¹⁸O(¹⁸O,¹⁹N) **1977De14**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. C. Sheu, J. H. Kelley	ENSDF	06-Nov-2018

1977De14: An E(¹⁸O)=91 MeV beam, produced by the Orsay MP tandem, impinged on a self-supported 100 μ g/cm² thick Ai₂O₃ (90% enriched) target. The emitted nuclei were analyzed by a double-focusing 180° magnetic spectrograph at θ =10° with $\Delta\Omega$ =1 msr and were detected using two resistive-wire counters and a set of four Si position-sensitive detectors. The fragments were identified based on Δ E-E information and their masses were deduced from the measured Q(β^{-})values. The mass excess of ¹⁹N Δ M=15.81 MeV 9 deduced in this experiment is located nearly halfway between the two conflicting predictions of the Garvey-Kelson formula and the modified shell-model mass equation. The cross section $\sigma(\text{lab})=0.8 \ \mu$ b/sr was also deduced.

- 1982Na08: A beam of ¹⁸O from the Orsay MP-Tandem impinged on a self-supported 72 μ g/cm² thick Al₂O₃ target (90% enriched). The emitted nuclei were analyzed by a 180° magnetic spectrometer at θ =4°-8° and $\Delta\Omega$ =4.8 msr. The fragments were detected using two resistive-wire proportional counters and an ionization chamber and were identified by Δ E-E method with 2% and 1.5% resolution for ¹⁹N and ²¹O respectively.
- The mass excess of ¹⁹N ΔM =15.856 MeV 50 and three levels of ¹⁹N*(0, 1.12, 1.59 MeV) were measured with proposed J^π=1/2⁻, 3/2⁻ and 5/2⁻ respectively according to the shell-model prediction and comparison to the ¹⁷N level scheme. The cross section of ¹⁹N_{g.s.} was also measured as $\sigma \approx 0.5 \mu$ b/sr.
- 1989Ca25: Excitation energies for low-lying ¹⁹N states (T=5/2) were derived from two reactions A: ¹⁸O(¹⁸O,¹⁷F)¹⁹N and B: ¹⁸O(¹⁸O,¹⁹N). Beams of ¹⁸O ions at E=117 MeV(α), 119 MeV(β) from the 14 μ s Pelletron accelerator at Australian National University bombarded a 195 μ g/cm² thick enriched SiO₂ target (70 μ g/cm² ¹⁸O content). The ejectiles were detected using an Enge split-pole spectrometer at $\theta_{mean}=10^{\circ}(\alpha)$ ($\Delta\Omega=3.4$ msr and acceptance angle of 4.5°) and $\theta_{mean}=4.5^{\circ}(\beta)$ ($\Delta\Omega=1.5$ msr and acceptance angle of 2.0°). In the coincidence measurements, recoil nuclei were detected using a silicon surface barrier detector mounted 150 mm from the target and at the $\theta_{lab}=-42.0^{\circ}$. The other ejectile was measured in the focal plane and was identified using Δ E-E-B_{ρ} techniques.
- The mass excess of ¹⁹N was deduced as ΔM =15.819 MeV 35 which is in agreement with the value measured in (1983Ho08). Excitation levels of ¹⁹N*(1.68 4,2.57 5,3.54 5,4.22 4 MeV) and ¹⁹N*(1.11 2,1.65 2,2.53 3,3.45 3,4.16 3 MeV) were measured by reaction A and B, respectively.

See also (1976DeZH,1980Na12,1981NaZQ).

¹⁹N Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments	
0	$1/2^{-}$	$\Delta M = 15.819 \text{ MeV } 35 (1989 \text{Ca25}).$	
1110 20	$3/2^{-}$		
1650 20	$5/2^{-}$		
2540 30			
3470 <i>30</i>	$7/2^{-}$		
4180 20	9/2-		

[†] From average of values in (1989Ca25).

[‡] From shell model calculations.