Adopted Levels, Gammas

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

 $Q(\beta^{-})=1008 \ 8; \ S(n)=7034 \ 8; \ S(p)=6600 \ 9; \ Q(\alpha)=990 \ 16$ 2017Wa10

S(2n)=12905 8, S(2p)=15660 60 (2017Wa10).

Other: $Q(\beta^-)=924 \ 10$ for measured mass excess(¹⁸⁹Re)=-38063 \ 10 \ (2013Sh30) and mass excess(¹⁸⁹Os)=-38986.7 \ 7 \ (2017Wa10). ¹⁸⁹Re activity was produced and identified by 1963Cr06 in ¹⁸⁶W(α ,p) and in Os(n,p), E=14 MeV; and by 1963Fl07 in

¹⁹²Os(d,n α), E=28 MeV. Measured β and γ activities and half-life of ¹⁸⁹Re activity. Later studies of ¹⁸⁹Re decay: 1965Bl06, 1973Ho27 and 1979Sa18.

An activity with $T_{1/2}=4.3 \text{ d} 5$ was assigned to ¹⁸⁹Re (1969MuZP) in double-neutron capture in ¹⁸⁷Re, and followed with β and γ measurements. But no other reports are published about this activity.

An activity of 140 d 20 (1965B106, also ≈120 d in 1962B112) assigned to ¹⁸⁹Re was reassigned to 169-d activity of ¹⁸⁴Re isomer by 1973Ho27.

Other reports of long half-lives of ≈150 d or >5 y (1951Li19) and ≈300 d (1951Tu09) have never been confirmed (2012Ro36 compilation).

Additional information 1.

¹⁸⁹Re Levels

Band assignments are from 1977Hi06 and 2016Re02.

Cross Reference (XREF) Flags

A 189	W /	β-	decay	(11	.6	min)	
-------	-----	----	-------	-----	----	------	--

В

 187 Re(136 Xe,X γ) 190 Os(t, α),(pol t, α) С

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0‡	5/2+	24.3 h 4	A C	%β ⁻ =100 T _{1/2} : from 1965Bl06. Others: 23.4 h <i>10</i> (1963Cr06), 24 h (1963Fl07, 1966BaZY).
125 [#] 3	$(9/2^{-})$		BC	
146 [‡] 3	$(7/2^+)$		С	
260.40 ^{&} 20 279 <i>3</i>	3/2+		A C C	E(level): may be doublet with $1/2^+$ member of $1/2[411]$ rotational band.
303 [#] 3 471.0 <i>3</i>	(11/2 ⁻)		BC A	
482.4 ^{&} 4	(5/2&7/2)+		С	E(level): doublet containing $5/2^+$ and $7/2^+$ members of the $1/2[411]$ rotational band. In the previous evaluation, based on energy summation, a 222 γ line was shown depopulating this level. The β^- measurement by 2009Yu11 could not confirm this γ transition with more reliable coincidence measurements. In 190 Os(t, α) it is stated that this is level is an unresolved doublet, so this may be a combination of the 471- and 490-keV levels established in β^- decay.
490.1 <i>3</i>			Α	
501 3	$(3/2^{+})$		С	
524.0# 2	$(13/2^{-})$		В	
599 5 640 3	$(3/2^{+})$ $(5/2^{+} 3/2^{-} 7/2^{-})$		C	
669.6 [@] 2	(13/2 ⁻)		В	

Adopted Levels, Gammas (continued)

E(level)	J^{π} †	T _{1/2}	XREF	Comments
670.3	$(3/2^+)$		С	
697 ^a 3	$(7/2^+)$		С	
737.8 [#] 2	$(15/2^{-})$		В	
852 3	$(5/2^+)$		c	
877 <i>3</i>	$(9/2^+, 11/2^-, 7/2^-)$		С	
935.6 [@] 3	(15/2 ⁻)		В	
1017.7 [#] 3	$(17/2^{-})$		В	
1097 <i>3</i>			С	
1149.8 [@] 3	$(17/2^{-})$		В	
1223 <i>3</i>	5/2+		С	
1247.0 [#] 3	$(19/2^{-})$		В	
1308 <i>3</i>	$(5/2^+)$		С	
1396 <i>3</i>	$(3/2^+, 5/2^-, 1/2^-)$		С	
1423 3	11/2-		С	configuration: $\pi 7/2[523]$.
1440.4 [@] 3	$(19/2^{-})$		В	
1502 10	$(11/2^{-})$		С	
1590.3 [#] 4	$(21/2^{-})$		В	
1632 10			С	
1678.9 [@] 3	$(21/2^{-})$		В	
1692.9 5	$(25/2^{-})$	51 ns 17	В	%IT=100
				$T_{1/2}$: from $\gamma \gamma(t)$ (2016Re02).
1770.9 6	$(29/2^+)$	223 µs 14	В	%IT=100
1015 10			_	$T_{1/2}$: from γ (t) (2016Re02).
1916 10			C	
1959 10			C	

