History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020						

 $Q(\beta^{-}) = -1463 \ I6; \ S(n) = 7323 \ 20; \ S(p) = 3653 \ I1; \ Q(\alpha) = 3914 \ I7$ 2017Wa10

S(2n)=16605 4, S(2p)=9067 10 (2017Wa10).

Mass measurement: 2017Ma29: using ISOLTRAP at ISOLDE-CERN.

Other reaction: ¹⁹⁰Pt(³He,t) E=60 MeV (1986LeZS).

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for about 12 primary references dealing with nuclear structure and other calculations.

Additional information 1.

Isotope shift measurements: 1990Sa21, 1989Wa11, 1987Wa06, 1985St10, 1985Kl09.

Search for superdeformed structures: 1992ZwZZ, 1992MaZP. None seems to have been confirmed.

¹⁹⁰Au Levels

Quasiparticle labeling scheme (2004Gu07):

A: $vi_{13/2}, \alpha = +1/2$.

B: $vi_{13/2}, \alpha = -1/2$.

C: $vi_{13/2}, \alpha = +1/2$.

D: $vi_{13/2}, \alpha = -1/2$.

D. $v_{13/2}, \alpha = 1/2$

E: $vh_{9/2}, \alpha = -1/2$.

F: $\nu h_{9/2}, \alpha = +1/2.$

e: $\pi h_{11/2}, \alpha = -1/2.$

Cross Reference (XREF) Flags

A ¹⁹⁰ Hg	ε decay	(20.0	min)
---------------------	---------------------	-------	------

- **B** 190 Au IT decay (125 ms)
- **C** 186 W(11 B,7n γ)
- **D** ¹⁹¹Ir(α ,5n γ)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	1-	42.8 min 10	A	%ε+%β ⁺ =100; %α<1×10 ⁻⁶ (1963Ka17) μ=-0.065 7 (1990Sa21,2019StZV) Evaluated rms charge radius=5.4109 fm 49 (2013An02). Evaluated δ <r<sup>2>(¹⁹⁷Au,¹⁹⁰Au)=-0.284 fm² 5 (2013An02). %β⁺=2 (1961Ja17), <1 (1959Al94). From ε/β⁺ (theory), deduced %β⁺<0.2 (Q(β⁻)=-1600). μ: laser-resonant ionization spectroscopy on mass-separated ¹⁹⁰Au (1990Sa21). Others: -0.068 26 (1989Wa11); -0.063 (1985St10); 0.065 (1964Li06,1964Li11,1966Ch05). Δ<r<sup>2>(¹⁹⁷Au,¹⁹⁰Au)=-0.285 fm² 6 (1989Wa11,1987Wa06), -0.261 fm² 12 (1985St10), -0.282 fm² 8 (1990Sa21). Methods employed resonance ionization spectroscopy and fluorescence spectroscopy on mass-separated radioactive ion beams. β₂=-0.139 (1989Wa11), -0.148 3 (1985St10), 0.139 (1990Sa21); deduced from Δ<r<sup>2> given above. E(level): From least-squares fit to Eγ data, assuming 0.3 keV uncertainty for Eγ when not stated. J^π: spin from atomic beam (1964Li06,1966Ch05). π from cascade of E1 and M1+E2 γ transitions from 171.6, 1⁺ level through the 29.1-keV level. Based on measured magnetic dipole moments for ¹⁸⁸Au and ¹⁹⁰Au ground states, 1985Ab03 and 1980Ek04 suggested oblate structure for ¹⁹⁰Au ground state with possible configurations of πd_{3/2}⊗v3p_{1/2} or πd_{3/2}⊗v3p_{3/2}, both giving J^π=1⁻. T_{1/2}: from 1973Jo11. Others: 43 min 1 (1969Na10), 38.8 min 18 (1961An02); 1960Po07,</r<sup></r<sup></r<sup>

Continued on next page (footnotes at end of table)

¹⁹⁰Au Levels (continued)

