	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. C. Sheu, J. H. Kelley	ENSDF	06-Nov-2018

Parent: ²⁰C: E=0; J^{π}=0⁺; T_{1/2}=16.3 ms +40–35; Q(β ⁻n)=1.358×10⁴ 23; % β ⁻n decay=65 19

²⁰C-T_{1/2}: from weighted average of (1989Le16,1990Mu06,2003Yo02 and P.L. Reeder et al., Int. Conf. on Nucl. Data for Science and Technology, May 9-13, 1994, Gatlinburg, Tennessee).

²⁰C-Q(β ⁻n): from (2017Wa10).

- 1989Le16,1990Mu06: ²⁰C particles were filtered using magnetic analysis in the LISE spectrometer and identified with energy loss and ToF measurements. The fragments were implanted in a Si detector surrounded by a plastic scintillator for β -ray detection. The target was placed inside a 4π neutron detector that had a neutron energy threshold of 350 keV. The ²⁰C T_{1/2} reported in this work was 16 ms +14-7 and P_n=(50 30)% was determined; values of T_{1/2}=14 ms +6-5 and P_n=(72 14)%, which are apparently revised, were published in (1990Mu06). See also (1989MuZU).
- 2003Y002: ²⁰C ions were produced at the RIKEN/RIPS facility and implanted a plastic scintillator detector. An array of 13 liquid scintillator detectors surrounded the implantation target. Following implantation, β and β +n coincidence counting were carried out for 100 ms (to permit decay of daughter & grandaughter activity). Standard pulse shape analysis was used to identify high-energy neutrons, while for 50 keV ≤ E_{eq} ≤ 200 keV the time of flight information was used to separate neutrons and γ rays. Analysis of the 1n- and 2n- coincidence events yielded values of P_{1n}=(65 +19–18)% and P_{2n}<18.6%. T_{1/2}=21.8^{+15.0}_{-7.4} ms was also measured.
- In summary, $T_{1/2}=14 \text{ ms } +6-5 (1990\text{Mu06})$ appears most reliable. In (2003Y002), limited statistics on ^{20}C were obtained since it was a contaminant to their beams of interest. The measured P_{1n} and P_{2n} values are consistent with the P_n values deduced in (1989Le16,1990Mu06), hence $P_{1n}=(65 + 19 18)\%$ and $P_{2n}<18.6\%$ are accepted; this implies $\%\beta$ -0n \approx 35 20. No information on neutron-emission energies is given, but $P_{1n}=(65 + 19 18)\%$ implies that $^{19}\text{N}_{g.s.}$ will be fed (by some decay path) in a significant fraction of decays.

See also (1973To16).

¹⁹N Levels

E(level)

0.0

Delayed Neutrons (19N)

Comments

 $\frac{E(^{19}N)}{0.0} \quad \frac{I(n)^{\dagger}}{65 \ 19} \quad \frac{I(n)=65 + 19 - 18.}{I(n)=65 + 19 - 18.}$

[†] Absolute intensity per 100 decays.