1 **H**(20 **C**, 19 **C** γ) **2015Va09**

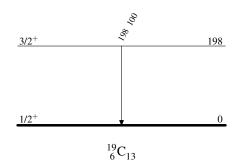
History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	23-March-2017		

2015Va09: The authors studied the low-lying structure of ¹⁹C using the ¹H(²⁰C, ¹⁹C) reaction to populate levels that de-excited via γ -ray transitions. A single transition was observed and compared with theoretical estimates suggesting decay from a $J^{\pi}=3/2^+$ state to the $1/2^+$ ground state.

- A cocktail beam that included a ²⁰C component was produced by fragmenting a $E(^{40}Ar)=63$ MeV/nucleon beam in a 0.2 mm thick ¹⁸¹Ta target. The beam was purified in the RIKEN/RIPS fragment separator and transported to a 190 mg/cm² liquid hydrogen target. The beam, which was identified via time-of-flight (ToF) using a thin plastic scintillator that was near the target, had an energy of around 50 MeV/nucleon at the center of the target. The heavy ejectiles within $\theta_{lab} < 6.5^{\circ}$ were identified using ΔE vs. E and ΔE vs ToF analysis. De-excitation γ -rays in coincidence with ¹⁹C ejectiles were detected using the 160 DALI2 NaI scintillators arranged in a ball-like configuration that covered angles between $\theta_{lab}=15^{\circ}-160^{\circ}$. A GEANT4 simulation indicated 54% efficiency at 200 keV.
- The Doppler corrected spectrum indicated a transition corresponding to $E_{\gamma}=198$ keV *10*, which agrees with prior observations. The cross section $\sigma=4.54$ mb 76 was deduced. This cross section is in line with expectations from direct feeding of a $J^{\pi}=3/2^+$ state in the one-neutron removal reaction, but it is not in agreement with expectations if the reaction would feed a bound $J^{\pi}=5/2^+$ state that cascades through the $3/2^+$ state (yielding an order of magnitude higher predicted cross section).

Further discussion focuses on the high degree of certainty for excluding a higher-lying bound $J^{\pi}=5/2^+$ state in ¹⁹C.

¹⁹ C Leve	ls
----------------------	----


E(level)	\mathbf{J}^{π}	Comments		
0 198 <i>10</i>	$\frac{1/2^+}{3/2^+}$	J^{π} : from 2001Ma08.		
		$\underline{\gamma(^{19}C)}$		
$\frac{E_i(level)}{198}$	$\frac{\mathbf{J}_i^{\pi}}{3/2^+}$	$\frac{E_{\gamma}}{198 \ I0} \frac{I_{\gamma}}{100} \frac{E_f}{0} \frac{J_f^{\pi}}{1/2^+}$		

 ${}^{19}_{6}C_{13}$ -1

1 **H**(20 **C**, 19 **C** γ) **2015Va09**

Level Scheme

Intensities: % photon branching from each level

