.9/8	2 · 2+			
2477.0	$(1^+ 2^+)$	1720.9.6		756.016	2 3+			
2477.0	(1,2)	2290 8 27		186 718	2^{+}			
		2477.0 6		0.0	$\tilde{0}^{+}$			
2502.7	$(1^+, 2^+)$	1746.6 9		756.016	3+			
		2502.8 10		0.0	0^{+}			
2551.8	$(1^+, 2^+)$	1795.5 6		756.016	3+			
		1995.5 <i>12</i>		557.978	2+			
0560.0	(0± . 0)	2551.4 9		0.0	0^+			
2563.3	$(0^{-} \text{ to } 3)$	2003.4 14		557.978	2 ⁺			
	· (+)	23/7.1 /		180./18	Z ·			
2591.6	$1^{(+)}$	1835.5" 8	42.0	/56.016	3 ⁺			$E_{\rm res}$ at 2402.0 in (1.11)
		2404.77	429	180./18	21			E_{γ} : other: 2403.9 in (γ, γ') .
		2592 6 13	100	0.0	0^{+}			I_{γ} . Itolii (γ, γ). F : other: 2590.6 in (γ, γ')
		2372.0 13	100	0.0	0			I_{γ} : from (γ, γ') .
2622.5	$1^{(+)}$	1864.7 [#] 8		756.016	3+			
		2437.7 [#] 8		186.718	2^{+}			
		2622.3 7		0.0	0^+			
2643.7	1	2457.0	20 3	186.718	2+			E_{γ}, I_{γ} : from (γ, γ') .
		2643.7	100	0.0	0^{+}			E_{γ}, I_{γ} : from (γ, γ') .
2663.0	$(1^+, 2, 3)$	1904.8 <i>13</i>		756.016	3^+			
		2106.4 14		35/.9/8	2+			
		24/0.0 ð		180./18	Ζ.			

24

 $^{190}_{76}\mathrm{Os}_{114}$ -24

$\gamma(^{190}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^{c}	Comments
2704.2	$1^{(+)}$	1949.9 [#] 10		756.016	3+			
270112	1	$2144 1^{\#} 11$		557 978	2+			
		2517.4	60.36	186 718	$\frac{2}{2^{+}}$			E_{ν} L: from $(\gamma \gamma')$ Other: 2512.2.14 in $(n \gamma)$ E=th is poor-fit
		2704.1	100	0.0	0^{+}			E_{γ} , F_{γ} . From (γ, γ') . Other: 2512.2 17 in (n, γ) E=th is poor-fit.
2714.1	1	2527.4	76 12	186.718	2 ⁺			E_{γ} , E
,,,	-	2714.1	100	0.0	0^{+}			$E_{\gamma}I_{\gamma}$: from (γ,γ') .
2737 7	1	2179 1 [#] 13		557 978	2+			
2131.1	1	2551.2	100 70	186.718	$\frac{2}{2^{+}}$			$E_{\alpha}L_{\alpha}$: from (γ,γ') . Other: 2553.6.8 in (n,γ) E=th is poor-fit.
		2737.9	88	0.0	$\bar{0}^{+}$			$E_{\gamma}I_{\gamma}$: from (γ, γ') . Other: 2539.3 9 in (n, γ) E =th is poor-fit.
2757.7	(12^{+})	400		2357.7	(10^{+})			$E_{\rm vi}$: from (⁸² Se, Xy).
2772.2	(10^+)	682		2090.2	(8^+)			
2774.0	1	2216 5 [#] 7		557 978	2+			
2771.0	1	2586.8	24.9	186.718	$\frac{2}{2^{+}}$			E. L.: from (γ, γ') . Other: $E\gamma = 2589.1.8$ in (n, γ) E=th.
		2773.5	100	0.0	$\bar{0}^{+}$			E_{γ} : from (γ, γ') only.
2816.0	1	$2626.0^{\#}$ 16		186 718	2+			
2010.0	1	2817.2		0.0	0^{+}			F_{ν} : from $(\gamma \gamma')$ Other: 2815.1 14 in $(n \gamma)$ $F=th$
2820.6	$(0^{+} \text{ to } 3)$	2262.64		557.978	2^{+}			L_{γ} . Hom (γ, γ). Other. 2013.1 17 m (n, γ) L -th.
	(* ** *)	2634.1 12		186.718	$\frac{1}{2^{+}}$			
2877.0	$(1,2^{+})$	2317.8 14		557.978	2^{+}			
		2878.0 13		0.0	0^{+}			
2944.7	$(1,2^+)$	2386.4 10		557.978	2^{+}			
		2945.1 <i>13</i>		0.0	0^{+}			
2975.0	(2^{+})	2425.3 12		547.854	4^{+}			
		2788.6 5		186.718	2+			
		2975.0		0.0	0^{+}			E_{γ} : from level-energy difference. 2980.0 9 from (n,γ) is poor-fit.
3011.7	(12^{+})	654	100 10	2357.7	(10^+)	[E2]	0.01213	B(E2)(W.u.)>38
3015.7	1	2829.0	100 60	186.718	2 ⁺			E_{γ}, I_{γ} : from (γ, γ') .
2022.0	1	3015.7	68	0.0	0^{+}			$E_{\gamma}I_{\gamma}$: from (γ,γ') .
3023.0	1	2830.3	42.0	180./18	2 · 0 ⁺			$E_{\gamma}I_{\gamma}$: from (γ, γ) .
2015 1		3023.0	100	0.0	0			$\mathbb{E}_{\gamma}, \mathbb{I}_{\gamma}$: ITOIII (γ, γ).
3045.4	1	2489.0" 9	02.10	557.978	2+			
		2857.2 11	92 19	186./18	2			I_{γ} : from (γ, γ') .
2117 1	1	3044.5	100	0.0	0^{+}			E_{γ}, I_{γ} : from (γ, γ') .
3117.1	1	2030 /	10.3	186 719	0 2+			E_{γ} . HOIII (γ, γ). E. L.: from (γ, γ')
5120.1	1	2737.4 3126 1	10.5	0.0				$E_{\gamma,i\gamma}$. from (γ,γ') . F. I.: from (γ,γ')
3126.7	(12^{+})	769	100	2357 7	(10^{+})	[E2]	0.00852	$B(F2)(W_{\rm H}) > 6.7$
5120.7	(12)	102		2551.1	(10)	[222]	0.00052	Ev: from Coul. ex.
3142.0	1	3142.0		0.0	0^{+}			$E_{\gamma'}$: from (γ, γ') .
3189.3	1	3189.3		0.0	0^{+}			E_{γ} : from (γ, γ') .

