¹⁷⁶Yb(¹⁸O,5nγ) 2009Hu12

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

2009Hu12 (also 2009Hu17): ¹⁸O beam produced at E=88,95 MeV by the tandem accelerator at the Japan Atomic Energy Agency. Gamma rays were detected using the GEMINI array, consisting of fourteen HPGe detectors with BGO anti-Compton shields. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) Results from this experiment were also published in 2009Hu17. There are some differences in the level schemes and DCO ratios. As 2009Hu12 has a more complete level scheme and was submitted for publication after the 2009Hu17 paper, the evaluators take the results from 2009Hu12.

2013He25: ¹⁸O beam produced at E=87 MeV by HI-13 tandem accelerator at the China Institute of Atomic Energy (CIAE). Target=99% enriched ¹⁷⁶Yb 0.7 mg/cm² thick on a 2 mg/cm² thick gold foil. The γ rays were detected with an array of eleven Compton suppressed HPGe detectors and two planar HPGe detectors. Measured level lifetimes using RDDS method with a plunger system. Deduced transition quadrupole moments.

189Pt Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments
0	3/2-		
6.40 ^d 4	$5/2^{-}$		Additional information 1.
172.40 10	9/2-	464 ns 25	
191.30 20	$(13/2^+)$	143 μs 5	
237.40 ^d 10 356.70 23	(9/2 ⁻)		
499.10 ^{&} 20	$17/2^{+}$	211.4 [#] ps 55	Q(transition)=11.05 eb 29 (2013He25).
531.20 ^{<i>a</i>} 22	$(15/2^+)$		J^{π} : From Adopted Levels.
608.60 ^{<i>u</i>} 13	$(13/2^{-})$		
653.70 20	15/2*		J^{γ} : From Adopted Levels and author's assumption of an M1+E2 γ to 13/+ based on the DCO ratio.
711.90 19	13/2-		
943.90° 23	$(17/2^+)$	#	
954.90 ^{cc} 21	$21/2^+$	175.4" ps 49	Q(transition)=2.49 eb 7 (2013He25).
985.40^{-23}	$19/2^{-1}$		π . Assigned 15/27 in (2.2.1)
1081.00- 15	(1/2) 19/2 ⁺		J ⁻⁺ : Assigned 15/2 In $(\alpha, 5n\gamma)$.
1361.40 18	$17/2^{-}$		
1443.90 ^b 23	$(21/2^+)$		
1490.30 ^d 17	$(21/2^{-})$		J^{π} : assigned 19/2 ⁻ in (α ,3n γ).
1512.00 21	21/2-		
1529.20 23	$25/2^+$		
1555.6 ^{<i>a</i>} 3	$23/2^+$		
$1695.60\ 23$ $1714\ 20^{e}\ 23$	(23/2) $(25/2^{-})$		
$2009 40^{b} 24$	$(25/2^+)$		
2055.10 24	$(23/2^{-})$ $(27/2^{-})$		
2189.40 ^{&} 24	$29/2^{+}$		
2219.3 ^{<i>a</i>} 4	$(27/2^+)$		
2291.30 ^f 24	$(29/2^{-})$		
2303.60 ^e 24	$(29/2^{-})$		
2539.6 4	$(2^{\prime}/2^{+})$ $(3^{\prime}/2^{-})$		
2020.3024	(31/2)		
2688.30 24	$(29/2^{+})$ $(31/2^{-})$		
	(2-1-)		

 176 Yb(18 O,5n γ)

			ntinued)				
E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$
2729.3 3	$(29/2^+)$	3452.6 ^e 4	$(37/2^{-})$	4367.7 [@] 3	$(47/2^+)$	5502.0 ^C 4	$(53/2^{-})$
2818.5 5		3455.3 <i>3</i>	$(35/2^+)$	4437.1 <i>3</i>	$(43/2^{-})$	6474.7 ^C 5	$(57/2^{-})$
2839.70 ^e 25	$(33/2^{-})$	3574.0 <i>f</i> 4	$(37/2^{-})$	4647.3 ^{&} 7	$(45/2^+)$	6476.4 [@] 4	$(55/2^+)$
2864.6 ^{&} 3	$33/2^{+}$	3582.2 ^b 3	$(37/2^+)$	4686.1 <i>3</i>	$(45/2^+)$	6761.8 ^C 7	
2874.1 ^{<i>f</i>} 3	$(33/2^{-})$	3640.6 [@] 3	$(39/2^+)$	4688.0 <i>3</i>	$(45/2^{-})$	6841.5 [@] 5	$(57/2^+)$
2931.5 ^a 4	$(31/2^+)$	3648.6 <i>3</i>	$(39/2^{-})$	4708.3 <i>3</i>	$(47/2^+)$	7272.2 [@] 7	
2979.2 <i>3</i>	$(31/2^+)$	3672.8 6		4795.2 3	$(45/2^{-})$	7357.9 ^C 9	
3066.1 4	$(33/2^+)$	3809.2 <i>3</i>	$(41/2^{-})$	4848.6 4	$(45/2^{-})$	7582.4 7	
3200.90 ^b 24	$(33/2^+)$	3848.5 [@] 3	$(43/2^+)$	4879.2 [@] 3	$(49/2^+)$	7764.7 [@] 9	
3292.30 24	$(35/2^{-})$	3946.9 <mark>&</mark> 5	$(41/2^+)$	5042.2 ^c 3	$(49/2^{-})$	8135.2 ^c 10	
3376.3 <mark>&</mark> 4	$(37/2^+)$	3975.9 ^b 6		5353.6 [@] 4	$(53/2^+)$	8843.0 ^c 11	
3420.0 <i>3</i>	(35/2+)	4168.5 ^e 6	$(41/2^{-})$	5464.4 <mark>&</mark> 9	$(49/2^+)$		