E(level)	J^{π} †	T _{1/2}	XREF	Comments
20.1.2	1= 2=	0.55 4		1960A120, 1961Ja17.
29.1 2	1,2	0.55 ns 4	A	$I_{1/2}$: ce(L)(28.9 γ)(γ ,ce(L))(142.6 γ)(t) (1985Ab03). J ^{π} : M1+E2 γ to 1 ⁻ .
122.0? 3	(≤3)		A	J^{π} : γ to 1 ⁻ .
129.6 2	(0,1,2) $(1^{-}2^{-})$		A A	J [*] : M1 γ to 1 ,2 ; (M1) γ to 1 . I^{π} : F2+M1 γ to 1 ⁻
171.6 2	$(1^{+},2^{-})$ 1^{+}	0.16 ns 2	A	$T_{1/2}$: ce(K)(142.6 γ)(K x ray)(t) (1985Ab03).
2015.2	(0,1,0)=			J^{π} : log ft=4.8 from 0 ⁺ .
284.5 2 347.7? 5	(0,1,2)		A A	$J^{\prime\prime}$: M1 γ to (0,1,2) ; possible γ to 1'.
414.0 3	(≤3)		A	J^{π} : probable γ to 1 ⁺ .
417.9? 4			A	
419.9? 3 421.82 4			A ∆	
431.0? 4			A	
545.4? 3			A	
0.0+x [‡]	(11^{-})	125 ms 20	CD	%IT≈100
				E(level): x=200 150 (2017Au03,syst); 260 100 (from energies of γ rays
				I^{π} from systematics, similar isomers in ¹⁹² Au and ¹⁹⁴ Au with possible
				configuration= $(\pi h_{11/2}^{-1} \otimes \nu i_{12/2}^{-1})_{11-}$ (1982Ne05).
				$T_{1/2}$: from $\gamma(t)$ pulsed beam (1982Ne05).
				Four γ rays observed (see ¹⁹⁰ Au IT decay) from this isomer but no level
282.07 + # 16	(12^{-})		CD	scheme is established.
282.07 + x = 16	(12) (13^{-})			
$74355+x^{\#}23$	(13^{-})			
$1145 45 + x^{\ddagger} 23$	(1+) (15^{-})		CD	
$1468.33 + x^{\#} 25$	(16^{-})		CD	
1598.4+x ^f 3	(15 ⁺)		CD	
1830.7+x ^f 3	(17^{+})		CD	
1834.8+x? <i>3</i>	(16)		D	E(level): level not confirmed in $({}^{11}B,7n\gamma)$.
1929.8+x [‡] 3	(17 ⁻)		CD	
2093.0+x 4	(17^{-})		C	
2110.1 + x 4 2148.9 + x 4	(18) (18^+)		CD CD	
2172.1+x ^b 4	(20 ⁺)	7.0 ns <i>3</i>	CD	T _{1/2} : from γ (t) pulsed beam (2001Gu29). Configuration= $\pi h_{1/2}^{-1} \otimes \gamma(i_{1/2}^{-2}, h_{0/2}^{-1})$.
2265.4+x [#] 3	(18 ⁻)		С	\sim 11/2 $13/2' 9/2'$
2283.3+x <i>3</i>	(19 ⁻)		CD	
$2365.8 + x^{f} 4$	(19 ⁺)		С	
$2436.3 + x^{\ddagger} 3$	(19^{-})		CD	
2496.7 + X = 3 $2662.6 + x^{C} = 4$	(19^+) (21^+)		C CD	
2665.5+x 5	(20^+)		c	
2727.5+x ^b 4	(22 ⁺)		CD	
2728.9+x [#] 4	(20 ⁻)		CD	
2816.3+x 5			С	
2899.2+x [‡] 4	(21 ⁻)		С	
2978.4+x [@] 4	(22 ⁻)		С	
2995.4+x ^J 4	(21^{+})		С	