 $^{190}_{76}\mathrm{Os}_{114}$ -25

25

$\gamma(^{190}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
3244.6	1	3244.6		0.0	0+	E_{γ} ; from (γ, γ') .
3346.7	(14^{+})	589		2757.7	(12^{+})	F_{α} : from (⁸² Se.X γ).
3348.3	1	3348.3		0.0	0+	E_{γ} : from (γ, γ') .
3414.8	1	3414.8		0.0	0^{+}	E_{γ} : from (γ, γ') .
3445.9	1	3259.2	74 47	186.718	2+	E_{γ}, I_{γ} : from (γ, γ') .
		3445.9	100	0.0	0^{+}	E_{γ}, I_{γ} : from (γ, γ') .
3467.4	1	3467.4		0.0	0+	E_{γ} : from (γ, γ') .
3516.6	1	3516.6		0.0	0+	E_{γ} : from (γ, γ') .
3748.9	1	3748.9		0.0	0^+	E_{γ} : from (γ, γ') .
3798.7	1	3798.7		0.0	0^+	E_{γ} : from (γ, γ') .
3869.9	1	3869.9		0.0	0^+	E_{γ} : from (γ, γ') .
3924.8	1	3924.8		0.0	0+	E_{γ} : from (γ, γ') .
3981.9	1	3981.9		0.0	(1.4^{+})	E_{γ} : from (γ, γ) .
4012.7	(16^{+})	666		3346.7	(14^{+})	E_{γ} : from (°-Se, X γ).
4497.7	(181)	485		4012.7	(16')	E_{γ} : from (°Se, X γ).
4809.7	(19^+)	312		4497.7	(18^{+})	E_{γ} : from (° ² Se,X γ).
5130.6?	$(0^{+} \text{ to } 3)$	4573.0 10		557.978	2+ 2+	
5248	(20^{+})	438		4809 7	(19^{+})	$F : from (^{82}Se X_{\gamma})$
5834	(20^{+})	586		5248	(20^+)	E_{γ} : from (82Se X γ)
(7792.2)	$1^{-}2^{-}$	2662.0.10		5130.6?	$(0^+ \text{ to } 3)$	$L_{\gamma}^{\alpha}, \operatorname{Hom}(-50, \mathcal{H}).$
(11)2:2)	1,2	4746.8 12		3045.4	1	
		4812.9 35		2975.0	(2^+)	
		4848.0 10		2944.7	$(1,2^+)$	
		4915.9 <i>13</i>		2877.0	$(1,2^+)$	
		4971.7 6		2820.6	$(0^+ \text{ to } 3)$	
		4978.6 <i>14</i>		2816.0	1	
		5017.2 10		2774.0	1	
		5053.6 20		2737.7	1	
		5090.4 25		2704.2	$1^{(+)}$	
		5129.6 10		2663.0	$(1^+, 2, 3)$	
		5170.0 20		2622.5	1 ⁽⁺⁾	
		5200.6 7		2591.6	1(+)	
		5229.7 14		2563.3	$(0^+ \text{ to } 3)$	
		5240.6 10		2551.8	$(1^+, 2^+)$	
		5290.1 10		2502.7	$(1^+, 2^+)$	
		5315.5 10	6.2 6	2477.0	$(1^+, 2^+)$	
		5318.1 <i>12</i>	.2.4	24/4.4	$(0^{+} \text{ to } 3)$	
		5324. / 10 5225 1 25	< 5.4	2468	(1,2)	
		5555.1 25 5412 0 0	10 4	2437.7 2201	$(1,2^{+})$	
		3412.0 9	10.4	2381	(1,2)	

