¹⁸⁶W(¹¹B,7nγ) **2004Gu07,2001Gu29**

	Histor	y	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

2004Gu07, 2001Gu29: E=84, 86 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\text{lin pol})$, ce using Eurogam II array with 30 large volume Compton-suppressed Ge detectors and 24 composite Clover type Ge detectors. The electron spectrometer consisted of a magnetic lens coupled to a Si(Li) detector.

All data are from 2004Gu07, which supersedes 2001Gu29.

¹⁹⁰Au Levels

Quasiparticle labeling scheme (2004Gu07):

A: $vi_{13/2}, \alpha = +1/2$. B: $vi_{13/2}, \alpha = -1/2$.

C: $vi_{13/2}, \alpha = +1/2$. D: $vi_{13/2}, \alpha = -1/2$. E: $vh_{9/2}, \alpha = -1/2$.

F: $\nu h_{9/2}, \alpha = +1/2.$

e: $\pi h_{11/2}, \alpha = -1/2.$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0+x [#]	11-	125 ms 20	$T_{1/2}$: from the Adopted Levels. E(level): x=200 150 (syst,2017Au03).
282.07+x [@] 16	12^{-}		
427.73+x [#] 16	13-		
743.55+x [@] 23	14-		
1145.45+x [#] 23	15-		
1468.33+x [@] 25	16-		
1598.4+x ^g 3	15^{+}		
1830.7+x ^g 3	17^{+}		
1929.8+x [#] 3	17^{-}		
2093.0+x 4	17-		
2110.1+x 4	18+		
2148.9 + x 4	18'	7.0	$T = \frac{1}{2} \left(\frac{1}{2} \right) \left($
21/2.1+X [•] 4	201	7.0 ns 5	$\Gamma_{1/2}$: from $\gamma(t)$ pulsed beam (2001Gu29).
$2265.4 \pm \frac{1}{2}$	10-		$Configuration = //n_{11/2} \otimes /(n_{13/2}, n_{9/2}).$
2203.4 + x = 3 2283 3+x 3	10 10 ⁻		
$2365.8 + x^8 4$	19+		
$2436.3 + x^{\#}3$	19-		
2496.7+x 5	19+		
2662.6+x ^d 4	21+		
2665.5+x 5	20^{+}		
2727.5+x ^c 4	22^{+}		
2728.9+x [@] 4	20^{-}		
2816.3+x 5			
$2899.2 + x^{\#} 4$	21-		
2978.4+x ^{&} 4	22^{-}		
2995.4+x ^g 4	21+		
$3002.3 + x^{e} 4$	22+		
306/.1+x 4	22-		

186 W(11 B,7n γ)	2004Gu07,2001Gu29	(continued)
-------------------------------------	-------------------	-------------

E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}
3088.5+x 4	21+	4213.9+x ^{<i>a</i>} 5	26-	4938.3+x f 7	29+	6052.3+x ^c 6	32+
3213.8+x 5		4268.2+x ^{&} 5	26-	5031.6+x ^{<i>a</i>} 5	28-	6069.5+x ^a 7	31-
$3255.6 + x^d 4$	23+	4288.2+x 6		5120.0+x ^{&} 7	28-	6135.3+x 6	32^{+}
3340.7+x 6	22^{+}	4333.4+x ^c 5	26^{+}	5151.1+x 6	28	6220.3+x ^e 7	32^{+}
3456.8+x ^f 4	23^{+}	$4373.2 + x^{f} 5$	27^{+}	5151.2+x ^e 6	28^{+}	6330.9+x 8	
3459.9+x ^b 4	23-	4400.1+x ^b 5	26-	5309.3+x ^a 5	29-	6344.2+x 6	32-
3490.5+x ^{&} 5	24-	4516.0+x ^e 6	26^{+}	5331.8+x 6	29-	6386.5+x ^b 6	32-
3494.4+x ^c 4	24^{+}	4546.9+x 5	27^{-}	5378.8+x ^c 5	30^{+}	6388.9+x ^{&} 8	
3524.0+x 5	23	4644.5+x ^c 5	28^{+}	5437.5+x 8	29^{+}	6759.9+x ^a 8	33-
3677.7+x ^e 5	24^{+}	4674.5+x ^{<i>a</i>} 5	27^{-}	5506.4+x ^b 5	30-	6769.9+x 7	34+
3741.9+x ^g 6	23^{+}	4734.0+x 6	27^{+}	5567.3+x 6	29	7019.7+x ^b 6	34-
3792.1+x ^b 4	25-	4736.6+x 6	27^{-}	5587.6+x ^{&} 7	30-	7033.7+x ^c 7	34+
$3822.5 + x^{f} 5$	25+	4746.0+x 6	27+	5587.8+x 5	30-	7066.1+x ^e 9	
4104.9+x 7	24+	4794.6+x ^b 5	28-	5740.8+x ^e 6	30^{+}	7268.1+x 7	36+
4105.3+x ^d 4	25+	4813.0+x 7		5928.2+x 8		7886.0+x ^b 7	36-

¹⁹⁰Au Levels (continued)

[†] From least-squares fit to $E\gamma$ values.

[‡] As given by 2004Gu07 based on their $\gamma(\theta)$, $\gamma(\text{linear pol})$ and ce data, together with band associations.

[#] Band(A): $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-1}, \alpha = 1$. Rotation-aligned band based on 11⁺.

[@] Band(a): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}, \alpha = 0$. Rotation-aligned band based on 12^+ .

[&] Band(B): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-3}$. Band based on 22⁻.

^{*a*} Band(C): Multi-qp band based on 26⁻. Configuration= $\pi h_{11/2}^{-1} \otimes \nu[(i_{13/2}^{-3}h_{9/2}^{-1})(p_{3/2},f_{5/2})^1]$. ^{*b*} Band(D): Multi-qp band based on 23⁻. Configuration= $\pi h_{11/2}^{-1} \otimes \nu[(i_{13/2}^{-3}h_{9/2}^{-1})(p_{3/2},f_{5/2})^1]$. Members of this band are not

clearly labeled in either Fig. 1 or the text in 2004Gu07. ^c Band(E): $\pi h_{11/2}^{-1} \otimes \nu(i_{13/2}^{-2} h_{9/2}^{-1}), \alpha = 0$. eFBC configuration; band based on 20⁺ isomer.

