¹⁷⁰Er(²⁴Mg,4nγ) **1986Hu02**

	History								
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020						

1986Hu02: ¹⁷⁰Er(²⁴Mg,4n γ) and ¹⁷⁰Er(²⁶Mg,6n γ) E=120-130 MeV. Measured γ , $\gamma\gamma$, $\gamma(\theta)$. Total-Routhian surface and cranking-model calculations.

¹⁹⁰Hg Levels

The band labels and crossings are given in terms of single-particle (neutron) Routhians calculated (1986Hu02) for ¹⁹⁴Hg as follows: A: $v1/2[660], \alpha = +1/2$.

B: *ν*1/2[660],*α*=−1/2. C: *ν*3/2[651],*α*=+1/2.

D: $v3/2[651], \alpha = -1/2$.

E: $v1/2[521], \alpha = +1/2$.

F: $\nu 1/2[521], \alpha = -1/2$.

1.,1/2[021],0 1/2.

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 ^{<i>a</i>}	0+	2620.8 ^{@b} 6	12+	3703.4 ^b 7	16+	4709.4 ^e 7	19-
416.5 ^a 2	2^{+}	2724.0 ^f 5	10-	3743.3 <mark>#</mark> 6	(14 ⁺) [#]	5105.6 <mark>8</mark> 8	20-
1041.8 ^{<i>a</i>} 3	4+	2844.2 [#] 5	$(10^{-})^{\#}$	3979.5 <mark>8</mark> 6	14-	5228.7 ^C 8	20^{+}
1772.9 ^a 4	6^{+}	2865.4 ^d 5	11^{-}	4087.2 ^e 6	15-	5334.4 ^e 13	(21 ⁻)
1881.2 ^d 4	5-	3006.7 [#] 6	$(11^{-})^{\#}$	4242.8 <mark>8</mark> 6	16-	5351.6 ^b 8	(20^{+})
2078.3 ^d 4	7-	3040.7 <mark>b</mark> 6	14+	4258.5 [#] 7	(15 ⁻) [#]	5794.7 ^c 8	22^{+}
2318.6 ^f 5	8-	3277.3 [#] 6	$(12^+)^{\#}$	4326.2 ^e 7	17-	6142.2 ^e 13	(23 ⁻)
2335.4 ^d 4	9-	3357.9 ^f 5	12-	4359.1 [#] 7	$(16^+)^{\#}$	6335.1 ^{&} 9	(24 ⁺)
2464.8 ^b 4	8+	3493.2 [#] 6	(13 ⁻) [#]	4492.4 <mark>b</mark> 7	18+	6576.1 ^{&c} 9	(24 ⁺)
2596.9 <mark>b</mark> 5	10^{+}	3548.6 ^d 6	13-	4551.5 <mark>8</mark> 7	18-		

[†] From least-squares fit to $E\gamma$ data.

[‡] From 1986Hu02, based on $\gamma(\theta)$ data and band assignments. Exceptions are noted.

[#] From the Adopted Levels.

[@] Uncertainty of 0.5 keV assigned for 23.9γ .

[&] Level not given by 1994Be27 or 1982Gu10.

^a Band(A): g.s. band.

^b Band(B): AB band, α =0.

^{*c*} Band(C): ABCD band, α =0.

^{*d*} Band(D): AE band, α =1.

^{*e*} Band(E): AEBC band, α =1.

^{*f*} Band(F): AF band, α =0.

^g Band(G): AFBC band, α =0.

 $\gamma(^{190}\text{Hg})$

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α b	Comments
23.9 5	0.007 1	2620.8	12+	2596.9 10+	[E2]	5.2×10 ³ 6	$\alpha(L)=3.9\times10^3 5; \ \alpha(M)=1.00\times10^3 12$ $\alpha(N)=2.5\times10^2 3; \ \alpha(Q)=40 5; \ \alpha(P)=0.040 5$
132.0 3	16 2	2596.9	10^{+}	2464.8 8+	(E2) ^{&}	1.8	$A_2 = +0.19$ 7; $A_4 = -0.14$ 9

Continued on next page (footnotes at end of table)

¹⁷⁰Er(²⁴Mg,4n γ) 1986Hu02 (continued)