26

$\gamma(^{190}\text{Os})$	(continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}
(7792.2)	1-,2-	5444.8 10	10.6 17	2350.7	$(1,2^+)$	S(n)+0.00671	1-	5478.2 ^e 15	<8.8	2315	(1,2)
		5478.2 ^e 15	<5.1	2315	(1,2)			5486.1 ^e 15	<8.8	2307	(1,2)
		5486.1 ^e 15	<5.1	2307	(1,2)			5502.0 10	34 5	2288.8	(1,2)
		5502.0 10	11.9 <i>17</i>	2288.8	(1,2)			5529.0 ^e 10	<8.8	2263.5	$(1,2^{+})$
		5529.0 10	34 4	2263.5	$(1,2^{+})$			5568.5 ^e 15	<8.8	2224	(1,2)
		5568.5 ^e 15	<3.8	2224	(1,2)			5580.9 15	12 6	2210.1	(1,2)
		5580.9 <i>15</i>	<7.6	2210.1	(1,2)			5593.7 <mark>°</mark> 10	<9.5	2198.5	(1,2)
		5593.7 10	<7.6	2198.5	(1,2)			5599.6 ^e 15	<9.5	2191.4	$(1,2^{+})$
		5599.6 10	17.4 25	2191.4	$(1,2^{+})$			5616.7 ^e 20	<9.5	2175.5	$(0^+, 1, 2)$
		5616.7 15	<3.4	2175.5	$(0^+, 1, 2)$			5638.4 10	9.7 9	2150.6	$(1,2^+)$
		5642.3 11	<3.4	2150.6	$(1,2^{+})$			5680.9 10	58 7	2111.8	$(1,2^{+})$
		5680.9 10	33 5	2111.8	$(1,2^{+})$			5720.7 ^e 10	<9.5	2070.2	$(1^+, 2)$
		5703.5 14		2089.0	$(1^+, 2^+)$			5744.8 10	479	2047.8	(1,2)
		5720.7 10	22 3	2070.2	$(1^+, 2)$			5749.7° 15	<15	2042.4	(1,2)
		5744.8 10	<6.8	2047.8	(1,2)			5781.9 10	45 <i>4</i>	2009.8	1(+)
		5749.7 15	19 <i>3</i>	2042.4	(1,2)			5797.2 10	55 5	1995.22	$(2)^{+}$
		5781.9 <i>10</i>	17.8 25	2009.8	1 ⁽⁺⁾			5821.4 10	37 4	1970.50	$(1^+, 2)$
		5797.2 10	14.0 21	1995.22	$(2)^{+}$			5850.2 ^e 10	<6.6	1943.5	(2^{+})
		5821.4 ^e 15	<3.4	1970.50	$(1^+, 2)$			5873.8 10	15 3	1918.4	(1,2)
		5850.2 10	7.6 25	1943.5	(2^{+})			5881.2 ^e 10	<6.6	1910.58	$(2)^{+}$
		5873.8 10	22 3	1918.4	(1,2)			5932.2 10	71 7	1859.11	(2^{+})
		5881.2 10	26 3	1910.58	$(2)^+$			5968.8 ^e 15	<6.6	1823.65	$(1,2)^+$
		5932.2 10	23.6 19	1859.11	(2^{+})			6058.5 10	100 9	1732.89	0
		5968.8 10	8.1 13	1823.65	(1,2)			6112.3 15	22.3	1680.6	(1)
		6058.5 10	16.1 17	1/32.89	(2^+)			6222.7° 15	<6.6	1570.3	(1,2)
		6106.6 10	140.17	1689.08	(2^{+})			6246.5° 10	<6.6	1545.30	0^{+}
		6112.3 15	14.0 17	1680.6	(1)			6356.6 10	< 6.6	1436.39	2
		6222.7 15	< 6.8	1568.98	$(3)^{+}$			6408.7 10	/5 /	1382.42	0^+
		6246.5 10	100 8	1545.30	0^{+}			00//.4 IU	14 3	756.016	2+ 2+
		0330.0 10	18.2 21	1430.39	2 · 0+			7035.0 15	< 3.1	/30.010	3+ 2+
		6677 <i>A</i> 10	27.5 25	1382.42	$\frac{0}{2^+}$			7234.3 10	28 3 52 4	337.978	2+
		6878 5 8	5.1 17	011.80	2 0+			7003.9 10	33 4 12 1	100.710	$^{2}_{0^{+}}$
		7035 6 15	0317	756.016	0 3+	$S(n) \pm 0.00806$	2-	5315 5 10	42 4	2477.0	(1+2+)
		7035.0 15	52 5	557 978	2+	5(II)+0.00090	2	5324 7 10	25.6	2477.0	(1,2)
		7605.9 10	14.8.13	186.718	$\frac{2}{2^{+}}$			5409.5 10	44.5	2381	(1,2) (1.2)
		7792.8 10	40.3	0.0	$\bar{0}^{+}$			5444.8 ^e 10	< 3.8	2350.7	$(1,2^+)$
S(n) + 0.00671	1-	5315.5 10	85 17	2477.0	$(1^+, 2^+)$			5478.2 15	35.5	2315	(1,2)
-(1):0:00071	•	5324.7 10	54 10	2468	(1.2)			5486.1 15	33.5	2307	(1,2)
		5409.5 ^e 10	<8.8	2381	(1.2)			5502.0 10	14 3	2288.8	(1.2)
		5444.8 ^e 10	<8.8	2350.7	$(1,2^+)$			5529.0 10	43 6	2263.5	$(1,2^+)$

