|                 | History                  |          |                        |  |  |  |  |
|-----------------|--------------------------|----------|------------------------|--|--|--|--|
| Туре            | Author                   | Citation | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | J. H. Kelley, G. C. Sheu | ENSDF    | 23-March-2017          |  |  |  |  |

Beam=<sup>19</sup>C, target=liquid H<sub>2</sub>.

2005E107: A beam of 49.4 MeV/nucleon <sup>19</sup>C ions, produced in fragmentation of a 110 MeV/nucleon <sup>22</sup>Ne beam on a <sup>9</sup>Be target at the RIKEN/RIPS facility, was momentum and mass analyzed before impinging in a 3 cm diameter cryogenic hydrogen target that had an areal density of 190 mg/cm<sup>2</sup>.

The scattered <sup>19</sup>C particles were detected in a  $\Delta E$ - $\Delta E$ - $\Delta E$ -E telescope that covered  $\theta$ <1.7°, while  $\gamma$ -rays were detected using the DALI2 array of 158 NaI(Tl) scintillators. E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , particle- $\gamma$  coin were measured.

2005Ka26: The authors searched for evidence of an isomeric state with  $E_x < 300 \text{ keV}$  and  $T_{1/2} < 500 \text{ ns}$ , as predicted by shell model calculations.

A coctail beam, including <sup>19</sup>C and <sup>17</sup>B, was produced by fragmenting a <sup>22</sup>Ne beam on a <sup>9</sup>Be target at RIKEN. Beam particles were identified from analysis of  $\Delta E$ , time-of-flight and beam rigidity. The beam impinged on a liquid hydrogen target that was surrounded by NaI  $\gamma$ -ray detectors; results for prompt transitions are reported in (2005El07). After the target, the beam was stopped in a  $\Delta E$ - $\Delta E$ - $\Delta E$ - $\Delta E$ -telescope that was surrounded by thin plastic scintillators (for identification of  $\beta$  decay events) and an array of segmented HPGe clover detectors that were intended to observed delayed de-excitations from isomeric states populated in the reaction. Several transitions related to  $\beta$ -decay of daughters and granddaughters were identified. No definitive evidence in support of an isomeric state was found.

The authors commented on the level of confidence for non-observation over various transition energy ranges, and over various  $\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i}$ 

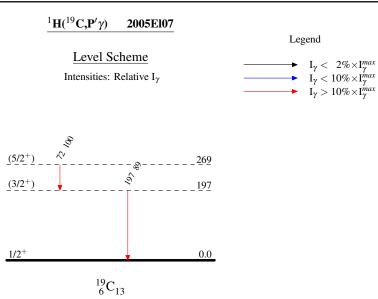
lifetime ranges. Finally, various combinations of  $J^{\pi}$  values were considered for the ground state and a supposed isomeric state. See also analysis in (2008Ka39).

## <sup>19</sup>C Levels

| E(level) <sup>‡</sup> | $J^{\pi \dagger}$ | Comments                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $1/2^{+}$         | Configuration= $d_{5/2}^4 \otimes_{1/2} (2001 Ma 08)$ .                                                                                                                                                                                                                           |
| 197? 6                | $(3/2^+)$         | Configuration of state suggested as mixture of $d_{5/2}^5$ , $d_{5/2}^5 \otimes s_{1/2}^2$ and $d_{5/2}^4 \otimes s_{1/2}$ configurations (2001Ma08).<br>$\beta_2 = 0.29 \ 3$ ; deduced from integrated experimental cross section for this state from 0°-1.7° and distorted wave |
| 269? 8                | $(5/2^+)$         |                                                                                                                                                                                                                                                                                   |
|                       |                   | analysis (2005El07).                                                                                                                                                                                                                                                              |
|                       |                   | Cross section: $4.2 \text{ mb } 5 \text{ in } (p,p')$ .                                                                                                                                                                                                                           |

<sup>†</sup> Tentative assignments to excited states based upon systematics of transition strengths combined with considerations of g.s. configuration and half-lives of the excited states.

<sup>‡</sup> From 2005El07.


## $\gamma(^{19}C)$

Neither of the observed transitions in <sup>19</sup>C from 2005El07 corresponds to a  $5/2 \rightarrow 1/2 \gamma$  ray as it would imply a long lifetime for each level and would make the observation of the transitions impossible with the setup described above.

| $E_{\gamma}^{\dagger\ddagger}$ | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ | $\mathbf{J}_{f}^{\pi}$ | Comments                                                                                                        |
|--------------------------------|-------------------------|------------------------|----------------------|-------|------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                | 100 13                  | =                      | (-1)                 | 197?  | (-)                    |                                                                                                                 |
| 197 6                          | 89 12                   | 197?                   | $(3/2^+)$            | 0.0   | $1/2^{+}$              | $E_{\gamma}$ : Assignment to (1/2 <sup>+</sup> ) state based upon retarded feature of the 3/2 $\rightarrow$ 1/2 |
|                                |                         |                        |                      |       |                        | transition and the prompt nature of the observed $\gamma$ rays. (2005El07).                                     |

<sup>†</sup> Quoted uncertainties are from statistical error and Doppler correction.

<sup>‡</sup> From 2005El07.

