¹⁹⁰Ir IT decay (1.120 h) 1996Ga30,1964Ha06

History Citation Literature Cutoff Date Balraj Singh, ¹ and Jun Chen² NDS 169, 1 (2020) 15-Oct-2020

Parent: 190 Ir: E=26.1 1; J^{π} =(1) $^-$; $T_{1/2}$ =1.120 h 3; %IT decay=100.0 1996Ga30: source was produced via 192 Os(d,4n) with E=27.8 MeV deuteron beam from the isochronous cyclotron at the Institut fur Strahlen and Kernphysik (ISKP) of the University of Bonn. Conversion electrons were momentum-analyzed with a double-orange iron-free spectrometer and detected with a plastic scintillator; γ rays were detected with an LEPS detector. Measured E(ce), E γ , ce- γ -coin, ce(t). Deduced half-life.

1964Ha06: source was produced from ¹⁹⁰Os(p,n) with E=12-22 MeV proton beams from the ORNL 86-Inch cyclotron. Measured ce with a magnetic spectrograph. A 15% uncertainty from authors' statement has been assigned to measured I(ce) values by evaluators.

Isomer ratio measurements: 1987Re05, 1972Ze02, 1967Fl14.

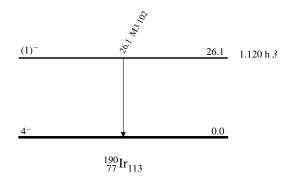
¹⁹⁰Ir Levels

Comments J^{π} : this level was assigned to have $J^{\pi}=7^{+}$ by 1964Ha06 based on a 148.7, M4 transition to this level from the (11)⁻ 3.1-h isomer at an energy of 175 keV as proposed by 1964Ha06, and later based on the newly-identified γ transitions from the γ decay of the 3.1-h isomer and the ce data of the 26.1-keV transition, 1996Ga30 claimed that the 3.1-h isomer is at E=374.6 keV and that the 26.1-keV transition does not belong to the decay path of the 3.1-h isomer, and assigned $J^{\pi}=1^{-}$ to the 1.1-h isomer. T_{1/2}: from ce(t) in 1996Ga30. Other: 1.2 h (1964Ha06).

 $I(L_{\alpha} \times ray)(Ir)=14.0\%$ 7, $I(L_{\beta} \times ray)(Ir)=4.3\%$ 2 (1987Re05).

 $\alpha(L)=6.99\times10^5$ 20; $\alpha(M)=2.26\times10^5$ 7; $\alpha(N)=5.72\times10^4$ 17; $\alpha(O)=8.8\times10^3$ 3; $\alpha(P)=145$ 4 E_{ν} : from 1996Ga30, deduced from measured conversion-electron energies. Mult.: from L1:L2:L3=13:<1:100 and M1:M3:M5=15:100:5 (1964Ha06). Relative to $ce(K)(502\gamma \text{ in } ^{190}\text{Os})=100$, ce(L1)=44.7, ce(L2)<4, ce(L3)=350 52, ce(M)=118 18 (1964Ha06).

[†] From the Adopted Levels.


[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁰Ir IT decay (1.120 h) 1996Ga30,1964Ha06

Decay Scheme

%IT=100.0