γ (¹⁹⁰Hg) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
162.4 [#] 3	1.5 5	3006.7	(11^{-})	2844.2	(10^{-})	$(D)^{a}$	$A_2 = +0.37 \ 17; A_4 = -0.03 \ 30$
197.1 <i>3</i>	20 2	2078.3	7-	1881.2	5-	(E2) ^{&}	$A_2 = +0.27$ 2; $A_4 = -0.12$ 3 I_{γ} : from $\gamma\gamma$. Complex peak.
239.0 <i>3</i> 240.3 <i>3</i>	7.4 8 17 2	4326.2 2318.6	17 ⁻ 8 ⁻	4087.2 2078.3	15 ⁻ 7 ⁻	D ^a	$A_2 = +0.02\ 20$ $A_2 = -0.46\ 8;\ A_4 = +0.08\ 8$
257.2 2	20 1	2335.4 2596.9	9 ⁻ 10 ⁺	2078.3	7 ⁻ 9 ⁻	$(E2)^{\&}$	$A_2 = +0.265; A_4 = -0.115$
263.4.3	8.1	4242.8	16-	3979 5	14-	(E2) ^{&}	$A_2 = 0.3217, A_4 = 0.0915$ $A_2 = +0.275; A_4 = -0.095$
$x_{296.0}^{a}$	01	1212.0	10	5717.5		(112)	Complex peak. No intensity available
305.4 2	27 2	2078.3	7-	1772.9	6+	D ^a	$A_2 = -0.29 2; A_4 = +0.02 3$
308.7 <i>3</i>	91	4551.5	18^{-}	4242.8	16-	(E2) ^{&}	$A_2 = +0.25 3; A_4 = -0.10 3$
383.2 3	11 <i>I</i>	4709.4	19-	4326.2	17^{-}	(E2) ^{&}	$A_2 = +0.29 3; A_4 = -0.13 4$
388.6 <i>3</i>	3.9 12	2724.0	10-	2335.4	9-	D+Q ^a	A ₂ =+0.27 9; A ₄ =+0.18 11 Complex line. I γ from $\gamma\gamma$.
405.3 <i>3</i>	7.3 8	2724.0	10^{-}	2318.6	8-	(E2) ^{&}	$A_2 = +0.34$ 7; $A_4 = -0.13$ 9
416.5 2	100 5	416.5	2^{+}	0.0	0^{+}	(E2) ^{&}	$A_2 = +0.24 \ I; \ A_4 = -0.09 \ 2$
419.9 2	35 2	3040.7	14^{+}	2620.8	12^{+}	(E2) <mark>&</mark>	$A_2 = +0.31 2; A_4 = -0.12 3$
466.0 [#] 3	6 1	3743.3	(14+)	3277.3	(12+)	(E2) ^{&}	 A₂=+0.25 7; A₄=-0.10 8 Complex line. Iγ from γγ. Placement from the Adopted Levels, Gammas. See comment for 680.4γ.
486.5 [#] 3	8 1	3493.2	(13 ⁻)	3006.7	(11 ⁻)	Q&	$A_2 = +0.34 \ 3; \ A_4 = -0.09 \ 4$
525.6 [#] 3	6 1	2844.2	(10^{-})	2318.6	8-	(Q) <mark>&</mark>	$A_2 = +0.28 8; A_4 = -0.07 10$
530.0 <i>3</i>	17 2	2865.4	11-	2335.4	9-	Q ^{&}	$A_2 = +0.26 \ 3; \ A_4 = -0.08 \ 4$
538.6 <i>3</i> 539.4 <i>3</i>	11 <i>1</i> 1.9 6	4087.2 4242.8	15 ⁻ 16 ⁻	3548.6 3703.4	13 ⁻ 16 ⁺	Q ^{&}	$A_2 = +0.31 \ 3; \ A_4 = -0.13 \ 4$ $A_2 = +0.38 \ 24$
5 40 4 (0)	0.0.10	(225.1	(2.4+)	55 0 4 5	22±	(D) &	A_2 for unresolved peaks.
540.4 3	3.8 12	6335.1	(24+)	5794.7	22*	$(Q)^{\mathbf{c}}$	$A_2 = +0.42 \ II; \ A_4 = -0.12 \ I4$
554.1 3	5.6 6	5105.6	20^{-}	4551.5	18^{-}	Que	$A_2 = +0.377; A_4 = -0.188$
566.03	81	5/94.7	22.	5228.7	20.	(\mathbf{Q})	$A_2 = +0.26\ 29$; $A_4 = -0.17\ 19$
594.0^{-1} 3	4.4 13	4087.2	15	3493.2	(13)	Q	$A_2 = +0.26$ /; $A_4 = -0.12$ /
×600.0 ° 3	1.0 3						$A_2=0.00$ 9 Complex peak. I γ from $\gamma\gamma$.
615.8 [#] 3	0.9 3	4359.1	(16 ⁺)	3743.3	(14 ⁺)		A ₂ =+0.13 <i>10</i> Complex peak. I γ from $\gamma\gamma$.
621.6 <i>3</i>	8 1	3979.5	14-	3357.9	12-	Q&	$A_2 = +0.32 \ 11; \ A_4 = -0.16 \ 14$
625 1	74	5334.4	(21 ⁻)	4709.4	19-	0	I_{γ} : from intensity balance, $3 < I_{\gamma} < 12$.
625.3 2	96 6	1041.8	4+	416.5	2+	Q ^{&}	A ₂ =+0.22 3; A ₄ =-0.08 4 I _{γ} : from total I γ =103 5 and estimated I γ (625 γ)=7 4.
633.9 <i>3</i>	91	3357.9	12-	2724.0	10^{-}	Q ^{&}	$A_2 = +0.28 4; A_4 = -0.10 5$
^x 642.8 [@] 3	2.5 8					D ^a	$A_2 = -0.7 \ 3$
^x 648.3 [@] 3	2.5 8					Q&	$A_2 = +0.49 \ 10; \ A_4 = -0.18 \ 12$
662.7 2	27 2	3703.4	16^{+}	3040.7	14^{+}	Q ^{&}	$A_2 = +0.35 3; A_4 = -0.12 4$
680.4 <i>3</i>	6 1	3277.3	(12+)	2596.9	10+	(Q) ^{&}	A ₂ =+0.18 <i>6</i> ; A ₄ =-0.05 7 Placement from Adopted Levels, gammas. A reverse ordering of the 467-680 cascade feeding the 2465 level was tentatively suggested by 1986Hu02 which defined levels at 2931 (10 ⁺) and 3611 (12 ⁺) instead of the presently adopted 3277 (12 ⁺) and 3743 (14 ⁺), respectively.

