		History	
Туре	Author	Citation	Literature Cutoff Date
Update	J. Kelley	ENSDF	10-July-2013

Parent: ¹⁹N: E=0; J^{π}=1/2⁻; T_{1/2}=336 ms 3; Q(β ⁻)=12532 16; % β ⁻ decay=100.0 ¹⁹N-T_{1/2}: from 2006Su12, Q(g.s.)\$from2012Wa38.

- 1986Du07: ¹⁹N ions from the fragmentation of a 60 MeV/u ⁴⁰Ar beam on a Be target at GANIL were filtered by the LISE spectrometer and implanted in a Ge detector. Beta gamma coincidences of ¹⁹N were measured along with their relative intensities. T_{1/2}=320 ms *100* was also deduced.
- 1988Sa04: ¹⁹N ions from the fragmentation of a 35 MeV/u ²²Ne beam on a Ta target at MSU were filtered by the RPMS and were implanted in a Si telescope. Multiple neutron-rich isotopes were separated and identified by the RPMS, and each of their half lives was measured. All counts above a threshold of 0.3 MeV were recorded. $T_{1/2}$ =235 ms 32 was deduced for ¹⁹N.
- 1988Mu08: ¹⁹N ions from the fragmentation of a 45 MeV/u ⁴⁸Ca beam on a ¹⁸¹Ta target at GANIL were filtered by the LISE spectrometer and implanted in a Si telescope. The telescope was surrounded by a thin scintillator to detect β -rays and a segmented NE102A 4π neutron array with an energy threshold of 350 keV. Following implantation of ¹⁹N in the telescope the cyclotron frequecy was scrambled and the decay event was measured. A delayed neutron emission probability of P_n=33 +34–11% was deduced. T_{1/2}=210 ms +200–100 was also measured.
- 1991Re02: Spallation products from 800 MeV proton bombardment of a ²³²Th target were captured by a transport line with a mass-to-charge filter and transferred to the TOFI spectrometer at LAMPF. The β -delayed neutron probability P_n=62.4 2.6% was deduced and T_{1/2} = 329 ms *19* was measured. A reanalysis of the (1991Re02) data, with additional data was published in the International conference on nuclear data for science and technology: nuclear data for the twenty-first century, Gatlinburg, TN (United States), 9-13 May 1994. The reanalysis indicates P_n=(48.7 *21*)% and T_{1/2} = 255 ms *10*.
- 2006Su12: ¹⁹N ions from fragmentation of an 80 MeV/u ²²Ne beam on a Be target were selected by the NSCL A1200 fragment separator and implanted in a plastic scintillator. An array of curved plastic scintillator bars surrounded the implantation target. The time-of-flight between the implantation detector (beta counter) and the neutron detector array determined the neutron energies. Two HPGE detectors measured γ rays. The neutron emission probability Pn=(41.8 9)% was deduced from the neutron data. The analysis revealed eight neutron groups to ¹⁸O states. γ transitions among excited states in ¹⁹O and ¹⁸O were also observed. A detailed decay scheme is suggested by comparison of the γ transition intensities amongst the ¹⁹O levels, β - γ -n coincidences, and a reasonable placement of neutron group intensities that could give an intensity balance. Neutron emission groups with intensities less than 1% are left unplaced in the decay scheme. T_{1/2}=336 ms 3 was also measured.
- Comments: The measurements of 2006Su12 provide the most complete measure of ¹⁹O and ¹⁸O spectroscopy for levels and transitions involved in the decay. 1986Du07 measured an additional γ ray energy of 709.2 keV not detected by 2006Su12. This nonobservation can be explained by a contaminant of ²²O in the beam. 2006Su12 also expresses two possible sources of gamma decay for the 2475.2 keV transition. This energy is consistent with both the 1⁻ to 2⁺ transition in ¹⁸O as well as the 3/2⁻ to 1/2⁺ in ¹⁹O. It was assigned to ¹⁹O; the intensity ratio in ¹⁸O should have an absolute intensity ratio of 13:5 and the observed intensity ratio was 1:13.

¹⁹O Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0	5/2+	26.88 s 5	
96.4 <i>3</i>	3/2+		
1472.2 6	$1/2^{+}$		
3235.7 11	$(1/2^{-}, 3/2^{-})$		
3947.6 6	3/2-		
4432.4? 4	$(1/2^{-}, 3/2^{-})$		Energy deduced from a tentative delayed neutron branch to ${}^{18}O^{*}(0)$ with En=452 keV.
6403.1? 12	$(1/2^{-}, 3/2^{-})$		Energy deduced from a tentative delayed neutron branch to ${}^{18}O^{*}(0)$ with En=2319 keV.
7050.8? 5	$(1/2^{-}, 3/2^{-})$		Energy deduced from a tentative delayed neutron branch to ¹⁸ O*(1983)with En=1054 keV.
8740.8? 14	$(1/2^{-}, 3/2^{-})$		Energy deduced from a tentative delayed neutron branch to ¹⁸ O*(1983)with En=2655 keV.
10572? 11	(1/2 ⁻ ,3/2 ⁻)		Energy deduced from a tentative delayed neutron branch to ¹⁸ O*(4456)with En=2047 keV.

1

¹⁹N β^- decay 2006Su12 (continued)

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1960 20)	10572?	1.2 1	3.40 5	av Eβ=821.6 91
(3791 16)	8740.8?	6.7 2	3.907 16	av $E\beta = 1698.7 79$
(5481 16)	7050.8?	17.3 4	4.226 13	av $E\beta = 2526.9 \ 87$
(6129 16)	6403.1?	4.1 <i>1</i>	5.076 13	av $E\beta = 2845.9 \ 80$
(8100 16)	4432.4?	10.4 8	5.24 4	av Eβ=3818.8 80
(8584 16)	3947.6	41.0 10	4.763 12	av $E\beta = 4058.8 \ 80$
(9296 16)	3235.7	8.1 <i>3</i>	5.631 17	av Eβ=4411.4 80
(11060 16)	1472.2	1.6 7	6.70 19	av Eβ=5285.7 80
(12532 16)	0	<7.5	>6.3	av Eβ=6015.6 80

[†] Absolute intensity per 100 decays.

 $\gamma(^{19}O)$

E _γ 96.4 3 1375.7 5 2475.2 7 3139 <i>I</i>	$\frac{I_{\gamma}^{\dagger}}{47.4 \ 13}\\17.2 \ 5\\15.6 \ 5\\8.1 \ 3\\2$	$\frac{E_i(\text{level})}{96.4}$ 1472.2 3947.6 3235.7	$\frac{J_i^{\pi}}{\frac{3/2^+}{1/2^+}}$ $\frac{3/2^-}{(1/2^-, 3/2^-)}$	$\begin{array}{c} {\rm E}_f & {\rm J}_f^{\pi} \\ \hline 0 & {\rm 5}/{2^+} \\ {\rm 96.4} & {\rm 3}/{2^+} \\ {\rm 1472.2} & {\rm 1}/{2^+} \\ {\rm 96.4} & {\rm 3}/{2^+} \\ {\rm 96.4} & {\rm 3}/{2^+} \end{array}$
3139 1 3851 1 3947 1	8.1 3 22.0 8 3.4 2	3947.6 3947.6	(1/2, 3/2) $3/2^{-}$ $3/2^{-}$	96.4 $3/2^+$ 96.4 $3/2^+$ 0 $5/2^+$

[†] Absolute intensity per 100 decays.

$\frac{19}{N}\beta^{-}$ decay 2006Su12

Decay Scheme

¹⁹₈O₁₁