Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	23-March-2017				

 $O(\beta^{-})=1.656\times 10^{4}$ 10; S(n)=580 90; $S(p)=2.667\times 10^{4}$ 23; $O(\alpha)=-1.984\times 10^{4}$ 19 2017Wa10

The mass excess adopted by (2012Wa38) is 32.41 MeV 10. See also 1986Vi09, 1987Gi05, 1988Wo09, 1991Or01.

Halo nucleus:

The ¹⁹C nucleus has been suggested as a 1-neutron halo nucleus based on measurements of various reaction cross sections and momentum distributions of breakup products. See discussions in:

1989Sa10: $E(^{19}C)=45.12$ MeV/nucleon, Cu target, $\sigma_{reaction}=2.7$ b 15.

1995Ba28: E(¹⁹C)≈77.2 MeV/nucleon, Be target, FWHM(¹⁸C parallel momentum dist)_{lab}=44 MeV/c 6.

1996Ma25: $E(^{19}C)=30.3$ MeV/nucleon, Ta target, $\sigma_{1n}=2.5$ b 4, $\sigma_{charge changing}=0.595$ b 10, FWHM(n angular momentum dist)=42 MeV/c.

1998Ba28: E(¹⁹C) \approx 88 MeV/nucleon, Be and Ta targets, σ (Be)_{1n}=105 mb 17 and FWHM(¹⁸C parallel momentum dist)=42 MeV/c 4. σ (Ta)_{1n}=1.1 b 4 and FWHM(¹⁸C parallel momentum dist)=41 MeV/c 3.

1998Ba87: E(¹⁹C)≈910 MeV/nucleon, carbon target, FWHM(¹⁸C parallel momentum dist)=69 MeV/c 3. See (1999Sm01) who suggest the momentum distributions at different energies are affected by the low-lying excited state.

2001Co06: E(¹⁹C) \approx 910 MeV/nucleon, C and Pb targets, σ (C)_{1n}=233 mb 51 and σ (Pb)_{1n}=1967 mb 334. Evaluated relationship between S_{1n} and the S_{1n} separation energy. See also (2000Co31).

2001Oz03: E(¹⁹C)=960 MeV/nucleon, carbon target, $\sigma_{interaction}$ =1231 mb 28, analyzed relation of σ_i to effective matter radius.

2009Na39: E(¹⁹C)=240 MeV/nucleon, carbon and lead targets, $\sigma(C)_{1n}$ =132 mb 4 and $\sigma(Pb)_{1n}$ =969 mb 34. Deduced

 σ_{1n} (Coulomb)=690 mb 70.

2016To10: E=307 MeV/nucleon, carbon target, $\sigma_{\text{interaction}}=1.125\pm0.025(\text{stat})\pm0.013(\text{sys})$ b; find $R_{\text{rms}}^{\text{matter}}=3.10^{+0.05}_{-0.03}$ fm.

2001Ma08, 2001Ma21: E(¹⁹C) \approx 50 MeV/nucleon, ⁹Be target surrounded by 11 NaI detectors, σ_{1n} =264 mb 80 on ⁹Be, σ_{1n} =1.35 b 18 on Au. Deduced (56 9)% of 1n-removal events populate ${}^{18}C_{g.s.}$ and measured a narrow ${}^{18}C_{g.s.}$ parallel momentum distribution by gateing on events not in coincidence with γ rays. By considering the relationship between the parallel momentum distribution width and S_n they deduce S_n \approx 650 keV 150. Their analysis is found consistent only if $J^{\pi}(^{19}C)=1/2^+$.

2010Ta04: E(¹⁹C)=40 MeV/nucleon, ¹H liquid hydrogen target, σ_R =754 mb 22, using the transmission method.

Analyses of the ¹⁹C nuclear halo properties are given in: (1995Gu07, 1998Ri02, 1999Sm01, 2000Ka36, 2002Ka34, 2005Na09, 2013Lu02); discussion on mainly heavy carbon nuclide halos is given in (2000Be58, 2009Ch45, 2011Fo18); and broader discussion on halo nuclei including ¹⁹C (1992La13, 1996Sh13, 1999La04, 2000Gu04, 2000Cz03, 2001Le21, 2001Lo20, 2003Li24, 2003Li31, 2004Ne16, 2010Gu15, 2011Al11, 2013Sh05, 2013Sh17, 2015Ha20, 2016Ya05). See also (1997Or03).

Theoretical analysis:

General theoretical analysis of the ¹⁹C structure properties is given in (2000Ba24, 2008Ka39, 2014La02); analysis of the carbon isotopes is given in (1996Re19, 1997Ka25, 1998Sh16, 2000De35, 2003Sa50, 2003Su09, 2003Th06, 2004Su23, 2004Ta31, 2006Le33, 2006Ta28, 2007Ma53, 2007Sa50, 2009Um05); and broader analyses of light nuclear properties including ¹⁹C are given in (1987Sa15, 1993Po11, 1996Su24, 1997Ba54, 1997Ho04, 2002Gu10, 2002Ka73, 2002Me12, 2003Le34, 2004La24, 2004Sa58, 2004Th11, 2005Sa63, 2006Ko02, 2007Do20, 2010Co05, 2012Yu07, 2013Sh05, 2014Ja14, 2015Sh21).

