History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017					

Parent: ¹⁸⁹Pb: E=0; J^{π}=(3/2⁻); T_{1/2}=39 s 8; Q(ε)=6772 16; % ε +% β ⁺ decay≈100.0

¹⁸⁹Pb-J^{π},T_{1/2}: From ¹⁸⁹Pb Adopted Levels.

¹⁸⁹Pb-Q(ε): from 2017Wa10.

¹⁸⁹Pb-% ε +% β ⁺ decay: % α ≤0.40 (from ¹⁸⁹Pb Adopted Levels).

Tentative level scheme according to 2009Sa09.

¹⁸⁹Pb source was formed in U(p,X) reaction (UC_x target) with a beam energy of 1.4 GeV. ¹⁸⁹Pb was also excited using a laser beam at resonant frequencies from RILIS at the ISOLDE facility at CERN.

Two experiments were performed:

1. Measured $\beta\gamma$ coin using $4\pi\beta$ plastic scintillator and three Ge detectors (one planar HPGe and two Ge detectors). The γ rays in ¹⁸⁹Pb were also identified in hyperfine laser spectroscopy from low-lying levels.

2. Measured E γ , I γ , $\gamma\gamma$ coin using two HPGe detectors with Be window. Hyperfine laser spectroscopy was also carried out. Comparison with rotor plus particle model calculations.

¹⁸⁹Tl Levels

Expected configurations are from 2009Sa09 based on axial-rotor coupled to one quasiparticle (Hartree-Fock+BCS) calculations for oblate and prolate deformations.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	$(1/2^+)$	Expected configuration $\pi 1/2[400]$ (prolate).
318.8? 2	$(3/2^+)$	Expected configuration $\pi 1/2[400]$ (prolate).
462.8? 5	$(3/2^+)$	Expected configuration= $\pi 3/2[402]$ (prolate).
667.4? 2	$(3/2^{-})$	Expected configuration= $\pi 3/2[532]$ (prolate).
884.9? 5		
1032.5? 5		
1368.9? 5		
1489.8? 11		
1716.7? 5		

 † From least-squares fit to Ey data.

[‡] From Adopted Levels.

 $\gamma(^{189}\text{Tl})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
217.5 [@] 4	1.7 3	884.9?		667.4?	$(3/2^{-})$	
318.8 [@] 2	29 [#] 10	318.8?	$(3/2^+)$	0.0	$(1/2^+)$	
365.1 [@] 4	2.3 3	1032.5?		667.4?	$(3/2^{-})$	
422.1 [@] 2	5.0 8	884.9?		462.8?	$(3/2^+)$	
463.7 [@] 2	13 [#] 3	462.8?	$(3/2^+)$	0.0	$(1/2^+)$	
667.4 [@] 2	9.6 15	667.4?	$(3/2^{-})$	0.0	$(1/2^+)$	
1050.1 [@] 4	2.8 4	1368.9?		318.8?	$(3/2^+)$	
1171 [@] 1	≈2.6	1489.8?		318.8?	$(3/2^+)$	E_{γ}, I_{γ} : from $\gamma\gamma$ coin data.
1397.9 [@] 4	1.0 2	1716.7?		318.8?	$(3/2^+)$	

1

$^{189} \rm{Pb} \ \varepsilon \ decay \ (39 \ s)$ 2009Sa09 (continued)

$\gamma(^{189}\text{Tl})$ (continued)

- [†] General uncertainty is quoted by 2009Sa09 as 0.2 keV for $I\gamma>3$ and 0.4 keV for weaker lines. Uncertainty of 1 keV is assigned by the evaluators when $E\gamma$ quoted to nearest keV.
- [‡] General uncertainty is quoted by 2009Sa09 as 15%.
 [#] From hyperfine spectrum in laser spectroscopy. Doublet, one component from the decay of the high-spin isomer and the other from the decay of the low-spin isomer of ¹⁸⁹Pb.
- [@] Placement of transition in the level scheme is uncertain.

 $^{189}_{81}{\rm Tl}_{108}$