¹⁸⁹Re Levels (continued)

[†] From ¹⁹⁰Os(pol t, α) experimental analyzing power and angular distributions fit with DWBA for low-spin (J \leq 9/2) states. For high-spin (J>9/2) states, the assignments are based on multipolarities of γ transitions from $\gamma\gamma(\theta)$ and conversion coefficients deduced from intensity balance arguments, and band structures (2016Re02).

[‡] Band(A): *π*5/2[402].

[#] Band(B): *π*9/2[514].

^{*a*} Band(C): $\pi 9/2[514] \otimes 2^+$ of γ band.

& Band(D): $\pi 1/2[411]$.

^{*a*} Band(E): $\pi 7/2[404]$.

$\gamma(^{189}\text{Re}$)
--------------------------	---

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}
260.40	3/2+	260.4 2	100	0	5/2+	[M1+E2]		0.24 11
303	$(11/2^{-})$	177.5		125	$(9/2^{-})$	(M1+E2)	0.22 8	0.988 24
471.0		210.6 2	100	260.40	$3/2^{+}$			
490.1		229.7 2	100	260.40	$3/2^{+}$			
524.0	$(13/2^{-})$	221.6		303	$(11/2^{-})$	(M1+E2)	0.35 8	0.511 17
		399.1		125	$(9/2^{-})$			
669.6	$(13/2^{-})$	146		524.0	$(13/2^{-})$			
		367.0		303	$(11/2^{-})$			
		544.6		125	$(9/2^{-})$			
737.8	$(15/2^{-})$	213.8		524.0	$(13/2^{-})$	(M1+E2)	0.20 10	0.589 18
		435.1		303	$(11/2^{-})$			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{189}\text{Re})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	E_f	J_f^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
935.6	$(15/2^{-})$	198	737.8	$(15/2^{-})$				
		265.9	669.6	$(13/2^{-})$				
		411.6	524.0	$(13/2^{-})$				
		633	303	$(11/2^{-})$				
1017.7	$(17/2^{-})$	279.8	737.8	$(15/2^{-})$	(M1+E2)	0.3 2	0.273 22	
		493.7	524.0	$(13/2^{-})$				
1149.8	$(17/2^{-})$	132	1017.7	$(17/2^{-})$				
		214.2	935.6	$(15/2^{-})$				
		412.0	737.8	$(15/2^{-})$				
		480.2	669.6	$(13/2^{-})$				
		626	524.0	$(13/2^{-})$				
1247.0	$(19/2^{-})$	229.3	1017.7	$(17/2^{-})$	(M1+E2)	0.2 + 2 - 1	0.49 3	
		509.3	737.8	$(15/2^{-})$				
1440.4	$(19/2^{-})$	194	1247.0	$(19/2^{-})$				
		290.7	1149.8	$(17/2^{-})$				
		422.7	1017.7	$(17/2^{-})$				
		504.7	935.6	$(15/2^{-})$				
		703	737.8	$(15/2^{-})$				
1590.3	$(21/2^{-})$	343.3	1247.0	$(19/2^{-})$				
		572.6	1017.7	$(17/2^{-})$				
1678.9	$(21/2^{-})$	89	1590.3	$(21/2^{-})$				
		238.5	1440.4	$(19/2^{-})$				
		431.9	1247.0	$(19/2^{-})$				
		529.1	1149.8	$(17/2^{-})$				
		661.2	1017.7	$(17/2^{-})$				
1692.9	$(25/2^{-})$	(14.0)	1678.9	$(21/2^{-})$				E_{γ} : from level-energy difference.
		102.6	1590.3	$(21/2^{-})$				
1770.9	$(29/2^+)$	78.0	1692.9	$(25/2^{-})$	(M2)		118.4	B(M2)(W.u.)=0.0123 12
								Mult.: from conversion coefficient deduced from K-x ray intensity and photon intensity.

[†] From ¹⁸⁷Re(¹³⁶Xe,X γ) and ¹⁹²Os(¹³⁶Xe,X γ) $\gamma\gamma(\theta)$ data.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Adopted Levels, Gammas

¹⁸⁹₇₅Re₁₁₄