2009Hu12 (continued)

[†] The authors based J^{π} assignments on DCO ratios, assuming stretched quadrupoles to be E2, stretched dipoles to be E1 or M1, with mixed multipolarity to be M1+E2, along with yrast arguments. In addition, assignments were made based on the expectation that spin values increase with excitation energy. These are in general agreement with assignments from $(\alpha, 3n\gamma)$, with exceptions noted, until 2865 keV, the highest level observed there.

[‡] From Adopted Levels unless otherwise stated.

[#] From 2013He25 using the recoil distance (RDDS) with a plunger system.

[@] Band(A): γ cascade based on (39/2⁺). Structure #3 in 2009Hu12.

[&] Band(B): $13/2^+$ band, $\alpha = +1/2$.

^{*a*} Band(b): $13/2^+$ band, $\alpha = -1/2$.

^b Band(C): Band based on $(17/2^+)$. Structure #2 in 2009Hu12.

^c Band(D): γ cascade based on (49/2⁻). Structure #4 in 2009Hu12.

^d Band(E): Band based on $5/2^-, \alpha = +1/2$.

^e Band(F): $\Delta J=2$ band based on (25/2⁻). Part of structure #1 in 2009Hu12 interpreted as pair of pseudospin partners with configuration= $\nu i_{13/2}^{-2} \otimes \nu (f_{5/2}/p_{3/2})$.

^f Band(G): ΔJ=2 band based on (29/2⁻). Part of structure #1 in 2009Hu12 interpreted as pair of pseudospin partners with configuration= $\nu i_{13/2}^{-2} \otimes \nu (f_{5/2}/p_{3/2})$.

$\gamma(^{189}\text{Pt})$

The DCO ratios should be ≈ 1.0 when the gating and measured transitions have the same multipolarity and <1.0 otherwise. Based on authors' DCO ratios and level scheme placements, the evaluators assume E2 transitions were always used as gates.

Ε _γ ‡	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α@	Comments
(18.6)		1714.20	$(25/2^{-})$	1695.60	$(23/2^{-})$			
(21.7)		1512.00	$21/2^{-}$	1490.30	$(21/2^{-})$			
(58.4)		3640.6	$(39/2^+)$	3582.2	$(37/2^+)$			
91.4 <i>3</i>	3.5 11	3292.30	$(35/2^{-})$	3200.90	$(33/2^+)$	D		DCO=0.57 8
128.9 <i>1</i>	12.6 19	1490.30	$(21/2^{-})$	1361.40	$17/2^{-}$	(E2)	1.77	DCO=1.03 18
								$\alpha(K)=0.473$ 7; $\alpha(L)=0.977$ 15; $\alpha(M)=0.252$ 4
								$\alpha(N)=0.0615 9; \alpha(O)=0.00963 14;$
								$\alpha(P) = 4.68 \times 10^{-3} 7$
134.8 5		3200.90	$(33/2^+)$	3066.1	$(33/2^+)$			
150.6 <i>3</i>	3.5 11	1512.00	$21/2^{-}$	1361.40	$17/2^{-}$	(E2)	0.985 16	DCO=1.0 4
								α (K)=0.338 5; α (L)=0.486 8; α (M)=0.1251 21

 E_{γ}^{\ddagger}

160.6 1

163.0 5

166.0 1

170.9 3

183.6 1

185.3 1

188.0 3

189.7 5

193.1 1

193.6 5

¹⁷⁶Yb(¹⁸O,5nγ) **2009Hu12** (continued)