^d Band(e): $\pi h_{11/2}^{-1} \otimes \nu(i_{13/2}^{-2} h_{9/2}^{-1}), \alpha = 1$. eFAC configuration; band based on 20⁺ isomer.

^e Band(F): eFAB band based on 22⁺.

 f Band(G): Possible non-collective band based on 23⁺.

^g Band(H): Multi-qp band based on 15⁺. Configuration= $\pi h_{11/2}^{-1} \otimes \nu [(i_{13/2}^{-2})(p_{3/2}, f_{5/2})^1]$.

γ(¹⁹⁰ Au)	

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	$\mathbf{I}_{(\gamma+ce)}^{\dagger}$	Comments
$(23.1^{\ddagger} 5)$ $(62.0^{\ddagger} 5)$		2172.1+x 2172.1+x	20 ⁺ 20 ⁺	2148.9+x 2110.1+x	18 ⁺ 18 ⁺			.+	
(65.1* 5) 79.2 <i>4</i>		2727.5+x 2978.4+x	22 ⁺ 22 ⁻	2662.6+x 2899.2+x	21 ⁺ 21 ⁻	M1	2.57 6	6# 34 [‡]	α (M)exp=0.30 <i>14</i> α (L)=1.97 <i>4</i> ; α (M)=0.458 <i>10</i> α (N)=0.1140 <i>24</i> ; α (O)=0.0210 <i>5</i> ;
111.1 2	11 <i>1</i>	2283.3+x	19-	2172.1+x	20+	E1	0.318	15	$\begin{aligned} &\alpha(P)=0.00141\ 3\\ &A_2=-0.68\ 4;\ A_4=+0.3\ 1;\ \alpha(L)exp=0.042\ 10\\ &\alpha(K)=0.256\ 4;\ \alpha(L)=0.0476\ 7;\\ &\alpha(M)=0.01110\ 17\\ &\alpha(N)=0.00272\ 4;\ \alpha(O)=0.000469\ 7;\\ &\alpha(P)=2.14\times10^{-5}\ 4\\ &Magnitude\ of\ A_4\ is\ inconsistent\ with \end{aligned}$

				¹⁸⁶ W(¹¹]	Β,7n γ)	2004G	Gu07,2001G	u29 (contir	nued)		
	γ ⁽¹⁹⁰ Au) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	$I_{(\gamma+ce)}^{\dagger}$	Comments		
134.2 <i>3</i> 145.5 2	0.8 <i>3</i> 19 2	2283.3+x 427.73+x	19 ⁻ 13 ⁻	2148.9+x 282.07+x	18 ⁺ 12 ⁻	[E1] M1	0.197 2.49	1 69	$\Delta J=1, E1; suggests a largequadrupole admixture.A2=-0.3 2; A4=+0.1 1A2=-0.42 6; A4=+0.07 8;\alpha(K)exp=1.4 3\alpha(K)=2.04 3; \alpha(L)=0.342 5;\alpha(M)=0.0793 12$		
152.8 3	0.7 2	2436.3+x	19-	2283.3+x	19-	[M1]	2.17	2.5	α(N)=0.0198 3; α(O)=0.00363 6; α(P)=0.000245 4 A2=+0.2 2; A4=+0.2 1 ΔJ=0 transition. Magnitude of A4 suggests quadrupole admixture.		
158.2 <i>3</i> 167.8 <i>4</i>	0.2 <i>1</i> 2.7 5	5309.3+x 3067.1+x	29 ⁻ 22 ⁻	5151.1+x 2899.2+x	28 21 ⁻	M1	1.66 3	7	A ₂ =-0.5 <i>l</i> ; A ₄ =+0.1 <i>2</i> ; α (K)exp=1.5 6 α (K)=1.366 22; α (L)=0.228 <i>4</i> ; α (M)=0.0529 9 α (N)=0.01317 2 <i>1</i> ; α (O)=0.00242 4; α (M)=0.000164 2		
170.2 3	92	2899.2+x	21-	2728.9+x	20-	M1	1.597	24	$\begin{aligned} &\alpha(P) = 0.000164 \ 3 \\ A_2 = -0.31 \ 4; \ A_4 = +0.05 \ 8; \\ &\alpha(K) = x_{1.313} \ 20; \ \alpha(L) = 0.219 \ 4; \\ &\alpha(M) = 0.0508 \ 8 \\ &\alpha(N) = 0.01265 \ 19; \ \alpha(O) = 0.00233 \ 4; \\ &\alpha(P) = 0.0001571 \ 24 \end{aligned}$		
170.4 4	10 2	2436.3+x	19-	2265.4+x	18-	M1	1.592 25	26	A ₂ and A ₄ for 170.2+170.4. A ₂ =-0.31 4; A ₄ =+0.05 8; α (K)exp=1.5 2 α (K)=1.308 21; α (L)=0.218 4; α (M)=0.0506 8 α (N)=0.01261 20; α (O)=0.00232 4; α (P)=0.0001566 25 A (P)=0.0001566 25		
173.5 4	1.1 3	5740.8+x	30^+	5567.3+x	29			2.8	A_2 and A_4 for 1/0.2+1/0.4.		
1/9.0 4 190.2 3	0.2 1 0.3 1	2993.4+x 2283.3+x	21° 19 ⁻	2010.3+X 2093.0+x	17-	E2	0.445	0.4	A ₂ =+0.2 <i>I</i> ; A ₄ =+0.09 <i>8</i> ; α (K)exp=0.37 <i>11</i> α (K)=0.192 <i>3</i> ; α (L)=0.190 <i>3</i> ; α (M)=0.0489 <i>8</i> α (N)=0.01206 <i>19</i> ; α (O)=0.00197 <i>3</i> ; α (P)=1.96×10 ⁻⁵ <i>3</i> I _(γ+ce) : 3.5 quoted by 2004Gu07 seems incorrect if I γ =0 3		
201.3 4	0.3 1	3456.8+x	23+	3255.6+x	23+	[M1]	0.998	0.6	$A_2 = +0.4 I; A_4 = +0.03 8$		
228.0 3	2.3 3	4333.4+x	26+	4105.3+x	25+	M1	0.706	4	A ₂ =-0.27 8; A ₄ =+0.02 8; α (K)exp=0.57 14 α (K)=0.580 9; α (L)=0.0963 14; α (M)=0.0223 4 α (N)=0.00556 8; α (O)=0.001023 15; α (P)=6.92×10 ⁻⁵ 10		
232.3 2	81	1830.7+x	17+	1598.4+x	15+	E2	0.227	100	$A_{2}=+0.21 \ 4; \ A_{4}=-0.08 \ 8; \\ \alpha(K)\exp=0.14 \ 1; \ pol=+0.106 \ 22 \\ \alpha(K)=0.1171 \ 17; \ \alpha(L)=0.0828 \ 12; \\ \alpha(M)=0.0211 \ 3$		