				-	Au Leve	els (continued)		
E(level)	J^{π}	XREF	E(level)	J^{π}	XREF	E(level)	J^{π}	XREF
3002.3+x ^{<i>d</i>} 4	(22^{+})	С	4373.2+x ^e 5	(27+)	С	5567.3+x 6	(29)	С
3067.1+x 4	(22 ⁻)	С	4400.1+x ^a 5	(26 ⁻)	С	5587.6+x [@] 7	(30 ⁻)	С
3088.5+x 4	(21^{+})	С	4516.0+x ^d 6	(26 ⁺)	С	5587.8+x 5	(30 ⁻)	С
3213.8+x 5		С	4546.9+x 5	(27 ⁻)	С	5740.8+x ^d 6	(30 ⁺)	С
3255.6+x ^c 4	(23+)	С	4644.5+x ^b 5	(28+)	С	5928.2+x 8		С
3340.7+x 6	(22^{+})	С	4674.5+x ^{&} 5	(27 ⁻)	С	6052.3+x ^b 6	(32+)	С
3456.8+x ^e 4	(23 ⁺)	С	4734.0+x 6	(27^{+})	С	6069.5+x ^{&} 7	(31 ⁻)	С
3459.9+x ^a 4	(23 ⁻)	С	4736.6+x 6	(27 ⁻)	С	6135.3+x 6	(32^+)	С
3490.5+x [@] 5	(24 ⁻)	С	4746.0+x 6	(27^{+})	С	6220.3+x ^d 7	(32^+)	С
3494.4+x ^b 4	(24^{+})	С	4794.6+x ^{<i>a</i>} 5	(28 ⁻)	С	6330.9+x 8		С
3524.0+x 5	(23)	С	4813.0+x 7		С	6344.2+x 6	(32-)	С
3677.7+x ^d 5	(24 ⁺)	С	4938.3+x ^e 7	(29 ⁺)	С	6386.5+x ^a 6	(32 ⁻)	С
3741.9+x ^f 6	(23 ⁺)	С	5031.6+x ^{&} 5	(28 ⁻)	С	6388.9+x [@] 8		С
3792.1+x ^a 4	(25 ⁻)	С	5120.0+x [@] 7	(28 ⁻)	С	6759.9+x ^{&} 8	(33-)	С
3822.5+x ^e 5	(25^{+})	С	5151.1+x 6	(28)	С	6769.9+x 7	(34+)	С
4104.9+x 7	(24^{+})	С	5151.2+x ^d 6	(28^+)	С	7019.7+x ^{<i>a</i>} 6	(34-)	С
4105.3+x ^c 4	(25^+)	С	5309.3+x ^{&} 5	(29-)	С	7033.7+x ^b 7	(34+)	С
4213.9+x ^{&} 5	(26 ⁻)	С	5331.8+x 6	(29 ⁻)	С	7066.1+x ^d 9		С
4268.2+x [@] 5	(26 ⁻)	С	5378.8+x ^b 5	(30^{+})	С	7268.1+x 7	(36 ⁺)	С
4288.2+x 6		С	5437.5+x 8	(29 ⁺)	С	7886.0+x ^{<i>a</i>} 7	(36 ⁻)	С
4333.4+x ^b 5	(26^{+})	С	5506.4+x ^{<i>a</i>} 5	(30 ⁻)	С			

190 Au Levels (continued)

[†] For levels populated in in-beam γ -ray studies, assignments are based on (11⁻) for 0.0+x isomer, and bands based on this isomer. The $\gamma(\theta)$, $\gamma(\text{lin pol})$ and ce data support these assignments. Transitions with mult=Q are assumed as $\Delta J=2$, E2; and mult=D as $\Delta J=1$. Generally ascending spins are assumed as the excitation energy rises.

[‡] Band(A): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}, \alpha = 1$. Rotation-aligned band based on 11⁺.

[#] Band(a): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}, \alpha = 0$. Rotation-aligned band based on 12⁺. ^{(@} Band(B): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-3}$. Band based on 22⁻.

