187 **Re**(136 **Xe**,**X** γ) **2016Re02**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017				

Includes ${}^{186}W({}^{136}Xe,X\gamma)$ and ${}^{192}Os({}^{136}Xe,X\gamma)$.

2016Re02: ¹³⁶Xe beam at E \approx 6 MeV/nucleon from ATLAS-ANL facility. Measured E γ , I γ , triple-fold $\gamma\gamma$ -coin and (x ray) γ -coin, $\gamma(t)$, $\gamma\gamma(t)$, angular correlations using Gammasphere array. In-beam and out-of-beam experiments using pulsed beam. For

investigation of longer-lived isomers, chopped beam was used. Deduced high-spin levels, J, π , bands, isomers.

As stated by 2016Re02 (see reference 29 in paper), details of this work are to be published.

¹⁸⁹Re Levels

E(level) [†]	Jπ‡	T _{1/2} #	Comments
125 [@] 3	(9/2 ⁻)		Additional information 1. E(level), J^{π} : from (t, α), (pol t, α) (1976Hi08, 1977Hi06).
302.6 [@] 2	$(11/2^{-})$		
524.0 [@] 2	13/2-		
669.6 <mark>&</mark> 2	13/2-		
737.8 [@] 2	$15/2^{-}$		
935.6 <mark>&</mark> <i>3</i>	15/2-		
1017.7 [@] 3	$17/2^{-}$		
1149.8 <mark>&</mark> <i>3</i>	$17/2^{-}$		
1247.0 [@] 3	19/2-		
1440.4 ^{&} 3	19/2-		
1590.3 [@] 4	$21/2^{-}$		
1678.9 <mark>&</mark> 3	$21/2^{-}$		
1692.9 5	$25/2^{-}$	51 ns 17	%IT=100
1770.9 6	29/2+	223 µs 14	T _{1/2} : from $\gamma\gamma(t)$ (2016Re02). %IT=100 T _{1/2} : from $\gamma(t)$ (2016Re02).

[†] From least-squares fit to $E\gamma$ values, by keeping the energy of the 125-keV level fixed, and assuming 0.3 keV uncertainty for each γ -ray energy when stated to nearest tenth of a keV, 1 keV otherwise.

[‡] From 2016Re02, based on multipolarities of γ transitions from $\gamma\gamma(\theta)$ and conversion coefficients deduced from intensity balance arguments, and band structures (2016Re02).

[#] From γ (t) or $\gamma\gamma$ (t) (2016Re02).

[@] Band(A): *π*9/2[514].

& Band(B): $\pi 9/2[514] \otimes 2^+$ of γ band.

Eγ	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
(14.0) 78.0	1692.9 1770.9	25/2 ⁻ 29/2 ⁺	1678.9 2 1692.9 2	21/2 ⁻ 25/2 ⁻	(M2)		118.4	E_{γ} : from level-energy difference. Mult.: from conversion coefficient deduced from K-x ray intensity and photon intensity.
89 102.6	1678.9 1692.9	21/2 ⁻ 25/2 ⁻	1590.3 2 1590.3 2	21/2 ⁻ 21/2 ⁻				
132 146	1149.8 669.6	17/2 ⁻ 13/2 ⁻	1017.7 1 524.0 1	17/2 ⁻ 13/2 ⁻				
177.5	302.6	$(11/2^{-})$	125 ((9/2 ⁻)	(M1+E2)	0.22 8	0.988 24	

 $\gamma(^{189}\text{Re})$

Continued on next page (footnotes at end of table)

¹⁸⁷**Re**(¹³⁶**Xe,X** γ) 2016Re02 (continued)

						$\gamma(^{189}\text{Re})$ (continued)	
Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}
194	1440.4	$19/2^{-}$	1247.0	19/2-			
198	935.6	$15/2^{-}$	737.8	$15/2^{-}$			
213.8	737.8	$15/2^{-}$	524.0	$13/2^{-}$	(M1+E2)	0.20 10	0.589 18
214.2	1149.8	$17/2^{-}$	935.6	$15/2^{-}$. ,		
221.6	524.0	$13/2^{-}$	302.6	$(11/2^{-})$	(M1+E2)	0.35 8	0.511 17
229.3	1247.0	$19/2^{-}$	1017.7	$17/2^{-1}$	(M1+E2)	0.2 + 2 - 1	0.49 3
238.5	1678.9	$21/2^{-}$	1440.4	$19/2^{-}$			
265.9	935.6	$15/2^{-}$	669.6	$13/2^{-}$			
279.8	1017.7	$17/2^{-}$	737.8	$15/2^{-}$	(M1+E2)	0.3 2	0.273 22
290.7	1440.4	$19/2^{-}$	1149.8	$17/2^{-}$			
343.3	1590.3	$21/2^{-}$	1247.0	$19/2^{-}$			
367.0	669.6	$13/2^{-}$	302.6	$(11/2^{-})$			
399.1	524.0	$13/2^{-}$	125	$(9/2^{-})$			
411.6	935.6	$15/2^{-}$	524.0	$13/2^{-}$			
412.0	1149.8	$17/2^{-}$	737.8	$15/2^{-}$			
422.7	1440.4	$19/2^{-}$	1017.7	$17/2^{-}$			
431.9	1678.9	$21/2^{-}$	1247.0	19/2-			
435.1	737.8	$15/2^{-}$	302.6	$(11/2^{-})$			
480.2	1149.8	$17/2^{-}$	669.6	$13/2^{-}$			
493.7	1017.7	$17/2^{-}$	524.0	$13/2^{-}$			
504.7	1440.4	$19/2^{-}$	935.6	$15/2^{-}$			
509.3	1247.0	$19/2^{-}$	737.8	$15/2^{-}$			
529.1	1678.9	$21/2^{-}$	1149.8	$17/2^{-}$			
544.6	669.6	$13/2^{-}$	125	$(9/2^{-})$			
572.6	1590.3	$21/2^{-}$	1017.7	$17/2^{-}$			
626	1149.8	$17/2^{-}$	524.0	$13/2^{-}$			
633	935.6	$15/2^{-}$	302.6	$(11/2^{-})$			
661.2	1678.9	$21/2^{-}$	1017.7	$17/2^{-}$			
703	1440.4	19/2-	737.8	$15/2^{-}$			

[†] From $\gamma\gamma(\theta)$ data unless otherwise stated. Values of mixing ratios are read from plot shown in the right panel of Fig. 6 in 2016Re02. [‡] Additional information 2.

5 114

187 **Re**(136 **Xe**,**X** γ) **2016Re02**

¹⁸⁹₇₅Re₁₁₄