¹⁸⁶W(¹¹B,7nγ) **2004Gu07,2001Gu29** (continued)

$\gamma(^{190}Au)$ (continued) α[@] E_{γ}^{\dagger} Mult.# I_{γ}^{\dagger} $I_{(\gamma+ce)}$ E_i (level) J_i^{π} \mathbf{J}_{f}^{π} Comments \mathbf{E}_{f} α (N)=0.00521 8; α (O)=0.000858 13; $\alpha(P)=1.213\times10^{-5}$ 18 3494.4+x 23+ 238.9 2 61 24^{+} 3255.6+x M1 0.620 10 $A_2 = -0.3 2$; $A_4 = -0.01 8$; $\alpha(K) \exp = 0.67$ 8 $\alpha(K)=0.510 8; \alpha(L)=0.0846 12;$ $\alpha(M)=0.0196 \ 3$ $\alpha(N)=0.00488$ 7; $\alpha(O)=0.000898$ 13; $\alpha(P)=6.08\times10^{-5}$ 9 4794.6+x 247.63 51 28^{-} 4546.9+x 27^{-} (M1) 0.562 7 $A_2 = -0.21 6; A_4 = -0.09 8$ 249.6 4 2978.4+x 22^{-} 2728.9 + x 20^{-} 31 [E2] 0.180 3.6 A₂=+0.3 *I*; A₄=+0.10 8 Sign of A₄ is inconsistent with $\Delta J=2$, quadrupole transition. 255.7 4 2365.8+x 19^{+} 18+ M1 0.514 41 2110.1+x 5.5 $A_2 = -0.24 6$; $A_4 = -0.06 8$; $\alpha(K) \exp = 0.60$ 10 $\alpha(K)=0.423$ 7; $\alpha(L)=0.0700$ 11; $\alpha(M)=0.01623\ 24$ α (N)=0.00404 6; α (O)=0.000744 11; $\alpha(P)=5.04\times10^{-5}$ 8 256.03 1.8 4 5587.8+x 30-5331.8+x 29^{-} (M1) 0.513 2.8 A₂=-0.3 *1*; A₄=-0.09 8 277.7 3 1.0 4 5309.3+x 29^{-} 28^{-} $A_2 = -0.1 \ I$; $A_4 = -0.15 \ 8$; $\alpha(K) \exp = 0.53$ 5031.6+x M1 0.410 1.4 19 $\alpha(K)=0.337$ 5; $\alpha(L)=0.0558$ 8; a(M)=0.01292 19 α (N)=0.00322 5; α (O)=0.000592 9; $\alpha(P)=4.01\times 10^{-5}$ 6 Sign of A₄ is inconsistent with $\Delta J=1$ transition. 279.3 3 15 2 2110.1+x 18^{+} 0.404 22 $A_2 = -0.07 \ 8; \ A_4 = +0.08 \ 8;$ 1830.7+x 17⁺ M1 α (K)exp=0.36 4 $\alpha(K)=0.332$ 5; $\alpha(L)=0.0549$ 8; α(M)=0.01272 19 α (N)=0.00317 5; α (O)=0.000583 9; $\alpha(P)=3.95\times10^{-5}$ 6 $A_2 = -0.11 4$; $A_4 = -0.09 8$; $\alpha(K) \exp = 0.39$ 282.0 2 282.07 + x0.393 68 8 12^{-} 0.0+x 11^{-} M1 96 3; pol=-0.079 14 $\alpha(K)=0.324$ 5; $\alpha(L)=0.0534$ 8; a(M)=0.01239 18 α (N)=0.00309 5; α (O)=0.000568 8; $\alpha(P)=3.84\times10^{-5}~6$ $A_2 = -0.09 4$; $A_4 = -0.07 8$; $\alpha(K) \exp = 0.36$ 0.355 292.6 2 27 3 2728.9 + x 20^{-} 2436.3+x 19-M1 37 3; pol=-0.076 16 $\alpha(K)=0.293$ 5; $\alpha(L)=0.0483$ 7; $\alpha(M)=0.01119\ 16$ α (N)=0.00279 4; α (O)=0.000513 8; $\alpha(P)=3.47\times10^{-5}$ 5 20^{+} 5 A₂=-0.02 8; A₄=+0.01 8 299.64 41 2665.5 + x2365.8 + x 19^{+} [M1] 0.333 311.1 2 15 3 4644.5 + x 28^{+} 26^{+} E2 0.0919 15 $A_2 = +0.23 4$; $A_4 = -0.07 8$; 4333.4+x α (K)exp=0.097 50; pol=+0.100 7 $\alpha(K)=0.0568 \ 8; \ \alpha(L)=0.0265 \ 4;$ α(M)=0.00667 10 $\alpha(N)=0.001648\ 24;\ \alpha(O)=0.000276\ 4;$ $\alpha(P) = 6.08 \times 10^{-6} 9$ 315.7 3 138 12 743.55+x 14^{-} 427.73+x 13⁻ M1 0.289 179 $A_2 = -0.05 4$; $A_4 = -0.06 8$; $\alpha(K) \exp = 0.26$ 2; pol=-0.071 8 $\alpha(K) = 0.238 4; \alpha(L) = 0.0392 6;$

¹⁸⁶W(¹¹B,7nγ) 2004Gu07,2001Gu29 (continued)