[&] Band(C): Multi-qp band based on 26⁻. Configuration= $\pi h_{11/2}^{-1} \otimes \nu[(i_{13/2}^{-3}h_{9/2}^{-1})(p_{3/2},f_{5/2})^1].$ ^{*a*} Band(D): Multi-qp band based on 23⁻. Configuration= $\pi h_{11/2}^{-1} \otimes \nu[(i_{13/2}^{-3}h_{9/2}^{-1})(p_{3/2},f_{5/2})^1].$ Members of this band are not clearly labeled in either Fig. 1 or the text in 2004Gu07.

^b Band(E): $\pi h_{11/2}^{-1} \nu(i_{13/2}^{-2} h_{9/2}^{-1}), \alpha = 0$. eFBC configuration; band based on 20⁺ isomer.

^c Band(e): $\pi h_{11/2}^{-1} \nu (i_{13/2}^{-2} h_{9/2}^{-1}), \alpha = 1$. eFAC configuration; band based on 20⁺ isomer.

^d Band(F): eFAB band based on 22⁺.

^e Band(G): Possible non-collective band based on 23⁺.

^{*f*} Band(H): Multi-qp band based on 15⁺. Configuration= $\pi h_{11/2}^{-1} \otimes \nu [(i_{13/2}^{-2})(p_{3/2}, f_{5/2})^1]$.

Adopted Levels, Gammas (continued)										
γ ⁽¹⁹⁰ Au)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Comments						
29.1	1-,2-	28.9	100	0.0	1-	M1+E2	0.071 5	58.7 16	B(M1)(W.u.)=0.0276 23; B(E2)(W.u.)=66 11	
122.0?	(≤3)	122.0 ^a		0.0	1-					
129.6	$(0,1,2)^{-}$	100.8	26	29.1	1-,2-	M1(+E2)	>1.1	5.5 5		
		129.6	100	0.0	1-	(M1)		3.46		
165.4?	$(1^-, 2^-)$	165.4 ^a		0.0	1-	E2+M1	1.4 +16-6	1.07 28		
171.6	1+	142.6	100	29.1	$1^{-}, 2^{-}$	E1		0.1689	$B(E1)(W.u.)=3.6\times10^{-4} 6$	
		171.5	7.0	0.0	1-	(E1)		0.1059	$B(E1)(W.u.)=1.50\times10^{-5}$ 47	
284.5	$(0,1,2)^{-}$	112.6 ^a		171.6	1^{+}					
		154.7	100	129.6	$(0,1,2)^{-}$	M1(+E2)	<0.9	1.8 <i>3</i>		
		255.3 ^a		29.1	1-,2-					
		284.8 <mark>&</mark>	<24	0.0	1-					
