¹⁹⁰Tl ε decay (2.6 min) 1976Bi09,1991Ko03,1994De25

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

Parent: ¹⁹⁰Tl: E=0.0; $J^{\pi}=2^-$; $T_{1/2}=2.6 \text{ min } 3$; $Q(\varepsilon)=6999 \ 18$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁹⁰Tl-E,J^{π},T_{1/2}: From ¹⁹⁰Tl Adopted Levels.

¹⁹⁰Tl-Q(ε): From 2017Wa10.

1976Bi09 (also 1974Ha10): Measured γ , $\gamma\gamma$, ce, β^+ , T_{1/2}.

1991Ko03: Measured Ey, Iy, $\gamma\gamma$, ce for part of the level scheme related to the population of the excited 0⁺ band.

1994De25: Measured Ey, Iy, $\gamma\gamma$. Data for selected transitions and levels.

1975Va20 (also 1970Va27): Measured γ , $\gamma\gamma$, ce, T_{1/2}. Source produced by mass separation of products from spallation reaction on Pb with 600 MeV protons, ce data obtained with Si(Li) detector.

See ¹⁹⁰Tl ε decay (3.7 min) for most details of the γ -ray and conversion electron data and the complete level scheme.

The decay scheme seems incomplete (in evaluators' opinion) in view of the large gap of 5.1 MeV between Q value and the highest established level. Feedings to different levels are thus considered as poorly known, and given as limits only.

¹⁹⁰Hg Levels

E(level) [†]	J^{π}
0.0	0^{+}
416.38 14	2^{+}
1041.79 18	4^{+}
1099.98 17	2^{+}
1278.68 20	0^{+}
1558.76 19	2^{+}
1571.35 18	2^{+}
1657.08 21	3+
1975.17 22	4^{+}

[†] From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(5024 [‡] 18)	1975.17	< 0.45	<1.4	>8.9 ¹ <i>u</i>	<1.8	av E β =1758.2 79; ε K=0.6067 22; ε L=0.1088 4; ε M+=0.03507
(5342 18)	1657.08	< 0.77	< 0.73	>7.3	<1.5	av $E\beta$ =1952.3 83; ε K=0.3935 24; ε L=0.0685 5; ε M+=0.02196 14
(5428 18)	1571.35	< 0.4	< 0.4	>7.6	< 0.8	av E β =1991.7 83; ε K=0.3822 24; ε L=0.0665 5; ε M+=0.02132 14
(5440 18)	1558.76	<3.1	<2.7	>6.7	<5.8	av E β =1997.5 83; ε K=0.3805 24; ε L=0.0662 5; ε M+=0.02123 14
(5720 [‡] 18)	1278.68	< 0.13	< 0.24	$>9.9^{1u}$	< 0.37	av E β =2064.5 80; ε K=0.5228 22; ε L=0.0931 4; ε M+=0.02997
(5899 18)	1099.98	<11	<7.2	>6.4	<18	av E β =2208.9 84; ε K=0.3248 21; ε L=0.0564 4; ε M+=0.01808 12
(5957 [‡] 18)	1041.79	<5.1	<7.9	$> 8.4^{1u}$	<13	av E β =2169.5 80; ε K=0.4943 22; ε L=0.0879 4; ε M+=0.02827
(6583 18)	416.38	<45	<20	>6.0	<65	av $E\beta$ =2526.1 84; ε K=0.2561 16; ε L=0.0444 3; ε M+=0.01421 9
						E(decay): 6720 400 from E(β^+)=5700 400 (1976Bi09).

From ENSDF

¹⁹⁰ Tl ε decay (2.6 min)	1976Bi09,1991Ko03,1994De25 (continued)
-------------------------------------	--

 ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(6999 [‡] 18)	0.0	<11	<9.3	>8.7 ¹ <i>u</i>	<20	av Eβ=2635.4 81; εK=0.3784 19; εL=0.0668 4; εM+=0.02146 11

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 γ (¹⁹⁰Hg)