γ ⁽¹⁹⁰Au) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	$I_{(\gamma+ce)}^{\dagger}$	Comments
318.2 2	85 10	2148.9+x	18+	1830.7+x	17+	M1	0.283	111	$ \begin{array}{c} \alpha(M) = 0.00908 \ I3 \\ \alpha(N) = 0.00226 \ 4; \ \alpha(O) = 0.000416 \ 6; \\ \alpha(P) = 2.82 \times 10^{-5} \ 4 \\ POL \ for \ 315.7 + 318.2. \\ A_2 = -0.10 \ 4; \ A_4 = -0.08 \ 8; \ \alpha(K) exp = 0.23 \\ 2; \ pol = -0.071 \ 8 \\ \alpha(K) = 0.233 \ 4; \ \alpha(L) = 0.0384 \ 6; \\ \alpha(M) = 0.00889 \ I3 \\ \end{array} $
319.5 <i>3</i> 322.8 2	0.9 <i>3</i> 32 <i>3</i>	2816.3+x 1468.33+x	16-	2496.7+x 1145.45+x	19+ 15 ⁻	M1	0.272	1.2 41	$\alpha(N)=0.00221 4; \alpha(O)=0.000408 6; \alpha(P)=2.76\times10^{-5} 4 POL for 315.7+318.2. A_2=+0.3 1; A_4=+0.16 8 A_2=-0.04 4; A_4=-0.05 8; \alpha(K)exp=0.20 5; pol=-0.040 18 \alpha(K)=0.224 4; \alpha(L)=0.0369 6; \alpha(M)=0.00855 12 \alpha(N)=0.00213 3; \alpha(O)=0.000392 6; $
329.8 <i>3</i> 332.2 2	1.3 <i>4</i> 41 <i>3</i>	2995.4+x 3792.1+x	21 ⁺ 25 ⁻	2665.5+x 3459.9+x	20 ⁺ 23 ⁻	[M1] E2	0.257 0.0760	1.7 44	$\begin{aligned} \alpha(\text{R}) = 0.00313 \text{ s}, \ \alpha(\text{C}) = 0.000332 \text{ s}, \\ \alpha(\text{P}) = 2.66 \times 10^{-5} \text{ 4} \\ \text{A}_2 = -0.1 \text{ 1}; \ \text{A}_4 = 0.00 \text{ 8} \\ \text{A}_2 = +0.25 \text{ 4}; \ \text{A}_4 = -0.14 \text{ 8}; \\ \alpha(\text{K}) \exp = 0.035 \text{ 6}; \ \text{pol} = +0.113 \text{ 12} \\ \alpha(\text{K}) = 0.0484 \text{ 7}; \ \alpha(\text{L}) = 0.0208 \text{ 3}; \\ \alpha(\text{M}) = 0.00522 \text{ 8} \end{aligned}$
335.6 2	91	2265.4+x	18-	1929.8+x	17-	M1	0.245	11	$\alpha(N)=0.001290 \ 19; \ \alpha(O)=0.000217 \ 3; \alpha(P)=5.22\times10^{-6} \ 8 A_2=+0.01 \ 4; \ A_4=-0.03 \ 8; \alpha(K)exp=0.18 \ 3; \ pol=-0.064 \ 24 \alpha(K)=0.202 \ 3; \ \alpha(L)=0.0332 \ 5; \alpha(M)=0.00769 \ 11 \alpha(N)=0.00192 \ 3; \ \alpha(O)=0.000352 \ 5; $
339.7 2	71	3002.3+x	22+	2662.6+x	21+	M1	0.237	9	$\begin{array}{l} \alpha(\mathrm{N}) = 0.00122 \ \text{ b}; \ \alpha(\mathrm{O}) = 0.000322 \ \text{ b}; \\ \alpha(\mathrm{P}) = 2.39 \times 10^{-5} \ \text{ 4} \\ \mathrm{A}_2 = -0.14 \ \text{4}; \ \mathrm{A}_4 = -0.16 \ \text{8}; \ \alpha(\mathrm{K}) \mathrm{exp} = 0.11 \\ 3; \ \mathrm{pol} = -0.76 \ \text{9} \\ \alpha(\mathrm{K}) = 0.195 \ \text{3}; \ \alpha(\mathrm{L}) = 0.0321 \ \text{5}; \\ \alpha(\mathrm{M}) = 0.00744 \ \text{11} \\ \alpha(\mathrm{N}) = 0.00185 \ \text{3}; \ \alpha(\mathrm{O}) = 0.000341 \ \text{5}; \\ \alpha(\mathrm{P}) = 2.31 \times 10^{-5} \ \text{4} \\ \mathrm{Sign of A}_4 \ \mathrm{is \ inconsistent \ with } \Delta \mathrm{J} = 1, \end{array}$
343.6 <i>5</i> 345.4 <i>5</i>	1.9 <i>4</i> 1.4 <i>5</i>	2436.3+x 3340.7+x	19 ⁻ 22 ⁺	2093.0+x 2995.4+x	17 ⁻ 21 ⁺	[E2] [M1]	0.0691	2 1.7	M1. $A_2=+0.47 \ 8; \ A_4=-0.20 \ 8$ $A_2=-0.1 \ I; \ A_4=-0.17 \ 8$ Sign of A_4 is inconsistent with $AI=1$
353.6 4	6 2	2283.3+x	19-	1929.8+x	17-	E2	0.0637	6	$\begin{array}{l} \text{dipole transition.} \\ \text{A}_2 = +0.2 \ l; \ \text{A}_4 = +0.05 \ 8; \\ \alpha(\text{K}) = 0.0417 \ 6; \ \alpha(\text{L}) = 0.01665 \ 25; \\ \alpha(\text{M}) = 0.00416 \ 6 \\ \alpha(\text{N}) = 0.001027 \ 15; \ \alpha(\text{O}) = 0.000174 \ 3; \\ \end{array}$
357.0 <i>4</i> 361.1 <i>3</i>	0.8 <i>4</i> 0.6 <i>2</i>	5031.6+x 3088.5+x	28 ⁻ 21 ⁺	4674.5+x 2727.5+x	27 ⁻ 22 ⁺	[M1] [M1]	0.207 0.201	1 0.7	$\alpha(\mathbf{r})=4.52\times10^{\circ}$ / A ₂ =-0.2 <i>I</i> ; A ₄ =-0.39 8 Sign and magnitude of A ₄ is inconsistent with Δ J=1, dipole
362.0 3	1.1 4	5740.8+x	30+	5378.8+x	30+	[M1]	0.200	1.3	transition. $A_2=+0.4 2; A_4=-0.02 8$
362.3 2	36 <i>3</i>	1830.7+x	17+	1468.33+x	16-	E1	0.01739	37	$A_2 = -0.29 4$; $A_4 = -0.04 8$;
				Con	itinued	on next p	age (footno	tes at end o	DI TADIO)