347.7?		182.3 ^a		165.4?	$(1^{-},2^{-})$					
414.0	(≤3)	129.6	<270	284.5	$(0,1,2)^{-}$					
		242.6	0	171.6	1+					
		284.8 ^{&}	<300	129.6	$(0,1,2)^{-}$					
		384.5	100	29.1	1-,2-					
417.9?		133.4 ^a		284.5	$(0,1,2)^{-}$					
419.9?		135.4 ^a		284.5	$(0,1,2)^{-}$					
421.8?		137.3 ^a		284.5	$(0,1,2)^{-}$					
431.0?		146.5 ^{<i>a</i>}		284.5	$(0,1,2)^{-}$					
545.4?		125.3 ^a	<25	419.9?						
202.07	(10-)	373.84	100	171.6	l^+	1.01		0.000		
282.07 + x	(12)	282.0 2	100	0.0+x	(11)	MI M1		0.393		
427.73+X	(13)	145.5 2	14.8 10	282.07 + X	(12)			2.49		
743 55±v	(14^{-})	427.82	100.8	0.0+x 127.73+x	(11) (13^{-})	E2 M1		0.0382		
743.33+X	(14)	461 8 4	14 5 15	$\frac{427.73+\chi}{282.07+\chi}$	(13^{-})	F2		0.0314		
$1145\ 45+x$	(15^{-})	402.0.2	45 4	74355+x	(12^{-})	M1		0.1508		
1115.151X	(15)	717.7 2	100 10	427.73 + x	(13^{-})	E2		0.01134		
1468.33+x	(16^{-})	322.8 2	73 7	1145.45 + x	(15^{-})	M1		0.272		
		724.7 2	100 9	743.55+x	(14^{-})	E2		0.01110		
1598.4+x	(15^{+})	854.9 <i>3</i>	100	743.55+x	(14 ⁻)	E1		0.00295		
1830.7+x	(17^{+})	232.3 2	100 10	1598.4+x	(15^{+})	E2		0.227	I_{γ} : uncertainty of 10% assumed by evaluators.	
		362.3 2	44 4	1468.33+x	(16 ⁻)	E1		0.01739		
1834.8+x?	(16)	236.8 ^a 3	100	1598.4+x	(15^{+})	D				
1929.8+x	(17^{-})	461.4 5	34 10	1468.33+x	(16 ⁻)	M1		0.1045		
		784.5 2	100 7	1145.45+x	(15 ⁻)	E2		0.00939		
2093.0+x	(17^{-})	624.7 3	100	1468.33+x	(16 ⁻)	2.64		0.45		
2110.1+x	(18^+)	279.3 3	100	1830.7+x	(17^+)	Ml		0.404		
2148.9+x	(18^{+})	318.2 2	100	1830.7+x	(17^{+})	M1		0.283		
2172.1+x	(20^{+})	(23.1 [‡] 5)		2148.9+x	(18^{+})					

