¹⁹C β⁻ decay **1995Oz02**

	History								
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	G. C. Sheu, J. H. Kelley	ENSDF	06-Nov-2018						

Parent: ¹⁹C: E=0; $T_{1/2}$ =46.3 ms 40; $Q(\beta^{-})$ =1.656×10⁴ 10; % β^{-} decay=100.0

¹⁹C-T_{1/2}: weighted value of (1988Du09,1995Oz02 and P.L. Reeder et al., Int. Conf. on Nucl. Data for Science and Technology, May 9-13, 1994, Gatlinburg, Tennessee).

¹⁹C-Q(β ⁻n)=1.123×10⁴ keV 10 (2017Wa10).

1995Oz02: A beam of ¹⁹C ions, produced by fragmenting a ²²Ne beam on a ⁹Be target, was magnetically separated and degraded to lower energies before being stopped in a plastic scintillator. The implantation detector was sandwiched between four other scintillator detectors; a valid event required a coincidence between three ajacent detectors. Three neutron walls surrounded the implantation target and covered about 1.4 sr. The decay neutron energy was deduced by the time of flight between the implantation detector and the neutron wall detectors. The time-of-flight (tof) was calibrated by studying the decay of ¹⁷N which has three visible known neutron groups. A set of two NaI detectors faced the target for use measuring γ -ray singles events and n- γ coincidence events.

The measured neutron spectrum shows several decay groups. A significant ¹⁷B component was present in the beam, and its decay radiations presented a background that was analyzed and subtracted. The final analysis of the neutron energy spectrum revealed five neutron groups that are attributed to β delayed neutron decay of ¹⁹C, or its daughter ¹⁹N.

Throughout the experiment, ions were implanted for a 100 ms period followed by a 200 ms counting period; analysis of the time dependence for the neutron groups permitted assignment of four groups to decay of ¹⁹C ($T_{1/2} \approx 50$ ms) and one group to decay of ¹⁹N ($T_{1/2} \approx 320$ ms).

Four neutron groups at E_n =0.46, 1.01, 1.50 and 2.08 keV are observed; poor statistics prohibited full analysis of the E_n =2.08 MeV group. Three excited states of ¹⁹N were deduced from these E_n energies. The results are presented by normalizing to $\%\beta^-$ 1n=47% *3* from (1988Du09).

¹⁹N Levels

E(level)	Comments
	10

6400 27 From E_n =460 keV 10 ($\rightarrow^{18}N^*(0.587 \text{ MeV})$).

6508 27 From $E_n=1010 \text{ keV } 10 (\rightarrow^{18}N^*(0.115 \text{ MeV})).$

7025 33 From $E_n=1500 \text{ keV } 20 (\rightarrow^{18}N^*(0.115 \text{ MeV})).$

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments	
(9.54×10 ³ 11)	7025	12.7 15	4.94 8	av Eβ=4531 <i>53</i>	
$(1.005 \times 10^4 \ 10)$	6508	20.0 16	4.86 7	av Eβ=4788 52	
(1.016×10 ⁴ 10)	6400	14.3 20	5.02 8	av E β =4841 52	

[†] Absolute intensity per 100 decays.

¹⁹C-Q(β^{-}): From (2017Wa10).