$\gamma(^{189}\text{Pt})$ (continued) α[@] $I_{\gamma}^{\#}$ Mult.[†] Comments E_i (level) J_i^{π} \mathbf{E}_{f} J_f^{π} $\alpha(N)=0.0305\ 5;\ \alpha(O)=0.00480\ 8;$ $\alpha(P)=3.22\times10^{-5}$ 5 DCO=0.83 7 13.6 20 3809.2 $(41/2^{-})$ 3648.6 (39/2⁻) D+Q $(35/2^+)$ 3292.30 (35/2-) 2.8 8 3455.3 >3.5 172.40 $9/2^{-}$ 6.40 5/2-E2 0.690 DCO=1.06 13 α(K)=0.269 4; α(L)=0.317 5; α(M)=0.0813 12 α (N)=0.0199 *3*; α (O)=0.00314 *5*; $\alpha(P)=2.54\times10^{-5}$ 4 Mult.: from Adopted Gammas. 4.3 13 4879.2 $(49/2^+)$ 4708.3 (47/2+) D+Q DCO=0.66 13 91 5 1695.60 1512.00 21/2-DCO=0.82 7 $(23/2^{-})$ D+Q $(39/2^+)$ 17.5 26 3640.6 3455.3 (35/2+) (E2) 0.467 DCO=1.02 12 α(K)=0.206 3; α(L)=0.197 3; α(M)=0.0504 8 α (N)=0.01232 *18*; α (O)=0.00195 *3*; $\alpha(P) = 1.95 \times 10^{-5} 3$ 4.3 13 3640.6 $(39/2^+)$ 3452.6 (37/2⁻) D 0.0819 DCO=0.66 17 *α*(K)=0.0672 *10*; *α*(L)=0.01135 *17*; $\alpha(M)=0.00262$ 4 α (N)=0.000641 *10*; α (O)=0.0001105 *17*; $\alpha(P)=5.81\times10^{-6}$ 9 2729.3 $(29/2^+)$ $(27/2^+)$ 2539.6 10.6 16 4879.2 $(49/2^+)$ 0.405 DCO=1.02 13 4686.1 $(45/2^+)$ (E2) α(K)=0.185 3; α(L)=0.1654 24; α(M)=0.0423 6 α (N)=0.01033 *15*; α (O)=0.001641 *24*; $\alpha(P)=1.767\times10^{-5}\ 25$ 2.0 6 5042.2 $(49/2^{-})$ 4848.6 $(45/2^{-})$ (E2) $0.402 \ 7$ DCO=1.1 3

								$\begin{aligned} &\alpha(K) = 0.184 \ 3; \ \alpha(L) = 0.164 \ 3; \ \alpha(M) = 0.0418 \ 8 \\ &\alpha(N) = 0.01021 \ 19; \ \alpha(O) = 0.00162 \ 3; \\ &\alpha(P) = 1.76 \times 10^{-5} \ 3 \end{aligned}$
202.2 1	24.4 12	1714.20	(25/2 ⁻)	1512.00 21	/2-	(E2)	0.346	DCO=1.06 9 α (K)=0.1653 24; α (L)=0.1362 20;
								$\alpha(M)=0.03475$ $\alpha(N)=0.0084912; \alpha(O)=0.00135320;$ $\alpha(D)=1581\times10^{-5}22$
207.9.1	43.5.22	3848.5	$(43/2^+)$	3640.6 (39	$9/2^{+}$)	(E2)	0.315	$\alpha(r) = 1.381 \times 10^{-2.5}$ DCO=1.08.8
2010/1	1010 22	201012	(10/2)	201010 (22	/_ /	(11-)	01010	$\alpha(K)=0.1541\ 22;\ \alpha(L)=0.1213\ 18;$
								$\alpha(M) = 0.0309 5$
								α (N)=0.00756 <i>11</i> ; α (O)=0.001205 <i>17</i> ; α (P)=1.478×10 ⁻⁵ <i>21</i>
219.1 3	5.3 8	3420.0	$(35/2^+)$	3200.90 (33	3/2+)	D+Q		DCO=0.78 10
220.6 1	11.8 18	3640.6	$(39/2^+)$	3420.0 (35	5/2+)	(E2)	0.259	DCO=1.07 11
								$\alpha(K)=0.1326 \ 19; \ \alpha(L)=0.0949 \ 14;$
								$\alpha(M) = 0.02414$
								$\alpha(N)=0.00590~9;~\alpha(O)=0.000944~14;$ $\alpha(P)=1.282\times10^{-5}~18$
231.07	17.3	237.40	$(9/2^{-})$	6.40 5/2	2-	E2	0.222	DCO=1.19.11
20110 1	1, 0	201110	(>/=)	0110 072	-		0.222	$\alpha(K)=0.1180 \ 17; \ \alpha(L)=0.0786 \ 11;$
								$\alpha(M) = 0.0200 \ 3$
								α (N)=0.00488 7; α (O)=0.000783 11; α (P)=1.147×10 ⁻⁵ 17
								Mult.: from Adopted Gammas; consistent with DCO.
236.2 3	7.7 12	2291.30	$(29/2^{-})$	2055.10 (27	7/2-)	D+Q		DCO=0.82 9
247.0 <i>3</i>	8.7 13	5042.2	$(49/2^{-})$	4795.2 (45	5/2-)	(E2)	0.179	DCO=1.13 11
								$\alpha(K)=0.0996\ 15;\ \alpha(L)=0.0601\ 9;$