¹⁸⁶W(¹¹B,7nγ) 2004Gu07,2001Gu29 (continued)

γ ⁽¹⁹⁰Au) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α [@]	$I_{(\gamma+ce)}^{\dagger}$	Comments
									α (K)exp=0.011 2; pol=+0.003 16 α (K)=0.01439 21; α (L)=0.00231 4; α (M)=0.000532 8 α (N)=0.0001315 19; α (O)=2.36×10 ⁻⁵ 4: α (P)=1.394×10 ⁻⁶ 20
365.7 2	11 <i>1</i>	3822.5+x	25+	3456.8+x	23+	E2	0.0580	12	A ₂ =+0.31 4; A ₄ =-0.25 8; α (K)exp=0.031 9; pol=+0.124 7 α (K)=0.0385 6; α (L)=0.01478 21; α (M)=0.00368 6 α (N)=0.000911 13; α (O)=0.0001541
368.4 <i>3</i>	2.3 5	3456.8+x	23+	3088.5+x	21+	E2	0.0569	2.4	22; $\alpha(P)=4.19\times10^{-6} 6$ $A_2=+0.14 6$; $A_4=-0.33 8$; pol=+0.153 15 $\alpha(K)=0.0378 6$; $\alpha(L)=0.01441 21$; $\alpha(M)=0.00359 6$ $\alpha(N)=0.000887 13$; $\alpha(O)=0.0001502$
386.5 <i>3</i>	3.5 6	2496.7+x	19+	2110.1+x	18+	M1	0.1675	3.7	22; $\alpha(P)=4.12\times10^{-6} 6$ $A_2=+0.03 8$; $A_4=-0.07 8$; $\alpha(K)\exp=0.20 6$ $\alpha(K)=0.1381 20$; $\alpha(L)=0.0226 4$; $\alpha(M)=0.00524 8$ $\alpha(N)=0.001305 19$; $\alpha(O)=0.000240 4$;
392.7 <i>3</i>	71	3459.9+x	23-	3067.1+x	22-	M1	0.1605	8	$\begin{aligned} &\alpha(P)=1.631\times10^{-5}\ 23\\ A_2=-0.07\ 8;\ A_4=-0.04\ 8;\ \alpha(K)exp=0.23\\ 5;\ pol=-0.024\ 18\\ &\alpha(K)=0.1323\ 19;\ \alpha(L)=0.0217\ 3;\\ &\alpha(M)=0.00502\ 8\\ &\alpha(N)=0.001250\ 18;\ \alpha(O)=0.000230\ 4; \end{aligned}$
394.5 <i>4</i> 402.0 <i>2</i>	2.4 8 23 2	4794.6+x 1145.45+x	28 ⁻ 15 ⁻	4400.1+x 743.55+x	26 ⁻ 14 ⁻	E2 M1	0.0472 0.1508	2.5 27	$\alpha(P)=1.562\times10^{-5} 23$ $A_{2}=+0.4 I; A_{4}=-0.24 8; \text{pol}=+0.093 I6$ $A_{2}=-0.21 4; A_{4}=-0.07 8; \alpha(K)\text{exp}=0.13$ $2; \text{pol}=-0.039 I7$ $\alpha(K)=0.1243 I8; \alpha(L)=0.0204 3;$ $\alpha(M)=0.00471 7$ $\alpha(N)=0.001174 I7; \alpha(O)=0.000216 3;$
416.1 <i>4</i>	1.9 4	5567.3+x	29	5151.2+x	28 ⁺	D		2.2	$\alpha(P)=1.467\times10^{-3} 2I$ $A_2=-0.2 I; A_4=-0.2 I$ Sign of A ₄ is inconsistent with $\Delta J=1$ transition
421.8 2	15 2	4213.9+x	26-	3792.1+x	25-	M1	0.1326	17.6	A ₂ =+0.03 4; A ₄ =0.00 8; α (K)exp=0.19 3; pol=-0.100 49 α (K)=0.1094 16; α (L)=0.0179 3; α (M)=0.00414 6 α (N)=0.001031 15; α (O)=0.000190 3; α (D)=1.200×10 ⁻⁵ 10
427.8 2	128 10	427.73+x	13-	0.0+x	11-	E2	0.0382	146	A ₂ =+0.25 4; A ₄ =-0.09 8; α (K)exp=0.026 2; pol=+0.053 8 α (K)=0.0267 4; α (L)=0.00867 13; α (M)=0.00214 3 α (N)=0.000530 8; α (O)=9.06×10 ⁻⁵ 13; α (P)=2.94×10 ⁻⁶ 5 I _(γ+ce) : evaluators obtain 133 from I γ and α (theory), instead of 146 listed by 2004Giu07
445.7 2 454.6 <i>3</i>	4 <i>1</i> 3.6 7	2728.9+x 3456.8+x	20 ⁻ 23 ⁺	2283.3+x 3002.3+x	19 ⁻ 22 ⁺	[M1] M1	0.1146 0.1087	4.5 4	A ₂ =-0.2 <i>1</i> ; A ₄ =+0.05 8 A ₂ =0.00 <i>4</i> ; A ₄ =-0.03 8; α (K)exp=0.11

