¹⁹⁰₇₆Os₁₁₄

¹⁹⁰Os(α , α') **1978Bu21,1976Ba06**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169,1 (2020)	15-Oct-2020	

1978Bu21: E=24 MeV α beam was produced from the McMaster University tandem Van de Graaff accelerator. Target was \approx 40 μ g/cm² osmium metal (97.8% enriched ¹⁹⁰Os) on a carbon backing. Reaction products were momentum-analyzed with an Enge split-pole magnetic spectrograph (FWHM \approx 25 keV) and detected with photographic emulsions. Measured $\sigma(\theta)$ at θ =60° to 140° for 1163 level. Deduced hexadecapole deformation from coupled-channel analysis.

1976Ba06: E=13-24 MeV alpha beams from the Rutgers-Bell FN tandem. Measured σ at 130° (lab) with a split-pole magnetic spectrograph (FWHM \approx 40 keV). Deduced deformation parameters from coupled-channel analysis. B(E2) and B(E4) values deduced from data at 13 MeV.

¹⁹⁰Os Levels

E(level) [†]	J ^π ‡	Comments		
0 187	0^+ 2 ⁺	β_2 (Coulomb)=0.181, β_2 (nuclear)=0.130 or 0.141 (1976Ba06).		
548 558 050	4^+ 2^+ 4^+			
939 1164	4 4 ⁺	A detailed analysis of $\sigma(\theta)$ data with coupled-channel calculations by 1978Bu21 gives a strong evidence for E4 excitation, thus identifying this state as due to hexadecapole vibrations.		
1200		β_4 =0.019 (1978Bu21) (for pure E4 excitation). The authors also give β_4 =0.0163 (for constructive interference) and 0.0230 (for destructive interference) when both modes of excitation (E4 and 2-step E2) are considered.		

1390

[†] From 1976Ba06.

[‡] From the Adopted Levels.