 $^{190}_{79}\mathrm{Au}_{111}$ -4

L

Adopted Levels, Gammas (continued)									
						<u>.</u>	γ(¹⁹⁰ Au) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	Comments	
2172.1+x	(20^{+})	$(62.0^{\ddagger} 5)$		2110.1+x	(18^{+})				
2265.4+x	(18-)	335.6 2	41 5	1929.8+x	(17-)	M1	0.245		
		797.0 2	100 9	1468.33+x	(16 ⁻)	E2	0.00909		
2283.3+x	(19 ⁻)	111.1 2	100 9	2172.1+x	(20^{+})	E1	0.318		
		134.2 <i>3</i>	7.3 27	2148.9+x	(18^{+})	[E1]	0.197		
		190.2 3	2.7 9	2093.0+x	(17^{-})	E2	0.445		
		353.6 4	55 18	1929.8+x	(17^{-})	E2	0.0637		
2365.8+x	(19+)	255.7 4	100 25	2110.1+x	(18^+)	M1	0.514		
	(10-)	535.2 3	88 20	1830.7+x	(17^{+})	E2	0.0219		
2436.3+x	(19 ⁻)	152.8 3	3.5 10	2283.3+x	(19^{-})	[M1]	2.17		
		170.4 4	50 10	2265.4+x	(18^{-})	MI	1.592 25		
		343.6 5	9.5 20	2093.0+x	(17)	[E2]	0.0691		
2406 7	(10^{\pm})	506.6 2	100 10	1929.8 + x	(1/)	E2 M1	0.0250		
2490.7 + x	(19^{+})	380.3 3	100	2110.1+X	(18^{+})	NII M1	0.10/5		
2002.0+X	(21^{+})	490.5 2	100	21/2.1+X	(20^{+})		0.0889		
2003.3+X	(20)	299.0 4	0/1/	$2303.8 \pm X$	(19)		0.555		
2727 5	(22±)	555.54	100 33	2110.1+X	(10)	0.01			
2727.5+x	(22+)	(65.1* 3)	1.7	2662.6+x	(21)	[MI]	4.54	I_{γ} : deduced by evaluators from $I(\gamma+ce)=6$ for 65.1-keV transition relative to $I_{\gamma}(555.6\gamma)=63~5$ in 2004Gu07, assuming M1 for 65.1-keV transition.	
		555.6 2	100 8	2172.1+x	(20^{+})	E2	0.0201		
2728.9+x	(20^{-})	292.6 2	100 11	2436.3+x	(19 ⁻)	M1	0.355		
		445.7 2	15 4	2283.3+x	(19 ⁻)	[M1]	0.1146		
2816.3+x		319.5 <i>3</i>	100	2496.7+x	(19 ⁺)				
2899.2+x	(21^{-})	170.2 3	56 12	2728.9+x	(20^{-})	M1	1.597		
		462.7 5	100 25	2436.3+x	(19 ⁻)	(E2)	0.0313		
		615.9 2	75 13	2283.3+x	(19 ⁻)	E2	0.01586		
2978.4+x	(22 ⁻)	79.2 4	≈320	2899.2+x	(21 ⁻)	M1	2.57 6	I_{γ} : deduced by evaluators from $I(\gamma+ce)=34$ for 79.2-keV transition relative to $I_{\gamma}(249.6\gamma)=3$ <i>1</i> in 2004Gu07.	
	-	249.6 <i>4</i>	100 33	2728.9+x	(20^{-})	[E2]	0.180		
2995.4+x	(21^{+})	179.0 4	6.7 33	2816.3+x					
		329.8 <i>3</i>	43 13	2665.5+x	(20^{+})	[M1]	0.257		
		629.8 <i>3</i>	100 33	2365.8+x	(19 ⁺)				
3002.3+x	(22^{+})	339.7 2	100	2662.6+x	(21^{+})	M1	0.237		
3067.1+x	(22^{-})	167.8 4	100	2899.2+x	(21^{-})	M1	1.66 3		
3088.5+x	(21^{+})	361.1 3	30 10	2727.5+x	(22^{+})	[M1]	0.201		
2212.0		916.2 4	100 30	2172.1+x	(20^{+})				
3213.8+x	(22+)	548.5 5	100 12	2665.5+x	(20^+)	MI	0.0722		
3255.6+x	(231)	528.1 2	100 13	2/2/.5+x	(22^+)	MI	0.0732		
2240 7	(22+)	392.1 3 245 4 5	13 4	2002.0+X	(21^+)				
3340.7+X	(22')	545.4 5 675 2 5	54 I9 100 I0	2993.4+X	(21^{+})	E2	0.01202		
2156 9	(22^{+})	0/3.23	100 19	2003.3+X	(20^{+})	E2 [M1]	0.01293		
3430.8+X	(23.)	201.3 <i>4</i> 368.4 <i>3</i>	8.3 28 64 14	3233.0+X 3088.5+X	(23^+) (21^+)	E2	0.998		