$^{186}W(^{11}B,7n\gamma)$ 2004Gu07,2001Gu29 (continued) $\gamma(^{190}\text{Au})$ (continued) α[@] I_{γ}^{\dagger} Mult.# $I_{(\gamma+ce)}$ E_{γ}^{\dagger} E_i (level) \mathbf{J}_i^{π} J_{f}^{π} Comments E_f 2 *α*(K)=0.0897 *13*; *α*(L)=0.01463 *21*; $\alpha(M) = 0.003395$ α (N)=0.000843 12; α (O)=0.0001552 22; $\alpha(P)=1.056\times 10^{-5}$ 15 460.2 5 4.5 9 4674.5+x 27^{-} 4213.9+x 26 (M1) 0.1053 5 $A_2 = -0.12 4$; $A_4 = -0.04 8$ A_2 and A_4 for 461.4+460.2. 1929.8 + x0.1045 $A_2 = -0.12 4$; $A_4 = -0.04 8$; $\alpha(K) \exp = 0.043$ 461.4.5 10.317-1468.33+x 16⁻ M111 2 $\alpha(K)=0.0862 \ 13; \ \alpha(L)=0.01407 \ 21;$ $\alpha(M)=0.003255$ α (N)=0.000811 *12*; α (O)=0.0001492 *22*; $\alpha(P)=1.015\times10^{-5}$ 15 A_2 and A_4 for 461.4+460.2. α (K)exp for 461.4+461.8. 0.0314 461.8 4 20 2 743.55+x 14^{-} 282.07+x 12⁻ E2 21 $A_2 = +0.24 6; A_4 = -0.36 8;$ α(K)exp=0.043 2; pol=+0.038 10 $\alpha(K)=0.0225 4; \alpha(L)=0.00677 10;$ $\alpha(M)=0.001663~24$ α (N)=0.000412 6; α (O)=7.08×10⁻⁵ 11; $\alpha(P)=2.48\times10^{-6}$ 4 α (K)exp for 461.4+461.8. 462.7 5 16 4 2899.2+x 21^{-} 2436.3+x 19-(E2) 0.0313 16.5 $pol = +0.022 \ 9$ $A_2 = +0.7 \ l; A_4 = -0.2 \ l$ 467.6 3 0.7 2 5587.6+x 30-5120.0+x 28^{-} 0.7 Q 476.5 4 1.1 4 5151.1+x 28 4674.5 + x 27^{-} D 1.2 A₂=-0.1 *1*; A₄=-0.08 8 479.5 4 3.1 8 6220.3+x 32^{+} 5740.8+x 30^{+} (E2) 0.0286 3.2 $A_2 = +0.2 I; A_4 = -0.21 8$ 23- $A_2 = -0.22 4$; $A_4 = -0.08 8$; α (K)exp=0.058 481.5 3 19 2 3459.9+x 2978.4+x 22^{-} M10.0934 21 4; pol=-0.045 10 $\alpha(K)=0.0771 \ 11; \ \alpha(L)=0.01255 \ 18;$ a(M)=0.00290 4 $\alpha(N)=0.000723$ 11; $\alpha(O)=0.0001331$ 19; $\alpha(P)=9.06\times10^{-6}$ 13 484.8 4 28^{-} 4546.9 + x 27^{-} 0.0917 3 $A_2=0.0 I$; $A_4=-0.12 8$; pol=-0.077 14 275 5031.6+xM1 490.5 2 22 2 2662.6 + x 21^{+} 2172.1 + x 20^{+} **M**1 0.0889 24 $A_2 = +0.08 4$; $A_4 = -0.04 8$; α (K)exp=0.048 2; pol=-0.067 8 α (K)=0.0734 *11*; α (L)=0.01195 *17*; $\alpha(M)=0.00276~4$ $\alpha(N)=0.000688 \ 10; \ \alpha(O)=0.0001267 \ 18;$ $\alpha(P)=8.63\times10^{-6}$ 13 492.0 5 2.5 7 3494.4 + x 24^{+} 3002.3 + x 22^{+} [E2] 0.0269 2.6 $A_2 = +0.1 I$; $A_4 = -0.09 8$ A₂ and A₄ for doublet. 498.2 2 2.7 4 7268.1+x 36^{+} 6769.9+x 34^{+} (E2) 0.0260 2.8 $A_2 = +0.2 I; A_4 = -0.13 8$ 19^{-} 1929.8+x 17^{-} E2 0.0250 506.62 20.22436.3+x 21 A₂=+0.22 4; A₄=-0.16 8; pol=+0.102 14 512.1 2 15 2 3490.5 + x 24^{-} 2978.4+x 22^{-} E2 0.0244 15 A₂=+0.32 4; A₄=-0.17 8; pol=+0.074 8 514.8 3 1.9 5 5309.3+x 29^{-} 4794.6+x 28^{-} (M1) 0.0783 2 $A_2 = -0.3 I; A_4 = +0.06 8$ 524.8 4 1.3 4 4813.0+x 4288.2+x 1.3 23^{+} 22^{+} 528.1 2 15 2 2727.5+x 0.0732 $A_2 = +0.02 4$; $A_4 = -0.08 8$; pol = -0.070 10 3255.6+xM1 16 3.5 8 2365.8+x 19^{+} 1830.7+x 17^{+} 535.2 3 E2 0.0219 3.6 A₂=+0.31 6; A₄=-0.2 1; pol=+0.254 13 545.63 2.0 5 3524.0+x 23 2978.4+x 22^{-} D 2.1 $A_2 = -0.4 \ I; A_4 = +0.08 \ 8$ 548.3 3 1.34 3213.8+x 2665.5+x 20^{+} 1.3 550.62 51 4373.2+x 27^{+} 3822.5+x 25^{+} 5.3 $A_2 = +0.21 6; A_4 = +0.04 8$ 555.3 4 20^{+} 18^{+} 62 2665.5+x 2110.1+x [E2] 6 555.62 63 5 2727.5+x 22^{+} 2172.1+x 20^{+} E2 0.0201 64 A₂=+0.23 4; A₄=-0.08 8; pol=+0.076 9 23^{-} 21^{-} E2 0.0197 12 $A_2 = +0.4 \ l; A_4 = -0.2 \ l; pol = +0.065 \ l2$ 560.6 2 12 2 3459.9+x 2899.2+x 29^{+} 27^{+} 565.1 4 2.0 5 4938.3+x 4373.2+x 2 A₂=+0.56 8; A₄=-0.33 8 Q 4213.9+x E2 0.0181 5 580.8 2 51 4794.6+x 28^{-} 26^{-} $A_2 = +0.38 6$; $A_4 = -0.2 1$; pol = +0.126 10