Iγ normalization: from Summed I(γ+ce) to g.s.=90 10. ε , β^+ feeding to g.s. assumed as <20%, for a possible first-forbidden unique transition. 15% uncertainty is assigned to the γ-normalization factor to account for uncertainty is $\beta^+ + \varepsilon$ feeding to the g.s. and for possible unobserved γ-feedings to the low-lying levels in ¹⁹⁰Hg.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
292.6 ^a 3	0.03 ^{<i>a</i>} 2	1571.35	2^{+}	1278.68	0^{+}	[E2]		0.1147		
403.8 ^{&} 3	0.28 8	1975.17	4+	1571.35	2+	E2		0.0462		α (K)=0.0313 5; α (L)=0.01127 16; α (M)=0.00281 4 α (N)=0.000700 10; α (O)=0.0001230 18; α (P)=4.12×10 ⁻⁶ 6
416.4 2	100	416.38	2+	0.0	0+	E2		0.0427		$\begin{aligned} &\alpha(K) = 0.0292 \ 5; \ \alpha(L) = 0.01017 \ 15; \ \alpha(M) = 0.00253 \ 4 \\ &\alpha(N) = 0.000630 \ 9; \ \alpha(O) = 0.0001110 \ 16; \\ &\alpha(P) = 3.85 \times 10^{-6} \ 6 \end{aligned}$
458.7 <i>3</i>	1.0 [@] 1	1558.76	2^{+}	1099.98	2^{+}	[M1,E2]		0.07 4		
516.8 <i>3</i>	0.7 [@] 1	1558.76	2^{+}	1041.79	4+	[E2]		0.0235		E_{γ} , I_{γ} : from 1994De25.
529.7 <i>3</i>	0.18 7	1571.35	2^{+}	1041.79	4+	[E2]		0.0235		
557.0 ^{&} 2	<1.6	1657.08	3+	1099.98	2+	E2+M1	3.5 10	0.024 3		$\alpha(K)=0.019 \ 3; \ \alpha(L)=0.0045 \ 4; \ \alpha(M)=0.00109 \ 8$ $\alpha(N)=0.000271 \ 19; \ \alpha(O)=4.9\times10^{-5} \ 4;$ $\alpha(P)=2.5\times10^{-6} \ 4$
615.3 ^{&} 3	<1.0	1657.08	3+	1041.79	4+	E2+M1	1.3 2	0.030 <i>3</i>		α (K)=0.024 3; α (L)=0.0046 4; α (M)=0.00109 8 α (N)=0.000272 19; α (O)=5.1×10 ⁻⁵ 4; α (P)=3.3×10 ⁻⁶ 4
625.4 2	14 3	1041.79	4+	416.38	2+	E2		0.01602		$\alpha(K)=0.01216\ 17;\ \alpha(L)=0.00294\ 5;\ \alpha(M)=0.000712\ 10$ $\alpha(N)=0.0001778\ 25;\ \alpha(O)=3.21\times10^{-5}\ 5;$
683.5 2	11 2	1099.98	2+	416.38	2+	E2+M1	2.0 +10-5	0.019 3		$\alpha(P)=1.013 \times 10^{-6} 23$ $\alpha(K)=0.015 3; \ \alpha(L)=0.0029 4; \ \alpha(M)=0.00070 8$ $\alpha(N)=0.000174 \ 20; \ \alpha(O)=3.2 \times 10^{-5} 4;$
										$\alpha(P)=2.0\times10^{-6} 4$
862.2 3	0.42 3	1278.68	0^{+}	416.38	2^{+}	[E2]		0.0081		
933.4 ^{&} 3	0.48 15	1975.17	4+	1041.79	4+	E0+M1+E2		0.066 7		Mult., α : from ce data in ¹⁹⁰ Tl ε decay (3.7 min).
1099.9 3	92	1099.98	2+	0.0	0+	E2		0.00502		$\alpha(K)=0.00406\ 6;\ \alpha(L)=0.000733\ 11;\alpha(M)=0.0001722\ 25\alpha(N)=4.31\times10^{-5}\ 6;\ \alpha(O)=8.00\times10^{-6}\ 12;\alpha(P)=5.32\times10^{-7}\ 8$
1142.5 3	3.8 [@] 4	1558.76	2+	416.38	2+	E2(+M1)	>2	0.0053 7		$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0043 \; 6; \; \alpha({\rm L}) \!=\! 0.00075 \; 8; \; \alpha({\rm M}) \!=\! 0.000176 \; 18 \\ \alpha({\rm N}) \!=\! 4.4 \!\times\! 10^{-5} \; 5; \; \alpha({\rm O}) \!=\! 8.2 \!\times\! 10^{-6} \; 9; \; \alpha({\rm P}) \!=\! 5.7 \!\times\! 10^{-7} \\ 8; \; \alpha({\rm IPF}) \!=\! 8.9 \!\times\! 10^{-7} \; 7 \end{array} $
1155.0 3	0.69 6	1571.35	2^{+}	416.38	2^{+}	E0+M1+E2		0.052 7		Mult., α : from ce data in ¹⁹⁰ Tl ε decay (3.7 min).
1240.9 ^{&} 3	< 0.3	1657.08	3+	416.38	2^{+}	(E2)		0.00399		

ω

					1907	$\Gamma l \varepsilon$ decay	(2.6 min)	1976Bi09,1991Ko03,1994De25 (continued)
								$\gamma(^{190}\text{Hg})$ (continued)
E_{γ}^{\dagger}	I_{γ} ‡ b	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$I_{(\gamma+ce)}^{b}$	Comments
1278.7 ^{<i>a</i>} 3	a	1278.68	0+	0.0	0^+	E0	0.012	α (K)exp>0.30 (1991Ko03) I _(γ+ce) : from Ice(K)=0.01 (1991Ko03).
1558.8 <mark>&</mark> 3	1.22 9	1975.17	4^{+}	416.38	2^{+}			
1558.9 <i>3</i> 1571.2 <i>3</i>	1.0 [@] 1 0.21 12	1558.76 1571.35	2^+ 2^+	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$0^+ \\ 0^+$			

[†] Generally from 1976Bi09. Averages taken when values are also available from 1994De25. Uncertainty of 0.2 keV for strong γ rays (I $\gamma \ge 5$) and 0.3 keV for weaker and poorly resolved lines (evaluator).

[±] Uncertainty \geq 10% (1976Bi09). See other details in ¹⁹⁰Tl ε decay (3.7 min).

[#] From ce data (see ¹⁹⁰Tl ε decay (3.7 min) for details). Assignments and values are the same as in the Adopted dataset. [@] γ with 2.6-min ¹⁹⁰Tl decay or 3.7-min ¹⁹⁰Tl decay. I γ from a source containing \approx 90% of 3.7-min isomer and \approx 10% 2.6-min isomer.

 $^{\&}\gamma$ mainly belongs with 3.7-min isomer but a small fraction may also be associated with the 2.6-min isomer.

^{*a*} From 1991Ko03. The γ ray belongs to the decay of either or both the 3.7-min and 2.6-min isomers.

100

^b For absolute intensity per 100 decays, multiply by 0.79 12.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁰Tl ε decay (2.6 min) 1976Bi09,1991Ko03,1994De25