 $^{189}_{78}\text{Pt}_{111}\text{-}4$

176 Yb (18 O ,5n γ)	2009Hu12 (continued)
--	----------------------

				tinued)				
E_{γ}^{\ddagger}	I_{γ} #	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α [@]	Comments
248.5 <i>3</i> 249.9 <i>3</i> 250.9 <i>1</i>	7.5 <i>11</i> <7.0 17.2 <i>25</i>	2303.60 2979.2 4688.0	(29/2 ⁻) (31/2 ⁺) (45/2 ⁻)	2055.10 2729.3 4437.1	(27/2 ⁻) (29/2 ⁺) (43/2 ⁻)	D+Q D+Q		$\alpha(M)=0.01520 \ 23$ $\alpha(N)=0.00372 \ 6; \ \alpha(O)=0.000598 \ 9;$ $\alpha(P)=9.77\times10^{-6} \ 14$ DCO=0.78 \ 10 DCO=0.54 \ 5
251.9 <i>3</i> 254.4 <i>3</i> 280.4 <i>3</i>	3.8 <i>11</i> 4.1 <i>12</i> 3.4 <i>10</i>	608.60 3455.3 1361.40	(13/2 ⁻) (35/2 ⁺) 17/2 ⁻	356.70 3200.90 1081.00	(33/2 ⁺) (17/2 ⁻)	D+Q (E2)	0.1207	DCO=0.56 11 DCO=1.04 15 $\alpha(K)=0.0723$ 11; $\alpha(L)=0.0366$ 6; $\alpha(M)=0.00919$ 14 $\alpha(N)=0.00225$ 4; $\alpha(O)=0.000365$ 6;
287.1 5 290.2 5 307.8 <i>I</i>	1.6 5 144 7	6761.8 943.90 499.10	(17/2 ⁺) 17/2 ⁺	6474.7 653.70 191.30	(57/2 ⁻) 15/2 ⁺ (13/2 ⁺)	E2	0.0913	$\alpha(P)=7.22\times10^{-6} II$ DCO=1.03 8 $\alpha(K)=0.0573 8; \alpha(L)=0.0257 4; \alpha(M)=0.00643$ 9 $\alpha(N)=0.001575 23; \alpha(O)=0.000257 4;$
316.7 <i>1</i> 318.4 <i>3</i> 326.8 <i>1</i> 329.0 <i>3</i> 333.9 <i>3</i> 339.9 <i>1</i>	14.1 21 3.4 10 28.9 14 5.9 9 7.8 12 >22.9	2620.30 4686.1 1512.00 2620.30 5042.2 531.20	$(31/2^{-})$ $(45/2^{+})$ $21/2^{-}$ $(31/2^{-})$ $(49/2^{-})$ $(15/2^{+})$	2303.60 4367.7 1185.20 2291.30 4708.3 191.30	$\begin{array}{c} (29/2^{-}) \\ (47/2^{+}) \\ 19/2^{+} \\ (29/2^{-}) \\ (47/2^{+}) \\ (13/2^{+}) \end{array}$	D+Q D D+Q D D+O		α (P)=5.79×10 ⁻⁶ 9 DCO=0.40 4 DCO=0.69 5 DCO=0.84 19 DCO=0.60 8 DCO=0.44 8