$\gamma(^{190}\text{Os})$	(continued)
$\gamma(0s)$	(continueu)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}
S(n) + 0.00896	2^{-}	5568.5 15	35 5	2224	(1.2)	S(n)+0.01031	1-	5478.2 ^e 15	< 6.3	2315	(1.2)
		5580.9 ^e 15	<3.8	2210.1	(1,2)			5486.1 ^e 15	<6.3	2307	(1,2)
		5593.7 10	73 8	2198.5	(1,2)			5502.0 10	36 6	2288.8	(1,2)
		5599.6 15	32 5	2191.4	$(1,2^+)$			5529.0 10	18 <i>3</i>	2263.5	$(1,2^+)$
		5616.7 <mark>°</mark> 20	<3.8	2175.5	$(0^+, 1, 2)$			5568.5 ^e 15	<5.2	2224	(1,2)
		5638.4 10	11 <i>3</i>	2150.6	$(1,2^+)$			5580.9 15	22 5	2210.1	(1,2)
		5680.9 ^e 10	<3.8	2111.8	$(1,2^+)$			5593.7 10	23 4	2198.5	(1,2)
		5720.7 10	35 6	2070.2	$(1^+, 2)$			5599.6 ^e 15	<14	2191.4	$(1,2^+)$
		5744.8 10	21 3	2047.8	(1,2)			5616.7 20	19 5	2175.5	$(0^+, 1, 2)$
		5749.7 ^e 15	<9.0	2042.4	(1,2)			5638.4 10	58 6	2150.6	$(1,2^{+})$
		5781.9 <i>10</i>	7.5 23	2009.8	$1^{(+)}$			5680.9 ^e 10	<5.2	2111.8	$(1,2^+)$
		5797.2 10	10.5 23	1995.22	$(2)^{+}$			5720.7 ^e 10	<14	2070.2	$(1^+, 2)$
		5821.4 ^e 10	<3.8	1970.50	$(1^+, 2)$			5744.8 10	35 5	2047.8	(1,2)
		5850.2 10	62 8	1943.5	(2^{+})			5749.7 ^e 15	<7.1	2042.4	(1,2)
		5873.8 <mark>e</mark> 10	<7.5	1918.4	(1,2)			5781.9 ^e 10	<5.2	2009.8	$1^{(+)}$
		5881.2 10	85 7	1910.58	$(2)^{+}$			5797.2 ^e 10	<5.2	1995.22	$(2)^{+}$
		5932.2 10	46 4	1859.11	(2^{+})			5821.4 ^e 10	<5.2	1970.50	$(1^+, 2)$
		5968.8 15	28 <i>3</i>	1823.65	$(1,2)^+$			5850.2 ^e 10	<5.2	1943.5	(2^{+})
		6058.5 ^e 10	<4.5	1732.89	0^{+}			5873.8 10	26.6 10	1918.4	(1,2)
		6112.3 ^e 15	<4.5	1680.6	(1)			5881.2 ^e 10	<5.2	1910.58	$(2)^{+}$
		6222.7 15	20 4	1570.3	(1,2)			5932.2 10	90 8	1859.11	(2^{+})
		6246.5 ^e 10	<4.5	1545.30	0+			5968.8 ^e 15	<5.2	1823.65	$(1,2)^+$
		6356.6 10	100 8	1436.39	2+			6058.5 ^e 10	<5.2	1732.89	0+
		6408.7 ^e 10	<4.5	1382.42	0^+			6112.3 15	19 3	1680.6	(1)
		6677.4 <i>10</i>	28 3	1114.69	2+			6222.7° 15	<5.2	1570.3	(1,2)
		7035.6° 15	<4.5	/56.016	3+			6246.5 10	65 7	1545.30	0+
		7234.3 10	94 7	557.978	2 ⁺			6356.6 10	29.6	1436.39	2+
		7605.9 10	9.0 15	186./18	2			6408.7 10	100 13	1382.42	0^+
S(x) = 0.01021	1-	7792.8 10	<4.5	0.0	(1+2+)			00//.4 IU	43 4	756.016	$\frac{2}{2^+}$
S(n) + 0.01031	1	5515.5 10 5224 76 10	24 4 <0.0	24/7.0	$(1^{+},2^{+})$			7035.0° 15	< 3.2	/30.016	3' 2+
		$5524.7^{2} 10$ $5400.5^{2} 10$	< 9.9	∠400 2291	(1,2)			7605 0 10	202	196 710	2+ 2+
		5409.5 10	<0.5	2301 2250 7	(1,2)			7003.9 10	30 3 57 1	180./18	2 · 0+
		5444.8 10	29 3	2550.7	(1,2)	I		1192.8 10	514	0.0	0