				¹⁸⁶ W(¹¹]	Β,7n γ)	2004Gu	07,2001Gu2	29 (continu	ed)
						γ (¹⁹⁰ Au) (c	ontinued)		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α@	$I_{(\gamma+ce)}^{\dagger}$	Comments
589.7 5 592.7 5 595.3 5 608.0 3 610.8 2 615.9 2	0.9 4 2.0 5 3 1 6 2 3 1 12 2	5740.8+x 3255.6+x 5331.8+x 4400.1+x 4105.3+x 2899.2+x	30 ⁺ 23 ⁺ 29 ⁻ 26 ⁻ 25 ⁺ 21 ⁻	5151.2+x 2662.6+x 4736.6+x 3792.1+x 3494.4+x 2283.3+x	28 ⁺ 21 ⁺ 27 ⁻ 25 ⁻ 24 ⁺ 19 ⁻	D D+Q E2	0.01586	0.9 2 3 6 3 12	$\begin{array}{l} A_2 = -0.26 \ 4; \ A_4 = +0.1 \ 1 \\ A_2 = -0.16 \ 8; \ A_4 = +0.17 \ 8 \\ A_2 = +0.20 \ 4; \ A_4 = -0.09 \ 8; \\ \alpha(K) \exp[=0.012 \ 2; \ pol = +0.118 \ 16 \\ \alpha(K) = 0.01209 \ 17; \ \alpha(L) = 0.00287 \ 4; \\ \alpha(M) = 0.000692 \ 10 \\ \alpha(N) = 0.0001716 \ 24; \\ \alpha(O) = 3.01 \times 10^{-5} \ 5; \end{array}$
624.7 <i>3</i>	10 2	2093.0+x	17-	1468.33+x	16-	[M1+E2]		10	$\alpha(P)=1.343\times10^{-6} I9$ $A_2=-0.06 8; A_4=+0.4 I$ Magnitude of A ₄ suggests large E2 admixture
629.8 <i>3</i>	3 1	2995.4+x	21+	2365.8+x	19+	[E2]		3	$A_2=+0.3 I$; $A_4=+0.12 8$ Sign of A_4 is inconsistent with $A_1=2$ quadrupole transition
633.4 <i>3</i>	1.8 6	7019.7+x	34-	6386.5+x	32-	E2	0.01489	1.8	$A_2=+0.4 \ I; A_4=-0.05 \ 8; \text{pol}=+0.048$ 10 POL for 633.4+634.8.
634.6 <i>3</i> 634.8 <i>3</i>	3.5 5 2.2 <i>3</i>	6769.9+x 5309.3+x	34 ⁺ 29 ⁻	6135.3+x 4674.5+x	32 ⁺ 27 ⁻	(Q) E2	0.01482	3.6 2.2	$A_2=+0.4 I; A_4=-0.01 8$ $A_2=+0.28 8; A_4=-0.06 8; pol=+0.048$ 10
635.1 4	2.0 6	5151.2+x	28+	4516.0+x	26+	Q			POL for 633.4+634.8. $A_2=+0.39 \ 8; A_4=-0.34 \ 8$ $I_{(\gamma+ce)}: 1$ quoted by 2004Gu07 seems incorrect, if $I\gamma=2.0$.
673.5 <i>3</i>	71	6052.3+x	32+	5378.8+x	30+	E2	0.01301	7	A ₂ =+0.23 8; A ₄ =+0.14 8; pol=+0.081 6 Sign of A ₄ is inconsistent with Δ J=2, quadrupole transition. POL for 675 6+675 2+673 5
675.2 5	2.6 5	3340.7+x	22+	2665.5+x	20+	E2	0.01293	2.6	$A_2=+0.3 I; A_4=-0.14 8; pol=+0.081 6$ POL for 675.6+675.2+673.5.
675.3 <i>3</i> 675.6 <i>4</i>	1.7 3 2.5 8	7019.7+x 3677.7+x	34 ⁻ 24 ⁺	6344.2+x 3002.3+x	32 ⁻ 22 ⁺	Q E2	0.01292	1.7 2.5	$A_2=+0.3 I; A_4=-0.23 8$ $A_2=+0.41 8; A_4=-0.38 8; pol=+0.081$ 6 POL for 675 6+675 2+673 5
690.4 4	1.3 4	6759.9+x	33-	6069.5+x	31-	(O)		1.3	$A_2 = +0.3 I$; $A_4 = -0.5 I2$
691.5 5	2.8 7	5437.5+x	29^{+}	4746.0+x	27^{+}	(\widetilde{O})		2.8	$A_2 = +0.226; A_4 = -0.048$
711.8 2	10 2	5506.4+x	30-	4794.6+x	28-	E2	0.01154	10	$A_2 = +0.38$ 6; $A_4 = -0.03$ 8; pol=+0.092 7
717.7 2	51 5	1145.45+x	15-	427.73+x	13-	E2	0.01134	52	$A_2 = +0.17 4$; $A_4 = -0.12 8$; pol=+0.068
724.7 2	44 4	1468.33+x	16 22+	/43.55+x	14	E2	0.01110	44	$A_2 = +0.274$; $A_4 = -0.148$; pol=+0.061 11
732.5 2 734.3 2	1.1 3 27 2 13 3	5450.8+x 3459.9+x 5378.8+x	23 ⁺ 23 ⁻ 30 ⁺	2727.5+x 2727.5+x 4644.5+x	22 ⁺ 22 ⁺ 28 ⁺	E1 E2	0.00396 0.01080	1.1 27	A ₂ =-0.28 4; A ₄ =+0.5 <i>I</i> ; pol=+0.043 8 Magnitude of A ₄ suggests large quadrupole admixture. A ₂ =+0.29 4; A ₄ =-0.18 8; pol=+0.056
746.5 <i>4</i>	1.2 4	3741.9+x	23+	2995.4+x	21+	Q		1.2	7 $I_{(\gamma+ce)}$: 3 quoted by 2004Gu07 seems incorrect, if $I\gamma=13$. $A_2=+0.3$ 2; $A_4=-0.20$ 8

