Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017		

 $Q(\beta^{-})=3790 SY; S(n)=6290 SY; S(p)=8240 SY; Q(\alpha)=-370 SY$ 2017Wa10

Estimated uncertainties (2017Wa10): 200 for $Q(\beta^{-})$ and S(n), 360 for S(p) and $Q(\alpha)$.

S(2n)=11080 200, S(2p)=18830 450 (syst,2017Wa10).

1999Be63: ¹⁸⁹Ta produced and identified in projectile fission of ¹⁹⁷Au impinging on ⁹Be target at 950 MeV/nucleon using FRS fragment separator at GSI facility. Determined production cross section to be 10 nb.

2000PoZY: produced by projectile fragmentation of ²⁰⁸Pb impinging on a 1.6 g/cm² ⁹Be target at 1 GeV/nucleon, fragment separator FRS.

Additional information 1.

¹⁸⁹Ta Levels

Cross Reference (XREF) Flags

A 189 Ta IT decay (0.58 μ s)

E(level)	T _{1/2}	XREF	Comments
0			 %β⁻=100 While no decay mode has been experimentally observed, evaluators assign %β⁻=100 by inference, as β⁻ is the only decay mode energetically possible. E(level): the observed fragments are assumed to be in the ground state of ¹⁸⁹Ta nuclei. J^π: 7/2⁺ from systematic trend (2017Au03) and theoretical considerations (1997Mo25). T_{1/2}: no experimental value has been reported. A lower limit of 300 ns is implied from time of flight through the FRS separator (1999Be63). Assuming a systematic decreasing trend of half-lives in neutron-rich nuclei, as the neutron number increases, an upper limit of 5 min is suggested from the known half-lives of 49.4 min, 10.5 min and 2.3 min for ¹⁸⁵Ta, ¹⁸⁶Ta and fully-stripped ¹⁸⁷Ta ion, respectively. 2017Au03 in NUBASE list 3 s from a certain systematic trend. Theoretical β⁻ decay half-lives: 97 s (2003Mo09) and 62.7 s (2016Ma12).
0+x	0.58 µs 22	Α	 %IT=100 Only the IT decay mode has been reported. The β⁻ decay mode is less likely in view of the short half-life. E(level): x=1600 400 suggested in 2017Au03 from systematics. According to 2011St21, there may be another μs isomer, possibly with T_{1/2}=1.6 μs 2 reported by 2009Al30. T_{1/2}: from γ(t) (2011St21). Other: 1.6 μs 2 (2009Al30,γ(t)). It is suggested by 2011St21 that there may be two isomeric levels here. 153.9-, 283.7-, 342.5-, 388.7-, and 481.6-keV gamma rays deexcite this isomer (2011St21), but the decay scheme is unknown. 2009Al30 report several additional weak γ rays of 57, 83, 134,

199 and 246 keV associated with the decay of the isomer.