340.6 <i>3</i> 340.9 <i>1</i> 350.3 <i>3</i> 353.9 5	7.3 <i>11</i> 70 <i>3</i> 3.4 <i>10</i> 2.2 <i>7</i>	4708.3 2055.10 356.70 3420.0	$(47/2^+)$ $(27/2^-)$ $(35/2^+)$	4367.7 1714.20 6.40 3066.1	$(47/2^+)$ $(25/2^-)$ $5/2^-$ $(33/2^+)$	D+Q		Mult.: M1+E2 in 2009Hu12. DCO=0.86 4
354.2 3	8.5 13	5042.2	(49/2 ⁻)	4688.0	(45/2 ⁻)	(E2)	0.0610	DCO=1.06 <i>11</i> $\alpha(K)=0.0406 6; \alpha(L)=0.01542 22;$ $\alpha(M)=0.00383 6$ $\alpha(N)=0.000939 14; \alpha(O)=0.0001547 23;$ $\alpha(P)=4.17 \times 10^{-6} 6$
356.3 1	35.3 18	3648.6	(39/2 ⁻)	3292.30	(35/2 ⁻)	(E2)	0.0600	$DCO=1.06 \ 12$ $\alpha(K)=0.0401 \ 6; \ \alpha(L)=0.01510 \ 22;$ $\alpha(M)=0.00375 \ 6$ $\alpha(N)=0.000919 \ 13; \ \alpha(O)=0.0001515 \ 22;$ $\alpha(P)=4.12\times10^{-6} \ 6$
365.1 <i>3</i> 371.2 <i>1</i>	5.3 8 34.0 <i>17</i>	6841.5 608.60	(57/2 ⁺) (13/2 ⁻)	6476.4 237.40	(55/2 ⁺) (9/2 ⁻)	D+Q (E2)	0.0536	DCO=0.86 14 DCO=1.10 8 $\alpha(K)=0.0363 5; \alpha(L)=0.01308 19; \alpha(M)=0.00324 5$ $\alpha(N)=0.000794 12; \alpha(O)=0.0001313 19; \alpha(D)=2.75 \times 10^{-6} 6$
381.3 <i>I</i>	10.6 <i>16</i>	3582.2	(37/2 ⁺)	3200.90	(33/2+)	(E2)	0.0498	DCO=1.03 I3 $\alpha(K)=0.0341 5; \alpha(L)=0.01192 I7;$ $\alpha(M)=0.00295 5$ $\alpha(N)=0.000723 II; \alpha(O)=0.0001197 I7;$ $\alpha(P)=3.52\times10^{-6} 5$
393.7 5 397.0 3 409.3 1	7.7 <i>12</i> 36.2 <i>18</i>	3975.9 2688.30 1490.30	(31/2 ⁻) (21/2 ⁻)	3582.2 2291.30 1081.00	(37/2 ⁺) (29/2 ⁻) (17/2 ⁻)	D+Q (E2)	0.0412	DCO=0.78 <i>13</i> DCO=1.13 <i>11</i> α (K)=0.0288 <i>4</i> ; α (L)=0.00938 <i>14</i> ;

