⁹Be(²²N,¹⁹C) 2013Th06

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	23-March-2017		

1995Oz02: ⁹Be(²²N,¹⁹C) was used to produce ¹⁹C. The beam was implanted in a plastic scintillator and β -delayed neutrons were measured corresponding to three neutron decay transitions. Analysis of the decay rate gives the lifetime T_{1/2}=45.5 ms 40. In total, eight neutron groups were observed in the neutron energy spectrum, three from ¹⁹C and five from ¹⁹N delayed neutrons and other beam contaminants. The total P_{1n}=(47 3)%. Shell model calculations used by the authors predict $J^{\pi}=1/2^+$, but $3/2^+$ and $5/2^+$ states were predicted nearby and could not be ruled out.

2013Th06: Neutron decay spectroscopy was used to analyze the ¹⁸C+n pairs produced when a ²²N beam was fragmented on a target.

A beam of 68 MeV/nucleon ²²N ions, produced by fragmenting a ⁴⁸Ca beam on a thick ⁹Be target at the NSCL, impinged on a 481 mg/cm² ⁹Be reaction target. The resulting ¹⁸C+n products were momentum analyzed using both a large-gap superconducting dipole magnet and the MoNA array.

A single resonance is observed with E_{rel} =76 keV 14 and $\Gamma \le 100$ keV; this corresponds to E_x =653 keV 95. The width was dominated by the ≈ 100 keV experimental resolution.

Significant discussion on the spin-parity of the state is given. Results from prior measurements are given as support for assuming $J^{\pi}=5/2^+$ (2011Oz01,2012Ko38), and for removing the previously suggested $J^{\pi}=5/2^+$ assignment from the E_x=270 keV resonance reported in (2005E107). Particular comments are given to explain the present lack of sensitivity to the E_x=1.46 MeV, $J^{\pi}=5/2$ state observed in 2008Sa03.

¹⁹C Levels

E(level)	J^{π}	Г	Comments
0	$(1/2^+, 3/2^+)$	45.5 ms 40	J^{π} : from shell model predictions (1995Oz02).
653 95	$(5/2^+)$	<100 keV	E(level): deduced from E(18 C+n)=76 keV 14 and S(n)=577 keV 94 (from
			http://amdc.in2p3.fr/masstables/Ame2003/rct2.mas03). Rounded value of S(n) is 580
			keV 90 in published 2012Wa38.

 ${}^{19}_{6}C_{13}$