				$^{186}W(^{11})$	Β,7n γ)	20040	Gu07,2001G	u29 (cont	inued)
						γ ⁽¹⁹⁰ Au)	(continued))	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	$I_{(\gamma+ce)}^{\dagger}$	Comments
75483	14 1	$4546.9 \pm x$	27^{-}	3792.1 + x	25-	E2	0.01018	14	$A_2 = +0.24.4$; $A_4 = -0.19.8$; pol = +0.096.5
75634	175	6344.2 + x	32-	5587 8+x	30-	22	0.01010	17	112 10.21 7, 114 0.19 0, por 10.090 0
756.5 3	41	6135.3+x	32^{+}	5378.8+x	30+	(0)		4	$A_2 = +0.496; A_4 = -0.048$
760.2 4	5 1	6069.5+x	31-	5309.3+x	29-	E2	0.01003	5	$A_2 = +0.25 \ 8; \ A_4 = -0.26 \ 8; \ pol = +0.077$
764.2 4	1.4 3	4104.9+x	24^{+}	3340.7+x	22^{+}	0		1.4	$A_2 = +0.5 I$; $A_4 = -0.25 8$
764.2 3	1.2 3	4288.2+x		3524.0+x	23	C C		1.2	2 , +
767.0 2	15 2	3494.4+x	24+	2727.5+x	22+	E2	0.00985	15	$A_2 = +0.25 4$; $A_4 = -0.11 8$; pol=+0.069
777.7 2	62	4268.2+x	26-	3490.5+x	24^{-}	E2	0.00957	6	$A_2 = +0.53$ 6; $A_4 = -0.1$ 1; pol = +0.161 14
784.5 2	29 2	1929.8+x	17-	1145.45+x	15-	E2	0.00939	29	$A_2 = +0.18 4$; $A_4 = -0.16 8$; pol=+0.064 12
793.0 4	1.3 4	5587.8+x	30-	4794.6+x	28^{-}			1.3	
794.1 <i>3</i>	3.1 4	3456.8+x	23^{+}	2662.6+x	21^{+}	(E2)		3.1	$A_2 = +0.28 4$; $A_4 = -0.11 8$
797.0 2	22 2	2265.4+x	18^{-}	1468.33+x	16-	E2	0.00909	22	$A_2 = +0.21 4$; $A_4 = -0.2 1$; pol = +0.066 14
798.8 <i>3</i>	1.1 3	6386.5+x	32-	5587.8+x	30-	Q		1.1	$A_2 = +0.6 \ l; \ A_4 = -0.2 \ l$
801.3 4	0.2 1	6388.9+x		5587.6+x	30-			0.2	
808.2 4	0.4 1	5928.2+x		5120.0+x	28^{-}			0.4	
817.8 4	1.8 8	5031.6+x	28-	4213.9+x	26-	Q		1.8	$A_2 = +0.10 4$; $A_4 = -0.67 8$
837.5 4	4 1	6344.2+x	32-	5506.4+x	30-			4	$A_2 = +0.32$ 6; $A_4 = +0.13$ 8
									Sign of A ₄ is inconsistent with $\Delta J=2$, quadrupole transition.
838.3 4	62	4516.0+x	26^{+}	3677.7+x	24+	Q		6	$A_2 = +0.28 6$; $A_4 = -0.26 8$
839.1 <i>3</i>	15 2	4333.4+x	26+	3494.4+x	24+	E2	0.00817	15	$A_2 = +0.23 4$; $A_4 = -0.09 8$; pol=+0.108 10
845.8 <i>5</i>	2.0 5	7066.1+x		6220.3+x	32^{+}			2	
849.6 5	63	4105.3+x	25^{+}	3255.6+x	23^{+}	[E2]		6	
851.8 4	31	5120.0+x	28^{-}	4268.2+x	26^{-}	Q		3	$A_2 = +0.4 \ l; A_4 = -0.2 \ l$
854.9 <i>3</i>	115 10	1598.4+x	15^{+}	743.55+x	14-	E1	0.00295	115	$A_2 = -0.11 4$; $A_4 = -0.07 8$; pol = +0.018 3
866.3 <i>3</i>	2.0 4	7886.0+x	36-	7019.7+x	34-	E2	0.00766	2	$A_2 = +0.27 \ 8; \ A_4 = -0.02 \ 8; \ pol = +0.122 \ 11$
880.3 <i>3</i>	2.1 4	6386.5+x	32-	5506.4+x	30-	(Q)		2.1	$A_2 = +0.4 \ I; A_4 = +0.05 \ 8$
893.4 <i>3</i>	2.1 5	6330.9+x		5437.5+x	29^{+}			2.1	
911.4 <i>3</i>	31	4734.0+x	27^{+}	3822.5+x	25^{+}	Q		3	$A_2 = +0.23 \ 8; \ A_4 = -0.34 \ 8$
916.2 4	2.0 6	3088.5+x	21^{+}	2172.1+x	20^{+}	[M1]		2	$A_2 = -0.42 \ 8; \ A_4 = +0.02 \ 8$
923.4 <i>3</i>	51	4746.0+x	27^{+}	3822.5+x	25^{+}	(Q)		5	$A_2 = +0.30 6; A_4 = -0.07 8$
944.6 4	31	4736.6+x	27-	3792.1+x	25-	(Q)		3	$A_2 = +0.24 8; A_4 = -0.08 8$
950.1 4	83	3677.7+x	24+	2727.5+x	22+	Q		8	$A_2 = +0.27 6; A_4 = -0.14 8$
981.4 <i>4</i>	31	7033.7+x	34+	6052.3+x	32+	(Q)		3	$A_2 = +0.5 I; A_4 = -0.06 8$

[†] From 2004Gu07.

^{\ddagger} Deduced from $\gamma\gamma$ coin relationships.

[#] Generally from 2004Gu07. In some cases, evaluators assign multipolarities based on $\gamma(\theta)$ data, where no explicit assignment is given by 2004Gu07. Mult=Q indicates $\Delta J=2$, quadrupole (most likely E2) and mult=D indicates $\Delta J=1$, dipole.

^(e) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁰₇₉Au₁₁₁

¹⁸⁶W(¹¹B,7nγ) 2004Gu07,2001Gu29

 $^{190}_{79}\mathrm{Au}_{111}$

¹⁹⁰₇₉Au₁₁₁

¹⁹⁰₇₉Au₁₁₁