S

 $^{190}_{79}\mathrm{Au}_{111}$ -5

L

γ (¹⁹⁰Au) (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α [@]
3456.8+x	(23^{+})	454.6.3	100 19	3002.3 + x	(22^{+})	M1	0.1087
	()	729.5 4	31.8	2727.5+x	(22^+)		
		794.1 3	86 11	2662.6+x	(21^+)	(E2)	
3459.9+x	(23^{-})	392.7 <i>3</i>	26 4	3067.1+x	(22^{-})	M1	0.1605
		481.5 <i>3</i>	70 7	2978.4+x	(22^{-})	M1	0.0934
		560.6 2	44 7	2899.2+x	(21^{-})	E2	0.0197
		732.5 2	100 7	2727.5+x	(22^{+})	E1	0.00396
3490.5+x	(24-)	512.1 2	100	2978.4+x	(22^{-})	E2	0.0244
3494.4+x	(24^{+})	238.9 2	40 7	3255.6+x	(23^{+})	M1	0.620
		492.0 5	17 5	3002.3+x	(22^{+})	[E2]	0.0269
		767.0 2	100 13	2727.5+x	(22^{+})	E2	0.00985
3524.0+x	(23)	545.6 <i>3</i>	100	2978.4+x	(22^{-})	D	
3677.7+x	(24^{+})	675.6 4	31 10	3002.3+x	(22^{+})	E2	0.01292
		950.1 4	100 38	2727.5+x	(22^{+})	Q	
3741.9+x	(23^{+})	746.5 4	100	2995.4+x	(21^{+})	Q	
3792.1+x	(25 ⁻)	332.2 2	100	3459.9+x	(23 ⁻)	E2	0.0760
3822.5+x	(25^{+})	365.7 2	100	3456.8+x	(23^{+})	E2	0.0580
4104.9+x	(24^{+})	764.2 4	100	3340.7+x	(22^{+})	Q	
4105.3+x	(25^{+})	610.8 2	50 17	3494.4+x	(24^{+})	D+Q	
		849.6 5	100 50	3255.6+x	(23^{+})		
4213.9+x	(26 ⁻)	421.8 2	100	3792.1+x	(25^{-})	M1	0.1326
4268.2+x	(26 ⁻)	777.7 2	100	3490.5+x	(24^{-})	E2	0.00957
4288.2+x		764.2 3	100	3524.0+x	(23)		
4333.4+x	(26^{+})	228.0 3	15.3 20	4105.3+x	(25^+)	M1	0.706
1070 0	(a =+)	839.1 3	100 13	3494.4+x	(24 ⁺)	E2	0.00817
43/3.2+x	(27^{+})	550.6 2	100	3822.5+x	(25 ⁺)	(Q)	
4400.1+x	(26)	608.0 3	100	3792.1+x	(25)	D	
4516.0+x	(26 ⁺)	838.3 4	100	36/7.7+x	(24^{+})	Q	0.01010
4546.9+x	(27)	/54.8 3	100	3792.1+x	(25)	E2	0.01018
4644.5+x	(28^+)	311.1 2	100	4333.4+x	(26^{+})	E2	0.0919
46/4.5+x	(27)	460.2.5	100	4213.9+x	(26)	(M1)	0.1053
4734.0+X	(27^{+})	911.4 5	100	3822.3+X	(25^{-})	Q	
4/30.0+X	(27^+)	944.0 4	100	3792.1+X	(25)	(\mathbf{Q})	
4/40.0+x	(27^{+})	923.4 3	100 20	5622.5+X	(23^{-})	(\mathbf{Q})	0.562
4/94.0+X	(28)	247.0 5	100 20	$4340.9 \pm x$	(27)	(MII) E2	0.302
		580.8.2	100 20	$4400.1 \pm x$	(20^{-})	E2 E2	0.0472
4813 0±v		524 & 1	100 20	$\frac{1}{4}213.9 \pm X$ $4788.7 \pm Y$	(20)	ĽZ	0.0101
4038 3±v	(20^{+})	565 1 1	100	4373.2+x	(27^{+})	0	
$\frac{1}{1}$	(29^{-})	357 0 1	30.15	$46745 \pm v$	(27^{-})	M11	0.207
5051.0TA	(20)	484.8 4	100 19	4546 9+v	(27^{-})	M1	0.0917
		817.8 4	67 30	4213.9 + x	(26^{-})	0	0.0717
5120.0+x	(28^{-})	851.8.4	100	4268.2+x	(26^{-})	ŏ	
2120.01A	(20)	00110 /	100	.200.2 A	(20)	$\boldsymbol{\star}$	

