⁹Be(²⁰Mg,2p17ne) 2012Mu05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	1-Jan-2014

Proton unbound states in ¹⁹Mg and ¹⁸Na were measured by fragmenting a ²⁰Mg beam in a ⁹Be target and analyzing the p_1-p_2 , p_1-^{17} Ne and p_2-^{17} Ne particle correlations.

- A beam of ²⁰Mg ions (produced by fragmenting a 450 MeV/A ²⁴Mg beam) impinged on a 2 g/cm² ⁹Be target at the midplane of the GSI FRS. The target was surrounded by an array of four position sensitive detector telescopes that measured the breakup particle charged particle angular correlations (p₁-p₂, p₁-¹⁷Ne and p₂-¹⁷Ne). Two prominent peaks appear in the p-¹⁷Ne angular correlation distribution; first is a peak consistent with 2p decay of the ¹⁹Mg_{g.s.} directly to ¹⁷Ne+2p with E_{res}=0.75 MeV 5, second is a peak corresponding to ¹⁹Mg excited states decaying sequentially through proton unbound states in ¹⁸Na.
- The excited states in ¹⁹Mg appear as "arc bands" in the $\theta(p_1-^{17}Ne)$ vs. $\theta(p_2-^{17}Ne)$ angular correlation spectrum. Analysis of events along a fixed or constant radius provides details about the initial ¹⁹Mg state and the ¹⁸Na states populated in the sequential decay to ¹⁷Ne_{g.s.}+2p; Monte Carlo simulations are used to extract "best fit" values for energies and widths of ¹⁹Mg and ¹⁸Na states.

Arguments based on the extracted widths and the Wigner Limits are used to constrain J^{π} values. Also see (2007Mu15,2008Mu13,2009Mu17).

Theoretical analysis of the systematics for 2p emission in nuclear decay using the T- and Y- Jacobi coordinate systems is given in (2000Gr16,2001Gr16, 2001Gr29,2003Gr24,2010Gr06). See also (2003Gr01,2003Gr04).

¹⁹Mg Levels

E(level)	\mathbf{J}^{π}	Г	Comments
0	1/2-	1.14×10 ⁻⁴ eV	from $Q(p+{}^{17}Ne)=0.76$ MeV 6.
1.38×10^3 24	$(3/2^{-})$	0.4 MeV 2	Decays to 17 Ne+2p. from $O(p+{}^{17}$ Ne)=2.14 MeV 23
1.50/(10 2)	(3/2)	0.1 110 7 2	Decays to 18 Na*(0,320).
2.14×10 ³ 21	(5/2-)	0.6 MeV 6	Γ: 0.6 MeV +6-4. from $Q(p+^{17}Ne)=2.9$ MeV 2.
			Decays to 18 Na*(320,854).
2.84×10 ³ 21	$(3/2^{-})$	<0.2 MeV	from $Q(p+^{17}Ne)=3.6$ MeV 2.
			Decays to states in ¹⁸ Na.
4.74×10 ³ 21	(3/2 ⁻)	2.0 MeV 8	from $Q(p+^{17}Ne)=5.5$ MeV 2. Decays to $^{18}Na^{*}(320)$.