¹⁹C Levels

Cross Reference (XREF) Flags

Δ	${}^{1}H({}^{19}CP'_{22})$	G	${}^{9}\text{Be}({}^{40}\text{Ar}{}^{19}\text{C})$	м	181 Ta(48 Ca 19 C)
B	$^{1}H(^{19}C.18\epsilon N)$	н	${}^{9}\text{Be}({}^{48}\text{Ca},{}^{19}\text{C})$	N	181 Ta(40 Ar, 19 C)
c	${}^{1}\mathrm{H}({}^{19}\mathrm{C,X})$	I	$^{12}C(^{19}C,X)$	0	208 Pb(19 C, 19 C)
D	$^{1}\mathrm{H}(^{20}\mathrm{C},^{19}\mathrm{C}\gamma)$	J	$^{12}C(^{22}Ne,^{19}C)$	Р	$Th(P, ^{19}C)$
E	${}^{9}\text{Be}({}^{20}\text{N}, {}^{19}\text{C}\gamma)$	K	$^{12}C(^{25}Ne,^{19}C\gamma)$	Q	U(P, ¹⁹ C)
F	⁹ Be(²² N, ¹⁹ C)	L	$^{19}\mathrm{B}\ \beta^{-}$ decay	R	²⁴¹ Pu(n,F) E=thermal

Adopted Levels, Gammas (continued)

¹⁹C Levels (continued)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	(1/2 ⁺)	46.3 ms 40	ABCDEFGHIJK	 MNOPQR %β⁻=100; %β⁻n=47 3; %β⁻2n=7 3 T_{1/2}: from the weighted average of 49 ms 4 (1988Du09: see also preliminary value 30 ms 10 in 1988DuZT), 45.5 ms 40 (1995Oz02) and 44.1 ms 42 (Reeder et al., Int. Conf. on Nucl. Data for Science and Technology, May 9-13, 1994, Gatlinburg, Tennessee: see also 44 ms 4 in the unpublished private communications of (2008ReZZ)/(1995ReZZ) and 45.5 ms 40 (1994RaZW)). Also see 46.2 ms 40 in (2015Bi05). J^π: from analysis of breakup fragment momentum distributions in 2001Ma08. Decay: Studies of the β-delayed neutron emission have been carried out in (1991Re02: β⁻n=β_{1n}+2(β_{2n})+3(β_{3n})=(53 26)%), (1995ReZZ/2008ReZZ: β⁻n=(66 9)%), and (1988Du09: β_{1n}=(47 3)% and β_{2n}=(7 3)%. Analysis of β-γ coincidences indicate the β_{1n} decay populates ¹⁹N*(6400,6508,7025), which subsequently neutron decay to ¹⁸B*(115,587) see (1995Oz02). There is evidence for additional branches that β-2n decay to ¹⁷B with β-2n=(7 3)% (1988Du09)
209 2	(3/2+)	1.34 ns <i>10</i>	A DE K	E(level): from (2015Wh02). See also 2005El07: 197 keV 6, 2015Va09: 198 keV 10, and 2008St18: 201 keV 15. $T_{1/2}$: Analysis of the spectra using lineshape and recoil-distance techniques indicate T_{mean} =198 ns 10 and 190 ns 10 values, respectively (2015Wh02). Additional systematic uncertainties give final uncertainties of T_{mean} =198 ns 12 and 190 ns 13 for the two methods, respectively. The authors give a recommended value T_{mean} =194 ns 15. J^{π} : from 2015Wh02, based on the B(M1) value; E2 components are excluded and neglected
282? 5			A	E(level): from $E_{\gamma}=72$ keV 4 to $E_x=209$ keV 2. The J^{π} of this state had initially been suggested as $5/2^+$ based on expectations from shell model analysis. In this case $\beta_2=0.29$ 3; deduced from integrated experimental cross section for this state from 0°-1.7° and distorted wave analysis (2005El07). However, subsequent observations and discussion in (2011Oz01, 2012Ko38, 2013Th06) support the notion that the first $J^{\pi}=5/2^+$ state must be unbound.
653 <i>95</i>	(5/2+)	<100 keV	F	% $n \approx 100$ E(level): deduced from E(¹⁸ C+n)=76 keV <i>14</i> and S(n)=577 keV <i>94</i>
1.46×10 ³ 10	5/2+	0.29 MeV 2	В	%n≈100 E(level): deduced from E(¹⁸ C+n)=880 keV 10 and S(n)=577 keV 94.
				$\gamma(^{19}\text{C})$
E _i (level)	J_i^{π} E	$\gamma I_{\gamma} E_{f}$	J_f^{π} Mult.	Comments
209 (3)	/2+) 209	0 2 100 0	$(1/2^+)$ M1	$B(M1)\downarrow=0.00321\ 25\ (2015Wh02);\ B(M1)(W.u.)=0.00179\ 14\ (2015Wh02)$
282?	72	2 4 100 209	$(3/2^+)$	

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁹₆C₁₃