¹⁷⁶Yb(¹⁸O,5nγ) **2009Hu12** (continued)

γ ⁽¹⁸⁹Pt) (continued)</sup>

Eγ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α@	Comments
								$\alpha(M)=0.00231 \ 4$ $\alpha(N)=0.000566 \ 8; \ \alpha(O)=9.43\times10^{-5} \ 14;$ $\alpha(P)=3.00\times10^{-6} \ 5$
412.7 <i>1</i> 418.2 <i>3</i> 430.7 5	10.1 <i>15</i> 3.5 <i>11</i> 2.8 8	943.90 3292.30 7272.2	$(17/2^+)$ $(35/2^-)$	531.20 2874.1 6841.5	$(15/2^+)$ $(33/2^-)$ $(57/2^+)$	D+Q D+Q		DCO=0.55 6 DCO=0.45 7
439.6 <i>5</i> 440.8 <i>5</i>	2.0 0	2979.2 3420.0	$(31/2^+)$ $(35/2^+)$	2539.6 2979.2	$(27/2^+)$ $(31/2^+)$			
444.8 5	3.0 9	943.90	(17/2 ⁺)	499.10	17/2+	(E2)	0.0332	DCO=1.05 <i>13</i> α (K)=0.0238 <i>4</i> ; α (L)=0.00714 <i>11</i> ; α (M)=0.00175 <i>3</i> α (N)=0.000429 <i>7</i> ; α (O)=7.18×10 ⁻⁵ <i>11</i> ;
452.2 1	12.8 <i>19</i>	983.40	19/2+	531.20	(15/2 ⁺)	(E2)	0.0318	α (P)=2.49×10 ⁻⁶ 4 DCO=1.04 11 α (K)=0.0229 4; α (L)=0.00677 10;
								$\alpha(M)=0.001654 \ 24$ $\alpha(N)=0.000406 \ 6; \ \alpha(O)=6.82\times10^{-5} \ 10;$ $\alpha(P)=2.40\times10^{-6} \ 4$
452.6 <i>3</i> 455.8 <i>1</i>	4.5 <i>14</i> 100 <i>5</i>	3292.30 954.90	(35/2 ⁻) 21/2 ⁺	2839.70 499.10	(33/2 ⁻) 17/2 ⁺	D+Q (E2)	0.0312	DCO=0.85 <i>11</i> DCO=1.10 <i>5</i>
								$\alpha(\mathbf{K})=0.0225 \ 4; \ \alpha(\mathbf{L})=0.00660 \ 10; \\ \alpha(\mathbf{M})=0.001612 \ 23 \\ \alpha(\mathbf{N})=0.000396 \ 6; \ \alpha(\mathbf{O})=6.65\times10^{-5} \ 10; \\ \alpha(\mathbf{P})=2.36\times10^{-6} \ 4$
459.8 <i>1</i>	20 3	5502.0	(53/2-)	5042.2	(49/2 ⁻)	(E2)	0.0305	DCO=1.07 <i>II</i> $\alpha(K)=0.0220 \ 3; \ \alpha(L)=0.00642 \ 9;$ $\alpha(M)=0.001567 \ 22$ $\alpha(N)=0.000385 \ 6; \ \alpha(Q)=6.46\times10^{-5} \ 9;$
160 5 2	40.12	1442.00	(21/2+)	082.40	10/2+			$\alpha(P)=2.31\times10^{-6} 4$
460.3 3 462.4 <i>1</i>	>25.9	653.70	$(21/2^+)$ 15/2 ⁺	985.40 191.30	$(13/2^+)$	D+Q D+Q		DCO=0.01 II DCO=0.59 I0 Mult : M1+F2 in 2009Hu12
472.4 1	41.6 <i>21</i>	1081.00	(17/2 ⁻)	608.60	(13/2 ⁻)	(E2)	0.0285	DCO=1.07 7 $\alpha(K)=0.0207 \ 3; \ \alpha(L)=0.00589 \ 9;$ $\alpha(M)=0.001436 \ 21$ $\alpha(N)=0.000353 \ 5; \ \alpha(O)=5.94\times10^{-5} \ 9;$
473.8 5		3292.30	$(35/2^{-})$	2818.5				$\alpha(P)=2.18\times10^{-6} 3$
474.4 <i>1</i>	24.9 12	5353.6	(53/2+)	4879.2	(49/2+)	(E2)	0.0282	DCO=0.93 8 $\alpha(K)$ =0.0205 3; $\alpha(L)$ =0.00581 9; $\alpha(M)$ =0.001417 20 $\alpha(N)$ =0.000348 5; $\alpha(O)$ =5.86×10 ⁻⁵ 9; $\alpha(P)$ =2.16×10 ⁻⁶ 3
476.1 <i>3</i> 484.3 <i>3</i>	7.5 <i>11</i> 6.5 <i>10</i>	3455.3 983.40	(35/2 ⁺) 19/2 ⁺	2979.2 499.10	(31/2 ⁺) 17/2 ⁺	D+Q		DCO=0.47 11
492.5 <i>5</i> 500.0 <i>1</i>	13.2 20	7764.7 1443.90	(21/2+)	943.90	(17/2+)	(E2)	0.0248	DCO=1.05 <i>I</i> 5 $\alpha(K)=0.0183 \ 3; \ \alpha(L)=0.00494 \ 7;$ $\alpha(M)=0.001200 \ 17$ $\alpha(N)=0.000295 \ 5; \ \alpha(O)=4.98\times10^{-5} \ 7;$
511.5 <i>3</i> 511.7 <i>3</i>	6.1 9 7.5 11	4879.2 3376.3	(49/2 ⁺) (37/2 ⁺)	4367.7 2864.6	(47/2 ⁺) 33/2 ⁺	D+Q (E2)	0.0234	$\alpha(P)=1.92\times10^{-6} 3$ DCO=0.81 15 DCO=1.17 13 $\alpha(K)=0.01736 25; \alpha(L)=0.00460 7;$ $\alpha(M)=0.001117 16$

 $^{189}_{78}$ Pt $_{111}$ -6

¹⁷⁶Yb(¹⁸O,5nγ) **2009Hu12** (continued)

