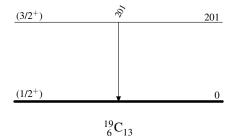
¹²C(²⁵Ne,¹⁹Cγ) 2004St10,2008St18

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	23-March-2017					

2004St10,2004St29,2008St18: The authors populated ¹⁹C using a cocktail beam of neutron-rich nuclides [25 Ne, 26 Ne, 27 Na, 28 Na, 29 Mg, and 30 Mg] that were produced by fragmenting an initial 77.5 MeV/nucleon 36 S beam at the GANIL/SISSI beamline. The cocktail beam was selected using the α spectrometer and focused on a carbon target that was coupled to a plastic scintillator.

 $E\gamma$, $\gamma\gamma$, γ (fragment) coincidences were measured using 74 BaF₂ detectors that surrounded the target with 4π and the SPEG spectrometer. The ¹⁹C were identified using time-of-flight, energy loss and focal-plane position information. A single γ -ray transition is observed. Results are compared with shell-model calculations for analysis of J^{π} values. All data are from 2008St18.

¹⁹C Levels


E(level)	\mathbf{J}^{π}	Comments
0	$(1/2^+)$	J^{π} : from Adopted Levels of ¹⁹ C in ENSDF database.
201 <i>15</i>	$(3/2^+)$	J^{π} : $3/2^+$ or $5/2^+$ from shell-model predictions; the latter would require 201 γ to be E2 and corresponding half-life $\approx 1 \ \mu$ s for 201 level.

$\gamma(^{19}C)$

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$
201 15	201	$(3/2^+)$	0	$(1/2^+)$

¹²C(²⁵Ne,¹⁹Cγ) 2004St10,2008St18

Level Scheme

