⁹Be(³⁶S,Xγ) 2008So09

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. C. Sheu, J. H. Kelley	ENSDF	06-Nov-2018

2008So09: XUNDL dataset compiled by McMaster, 2008.

- An $E(^{36}S)=77.5$ MeV/nucleon beam was delivered to the GANIL/SPEG spectrometer. In the first part of the experiment, the beam bombarded a 2.77 mg/cm² ⁹Be target and the SPEG magnetic spectrometer was used to momentum analyze the reaction products and identify ¹⁹N_{g.s.}
- In the second part, a 12 C target at the entrance of the SISSI device produced a cocktail beam of 24 F, 25,26 Ne, 27,28 Na, and 29,30 Mg that was purified in the α spectrometer and then delivered to a carbon target at the dispersive image of the SPEG spectrometer. The target was surrounded by the 74 element BaF₂ *Chateau de crystal* array and four HPGe detectors. The γ rays observed in coincidence with 19 N ions detected at the SPEG focal plane were analyzed to obtain information on the 19 N level structure. E γ , I γ , $\gamma\gamma$ -coin were measured using 74 BaF₂ crystals and four HPGe detectors.

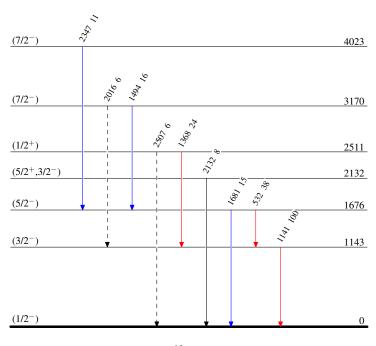
Energy levels and J^{π} values were proposed from comparison with shell-model calculations. See also (2012Yu07).

¹⁹N Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments				
0	$(1/2^{-})$					
1143 <i>3</i>	$(3/2^{-})$	$J^{\pi}: \pi p_{1/2}^{-1} \otimes (\text{first } 2^+ \text{ in } {}^{20}\text{O}).$ $J^{\pi}: \pi p_{1/2}^{-1} \otimes (\text{first } 2^+ \text{ in } {}^{20}\text{O}).$				
1676 <i>3</i>	$(5/2^{-})$	J^{π} : $\pi p_{1/2}^{\gamma} \otimes (\text{first } 2^+ \text{ in } {}^{20}\text{O}).$				
2132 9	$(5/2^+, 3/2^-)$	Possible intruder state if $5/2^+$.				
2511 5	$(1/2^+)$	Possible intruder state.				
3170 6	$(7/2^{-})$					
4023 9	$(7/2^{-})$					

[†] From least-squares fit to $E\gamma's$.

[‡] From comparison with shell-model calculations and decay pattern.


$\gamma(^{19}N)$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
532 2	38 <i>3</i>	1676	$(5/2^{-})$	1143	$(3/2^{-})$
1141 <i>3</i>	100 5	1143	$(3/2^{-})$	0	$(1/2^{-})$
1368 4	24 <i>3</i>	2511	$(1/2^+)$	1143	$(3/2^{-})$
1494 6	16 <i>3</i>	3170	$(7/2^{-})$	1676	$(5/2^{-})$
1681 5	15 <i>3</i>	1676	$(5/2^{-})$	0	$(1/2^{-})$
2016 [†] 11	63	3170	$(7/2^{-})$	1143	$(3/2^{-})$
2132 9	8 <i>3</i>	2132	$(5/2^+, 3/2^-)$	0	$(1/2^{-})$
2347 9	11 4	4023	$(7/2^{-})$	1676	$(5/2^{-})$
2507 [†] 11	6 <i>3</i>	2511	$(1/2^+)$	0	$(1/2^{-})$

[†] Placement of transition in the level scheme is uncertain.

⁹Be(³⁶S,Xγ) 2008So09