γ ⁽¹⁸⁹Pt) (continued)</sup>

E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [@]	Comments
519.2 <i>1</i>	20 3	4367.7	(47/2 ⁺)	3848.5	(43/2+)	(E2)	0.0226	α (N)=0.000275 4; α (O)=4.65×10 ⁻⁵ 7; α (P)=1.83×10 ⁻⁶ 3 DCO=1.02 11
								$\begin{aligned} &\alpha(\mathbf{K}) = 0.01681 \ 24; \ \alpha(\mathbf{L}) = 0.00441 \ 7; \\ &\alpha(\mathbf{M}) = 0.001068 \ 15 \\ &\alpha(\mathbf{N}) = 0.000262 \ 4; \ \alpha(\mathbf{O}) = 4.45 \times 10^{-5} \ 7; \end{aligned}$
523.8 5	2.0 6	3455.3	(35/2+)	2931.5	(31/2+)	(E2)	0.0221	α (P)=1.772×10 ⁻⁶ 25 DCO=1.03 <i>13</i> α (K)=0.01649 24; α (L)=0.00429 7;
								α (M)=0.001039 <i>15</i> α (N)=0.000255 <i>4</i> ; α (O)=4.33×10 ⁻⁵ <i>7</i> ; α (P)=1.739×10 ⁻⁶ <i>25</i>
531.5 <i>I</i>	13.0 20	1185.20	19/2+	653.70	15/2+	(E2)	0.0214	DCO= $0.96\ 24$ $\alpha(K)=0.01597\ 23;\ \alpha(L)=0.00411\ 6;$ $\alpha(M)=0.000994\ 14$
536.1 <i>I</i>	17.1 25	2839.70	(33/2 ⁻)	2303.60	(29/2-)	(E2)	0.0209	α (N)=0.000244 4; α (O)=4.15×10 ⁻⁵ 6; α (P)=1.685×10 ⁻⁶ 24 DCO=1.05 10
								$\alpha(\mathbf{K})=0.01567\ 22;\ \alpha(\mathbf{L})=0.00401\ 6;\ \alpha(\mathbf{M})=0.000968\ 14$ $\alpha(\mathbf{N})=0.000238\ 4;\ \alpha(\mathbf{Q})=4.04\times10^{-5}\ 6;$
0	0							$\alpha(P)=1.654\times10^{-6} 24$
539.5 ^{&} 3	11.5 ^{&} 17	711.90	13/2-	172.40	9/2-	(E2)	0.0206	DCO=1.17 <i>12</i> α (K)=0.01546 <i>22</i> ; α (L)=0.00393 <i>6</i> ; α (M)=0.000950 <i>14</i>
								α (N)=0.000234 4; α (O)=3.97×10 ⁻⁵ 6; α (P)=1.632×10 ⁻⁶ 23
539.9 ^{&} 3	2.9 ^{&} 9	2729.3	(29/2+)	2189.40	29/2+	(E2)	0.0206	DCO=0.97 8 $\alpha(K)$ =0.01543 22; $\alpha(L)$ =0.00392 6; $\alpha(M)$ =0.000948 14
548 4 3	7812	2839 70	(33/2-)	2291 30	$(29/2^{-})$	(F 2)	0.0198	α (N)=0.000233 4; α (O)=3.96×10 ⁻⁵ 6; α (P)=1.629×10 ⁻⁶ 23 DCO=0.94 11
546.4 5	7.6 12	2037.70	(33/2)	2291.30	(29/2)	(E2)	0.0198	$\begin{array}{l} \alpha(\mathrm{K}) = 0.01492 \ 21; \ \alpha(\mathrm{L}) = 0.00375 \ 6; \\ \alpha(\mathrm{M}) = 0.000904 \ 13 \\ \alpha(\mathrm{M}) = 0.000904 \ 13 \end{array}$
557 1 1	24 6 17	1512.00	21/2-	054.00	21/2+	D		$\alpha(N)=0.000222\ 4;\ \alpha(O)=3.78\times10^{-5}\ 6;$ $\alpha(P)=1.576\times10^{-6}\ 23$
565.2 1	12.2 18	2620.30	$(31/2^{-})$	2055.10	$(27/2^{-})$	D (E2)	0.0185	DCO= $0.95 \ 14$ $\alpha(K)=0.01398 \ 20; \ \alpha(L)=0.00343 \ 5;$
								$\alpha(M)=0.000827 \ 12$ $\alpha(N)=0.000203 \ 3; \ \alpha(O)=3.47\times10^{-5} \ 5;$ $\alpha(P)=1.478\times10^{-6} \ 21$
565.5 ^{&} 1	<18.5	2009.40	$(25/2^+)$	1443.90	$(21/2^+)$			
565.5 ^{&} 1	23.4 ^{&} 12	3200.90	(33/2 ⁺)	2635.40	(29/2+)	(E2)	0.0185	DCO=1.03 11 $\alpha(K)=0.01396 20; \alpha(L)=0.00343 5;$ $\alpha(M)=0.000825 12$ $\alpha(N)=0.000203 3; \alpha(Q)=3.46\times10^{-5} 5;$
570.6 <i>3</i>	3.8 11	3946.9	$(41/2^+)$	3376.3	(37/2 ⁺)	(E2)	0.0181	α (P)=1.476×10 ⁻⁶ 21 DCO=1.01 15
			/		/	. ,		$\alpha(\mathbf{K})=0.01370 \ 20; \ \alpha(\mathbf{L})=0.00334 \ 5; \ \alpha(\mathbf{M})=0.000804 \ 12 \ \alpha(\mathbf{N})=0.000198 \ 3; \ \alpha(\mathbf{O})=3.37\times10^{-5} \ 5;$
								$\alpha(P)=1.448\times10^{-6} 21$