Continued on next page (footnotes at end of table)

		170	$Er(^{24}Mg, 4n\gamma)$	1986Hu02 (continued)
			γ ⁽¹⁹⁰ I	Hg) (continued)
F.(laval)	īπ	F.	Iπ Mult	

E_{γ}^{\dagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
683.2 <i>3</i>	15 2	3548.6	13-	2865.4 11-	Q ^{&}	$A_2 = +0.28 \ 3; \ A_4 = -0.07 \ 4$
691.9 2	55 <i>3</i>	2464.8	8+	1772.9 6+	Q ^{&}	$A_2 = +0.22 2; A_4 = -0.09 2$
709.0 [#] 3	2.1 6	4258.5	(15 ⁻)	3548.6 13-	(Q)	$A_2 = +0.47 \ 10$
731.1 2	88 5	1772.9	6+	1041.8 4+	Q ^{&}	$A_2 = +0.24 \ 3; \ A_4 = -0.09 \ 3$
736.3 <i>3</i>	8 1	5228.7	20^{+}	4492.4 18+	Q ^{&}	$A_2 = +0.27 8; A_4 = -0.11 8$
781.4 [@] 3	1.6 5	6576.1	(24^{+})	5794.7 22+	(Q) <mark>&</mark>	$A_2 = +0.25 \ 16; \ A_4 = -0.15 \ 20$
789.0 <i>3</i>	15 2	4492.4	18^{+}	3703.4 16+	Q ^{&}	$A_2 = +0.31$ 6; $A_4 = -0.14$ 7
807.8 <i>3</i>	4.1 12	6142.2	(23 ⁻)	5334.4 (21-)	Q ^{&}	$A_2 = +0.40 8; A_4 = -0.20 10$
839.4 <i>3</i>	16 2	1881.2	5-	1041.8 4+	D ^a	$A_2 = -0.24 \ 3; \ A_4 = +0.04 \ 4$
859.2 <i>3</i>	2.1 6	5351.6	(20^{+})	4492.4 18+	(Q)	$A_2 = +0.27 \ 14$

[†] Uncertainty assigned by evaluators as 0.2 for $I\gamma \ge 20$ and 0.3 for $I\gamma < 20$ based on a comment by 1986Hu02 that it varies from 0.2 to 0.3 keV.

[‡] Most likely for ¹⁷⁰Er(²⁴Mg,4n γ) reaction. 1986Hu02 quote uncertainty of 5 to 30%. The uncertainties assigned (evaluators) are: 5% for I γ ≥20, 10% for I γ =5-20 and 30% for I γ <5.

[#] Placement from Adopted Levels, gammas. Unplaced in 1986Hu02.

[@] Not reported in other in-beam γ -ray studies (1994Be27,1982Gu10).

 $^{\&}$ γ(θ) data indicate ΔJ=2, quadrupole (likely E2). Evaluators assign (E2) for Eγ<500 keV based on RUL for E2 and M2, assuming level half-lives are less than <20 ns or so from timing resolution in γγ-coin arrangement.

^{*a*} $\gamma(\theta)$ data indicate $\Delta J=1$, dipole.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{190}_{80} Hg_{110}$

¹⁹⁰₈₀Hg₁₁₀

¹⁷⁰Er(²⁴Mg,4nγ) 1986Hu02 (continued)

¹⁹⁰₈₀Hg₁₁₀