¹⁹**B** β⁻ decay **1998Yo06,2003Yo02**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	23-March-2017

Parent: ¹⁹B: E=0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=2.92$ ms 13; $Q(\beta^{-})=26.37\times10^{3}$ 41; $\%\beta^{-}$ decay=100.0

¹⁹B-T_{1/2}: from 2003Yo02.

¹⁹B-Q(β^{-}): from 2012Wa38.

- 1998Yo06: A beam of ¹⁹B was produced by fragmentation of a 95 MeV/A ⁴⁰Ar beam on a ¹⁸¹Ta target. ¹⁹B was selected using the RIKEN Projectile-fragment Separator (RIPS) and was implanted into a 12 mm thick plastic scintillator stopper. The β -decays were observed during the 100 ms beam-off period. The active stopper detected β -rays and a neutron detector array, consisting of 14 liquid scintillation counters covering about 80% of 4π detected delayed neutrons. The efficiency of the neutron array was 30% by comparison of a measurement of β -delayed neutrons of ¹⁵B, which has a known delayed neutron emission probability of 100%.
- A preliminary value of $T_{1/2}=3.3$ ms 2 was deduced from the least-squares fits to the data, and $P_n=125\%$ 32 was determined from the ratio of the number of detected neutrons to that of β -rays. P_n is more than 100% which implies the existence of significant multineutron emissions in the decay, reflecting its large Q_β value (26.5 MeV) compared with the multineutron separation energies of daughter nucleus ¹⁹C (S_{1n}=160 keV, S_{2n}=4.4 MeV,....).
- 2003Yo02: The authors reevaluated the preliminary values $T_{1/2}$ and P_n reported in 1998Yo06. The new experiment was performed using RIPS at RIKEN Accelerator Research Facility as was in 1998Yo06. A beam of ¹⁹B was produced by the projectile-fragmentation reaction of a 95 MeV/ u^{40} Ar beam on a 670 mg/cm² ^{nat}Ta target. The values of $T_{1/2}$ and P_{in} were determined by fitting a set of decay curves altogether to remove possible complication and inconsistency. The method of maximum likelihood was applied for deducing $T_{1/2}$ and P_{in} . The neutron detection efficiencies were treated carefully, the total detection efficiencies of direct and scattered neutrons are 31.5 % 3 and 4.7% +2-6, respectively. The new values of $T_{1/2}$ =2.92 ms 13, P_{1n} =71.8% +83-91 and P_{2n} =16.0% +56-48 were determined with a better precision. P_{3n} was not determined because of the limited statistics. In the text it is unclear if the 1998Yo06 "preliminary" data are included in the 2003Yo02 analysis; we assume that it is and use the 2003Yo02 result to avoid possible data correlations.

1999Re16: A low statistics determination of $T_{1/2}$ =4.5 ms 15 was given.

In Summary, the decay to ¹⁹C levels is not measured. Only the $P_{1n}=71.8\% +83-91$ to ¹⁸C and $P_{2n}=16.0\% +56-48$ to ¹⁷C were determined.

¹⁹ C	Levels
-----------------	--------

E(level)	Comments
581+x	E(level): group of neutron-decaying levels above $S(n)({}^{19}C)=581$ keV.
4763+y	E(level): group of 2 neutron-decaying levels above $S(2n)({}^{19}C)=4763$ keV.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(1.1 \times 10^{4 \ddagger 11})$	4763+y	16.0 56	5.02 16	av E β =1.052×10 ⁴ 21
				I β^- : total β^- 2n decay branch $\beta_{2n}^-=16.0\%$ +56-48.
$(1.3 \times 10^{4 \ddagger} 13)$	581+x	71.8 <i>91</i>	4.74 7	av $E\beta = 1.258 \times 10^4 \ 21$
				I β^- : total β^- n decay branch β_{1n}^- =71.8% +83-91.

[†] Absolute intensity per 100 decays.

[‡] Estimated for a range of levels.

 ${}^{19}_{6}C_{13}$