6

 $^{190}_{79}\mathrm{Au}_{111}$ -6

$\gamma(^{190}Au)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [#]	α [@]
5151.1+x	(28)	476.5 4	100	4674.5+x	(27^{-})	D	
5151.2+x	(28^{+})	635.1 4	100	4516.0+x	(26 ⁺)	Q	
5309.3+x	(29^{-})	158.2 <i>3</i>	95	5151.1+x	(28)	-	
	. ,	277.7 3	45 18	5031.6+x	(28 ⁻)	M1	0.410
		514.8 <i>3</i>	86 <i>23</i>	4794.6+x	(28^{-})	(M1)	0.0783
		634.8 <i>3</i>	100 14	4674.5+x	(27-)	E2	0.01482
5331.8+x	(29^{-})	595.3 5	100	4736.6+x	(27^{-})		
5378.8+x	(30^{+})	734.3 2	100	4644.5+x	(28^{+})	E2	0.01080
5437.5+x	(29^+)	691.5 5	100	4746.0+x	(27^{+})	Q	
5506.4+x	(30-)	711.8 2	100	4794.6+x	(28 ⁻)	E2	0.01154
5567.3+x	(29)	416.1 4	100	5151.2+x	(28^{+})	D	
5587.6+x	(30 ⁻)	467.6 <i>3</i>	100	5120.0+x	(28 ⁻)	Q	
5587.8+x	(30-)	256.0 <i>3</i>	100 22	5331.8+x	(29 ⁻)	(M1)	0.513
		793.0 4	72 22	4794.6+x	(28 ⁻)		
5740.8+x	(30^{+})	173.5 4	100 27	5567.3+x	(29)		
		362.0 <i>3</i>	100 36	5378.8+x	(30^{+})	[M1]	0.200
		589.7 5	82 <i>36</i>	5151.2+x	(28^{+})		
5928.2+x		808.2 4	100	5120.0+x	(28 ⁻)		
6052.3+x	(32^{+})	673.5 <i>3</i>	100	5378.8+x	(30^{+})	E2	0.01301
6069.5+x	(31 ⁻)	760.2 4	100	5309.3+x	(29 ⁻)	E2	0.01003
6135.3+x	(32^{+})	756.5 <i>3</i>	100	5378.8+x	(30^{+})	(Q)	
6220.3+x	(32^{+})	479.5 4	100	5740.8+x	(30^{+})	[E2]	0.0286
6330.9+x		893.4 <i>3</i>	100	5437.5+x	(29^{+})		
6344.2+x	(32-)	756.3 4	43 13	5587.8+x	(30-)		
		837.5 4	100 25	5506.4+x	(30 ⁻)		
6386.5+x	(32 ⁻)	798.8 <i>3</i>	52 14	5587.8+x	(30 ⁻)	Q	
		880.3 <i>3</i>	100 19	5506.4+x	(30^{-})	(Q)	
6388.9+x		801.3 4	100	5587.6+x	(30^{-})		
6759.9+x	(33 ⁻)	690.4 <i>4</i>	100	6069.5+x	(31 ⁻)	(Q)	
6769.9+x	(34^{+})	634.6 <i>3</i>	100	6135.3+x	(32^{+})	(Q)	
7019.7+x	(34 ⁻)	633.4 <i>3</i>	100 33	6386.5+x	(32 ⁻)	E2	0.01489
		675.3 3	94 17	6344.2+x	(32 ⁻)	Q	
7033.7+x	(34+)	981.4 <i>4</i>	100	6052.3+x	(32^{+})	(Q)	
7066.1+x		845.8 5	100	6220.3+x	(32^+)		
7268.1+x	(36 ⁺)	498.2 2	100	6769.9+x	(34+)	[E2]	0.0260
7886.0+x	(36 ⁻)	866.3 <i>3</i>	100	7019.7+x	(34-)	E2	0.00766

-

[†] From (¹¹B,7n γ) for γ rays from high-spin levels. Available values from (α ,5n γ) are in agreement, but less complete. Values for γ rays from low-spin levels (J \leq 4) are from ¹⁹⁰Hg ε decay. [‡] γ not observed, deduced from $\gamma\gamma$ coin relationships in (¹¹B,7n γ).

$\gamma(^{190}Au)$ (continued)

- [#] From ce data for levels populated by ¹⁹⁰Hg ε decay. From $\gamma(\theta)$, $\gamma(\ln \text{ pol})$ and ce data for high-spin levels populated in (¹¹B,7n γ). Mult=Q indicates $\Delta J=2$, quadrupole (most likely E2) and mult=D indicates $\Delta J=1$, dipole.
- ^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- [&] Multiply placed with undivided intensity.

 ∞

^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

¹⁹⁰₇₉Au₁₁₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁹⁰₇₉Au₁₁₁

¹⁹⁰₇₉Au₁₁₁

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁹⁰₇₉Au₁₁₁

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---► γ Decay (Uncertain)

¹⁹⁰₇₉Au₁₁₁

¹⁹⁰₇₉Au₁₁₁

¹⁹⁰₇₉Au₁₁₁