 $^{190}_{76}\mathrm{Os}_{114}\text{-}28$

[†] From (n,γ) (E=th and E=res), unless otherwise noted. Note that almost all data of (n,γ) E=th and E=res are from 1979Ca02. E γ values reported in 1979Ca02 are from weighted averages of all those measurements and thus the same set of $E\gamma$ values are used in those datasets, while different set of values are reported for γ -ray intensities for each (n, γ) measurement and weighted average are taken where applicable.

[‡] From $\gamma\gamma(\theta)$, $\gamma(\theta)$ and ce data in ¹⁹⁰Ir ε decay (11.78 d), unless otherwise noted.

[#] This γ from (n,γ) (E=th and E=res) only.

$\gamma(^{190}\text{Os})$ (continued)

[@] γ from ¹⁹⁰Ir ε decay (11.78 d) only. [&] γ from ¹⁹⁰Re β^- decay (3.1 h) only.

^{*a*} γ from (n,n' γ) only. ^{*b*} γ from ¹⁹⁰Re β^- decay (3.0 min) only.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with intensity suitably divided.
 ^e Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁹⁰₇₆Os₁₁₄

 $^{190}_{76}\mathrm{Os}_{114}$

 $^{190}_{76}\mathrm{Os}_{114}$

Legend

¹⁹⁰₇₆Os₁₁₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{190}_{76}\mathrm{Os}_{114}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{190}_{76}\mathrm{Os}_{114}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁹⁰₇₆Os₁₁₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

42

 $^{190}_{76}\mathrm{Os}_{114}\text{-}42$

From ENSDF

 $^{190}_{76}\mathrm{Os}_{114}\text{-}42$

Level Scheme (continued) Intensities: Relative photon branching from each level

¹⁹⁰₇₆Os₁₁₄

¹⁹⁰₇₆Os₁₁₄