¹⁷⁶Yb(¹⁸O,5nγ) **2009Hu12** (continued)

γ ⁽¹⁸⁹Pt) (continued)</sup>

572.2 3 7.8 12 1555.6 23/2 ⁺ 983.40 19/2 ⁺ (E2) 0.0180 DCO=1.05 9 $\alpha(K)=0.01362 20; \alpha(L)=0.00331 5;$ $\alpha(M)=0.000797 12$ $\alpha(N)=0.000196 3; \alpha(O)=3.35\times10^{-5} 5;$ $\alpha(P)=1.440\times10^{-6} 21$ 574.3 1 40.6 20 1529.20 25/2 ⁺ 954.90 21/2 ⁺ (E2) 0.01780 DCO=1.05 9 $\alpha(K)=0.01362 20; \alpha(L)=0.00331 5;$ $\alpha(M)=0.000196 3; \alpha(O)=3.35\times10^{-5} 5;$ $\alpha(P)=1.440\times10^{-6} 21$ 577.1 1 49.8 25 2291.30 (29/2 ⁻) 1714.20 (25/2 ⁻) (E2) 0.01760 DCO=0.99 7 $\alpha(K)=0.01337 19; \alpha(L)=0.00323 5;$ $\alpha(M)=0.000778 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000178 11$ $\alpha(N)=0.000186 3; \alpha(O)=3.18\times10^{-5} 5;$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{aligned} \alpha(N) = 0.000196 \ 3; \ \alpha(O) = 3.35 \times 10^{-5} \ 5; \\ \alpha(P) = 1.440 \times 10^{-6} \ 2I \\ DCO = 0.94 \ 8 \\ \alpha(K) = 0.01351 \ I9; \ \alpha(L) = 0.00328 \ 5; \\ \alpha(M) = 0.000789 \ II \\ \alpha(N) = 0.000194 \ 3; \ \alpha(O) = 3.31 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000194 \ 3; \ \alpha(O) = 3.31 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000194 \ 3; \ \alpha(O) = 3.31 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000778 \ II \\ \alpha(N) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(P) = 1.414 \times 10^{-6} \ 20 \\ DCO = 0.99 \ 7 \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(P) = 1.414 \times 10^{-6} \ 20 \\ DCO = 0.91 \ II \\ \alpha(N) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(P) = 1.414 \times 10^{-6} \ 20 \\ DCO = 0.51 \ II \\ \alpha(N) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(P) = 1.414 \times 10^{-6} \ 20 \\ DCO = 0.51 \ II \\ \alpha(N) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(P) = 1.414 \times 10^{-6} \ 20 \\ DCO = 0.51 \ II \\ \alpha(N) = 0.000776 \ II \\ \alpha(N) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000186 \ 3; \ \alpha(O) = $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} \alpha(M) = 0.000789 \ II \\ \alpha(N) = 0.000194 \ 3; \ \alpha(O) = 3.31 \times 10^{-5} \ 5; \\ \alpha(P) = 1.428 \times 10^{-6} \ 20 \\ DCO = 0.99 \ 7 \\ \alpha(K) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.27 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000191 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \alpha(M) = 0.000756 \ II \\ \alpha(N) = 0.000186 \ 3; \ \alpha(O) = 3.18 \times 10^{-5} \ 5; \\ \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
577.1 <i>I</i> 49.8 25 2291.30 (29/2 ⁻) 1714.20 (25/2 ⁻) (E2) 0.01760 DCO=0.99 7 $\alpha(K)=0.01337 I9; \alpha(L)=0.00323 5; \alpha(M)=0.000778 II$ $\alpha(N)=0.000191 3; \alpha(O)=3.27\times10^{-5} 5; \alpha(P)=1.414\times10^{-6} 20$ 580.3 3 3.9 <i>I</i> 2 3420.0 (35/2 ⁺) 2839.70 (33/2 ⁻) D 582.8 <i>I</i> 22.6 <i>II</i> 2874.1 (33/2 ⁻) 2291.30 (29/2 ⁻) (E2) 0.01721 DCO=1.01 <i>II</i> $\alpha(K)=0.01309 I9; \alpha(L)=0.00314 5; \alpha(M)=0.000756 II$ $\alpha(N)=0.000186 3; \alpha(O)=3.18\times10^{-5} 5;$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$582.8 \ I \ 22.6 \ II \ 2874.1 \ (33/2^{-}) \ 2291.30 \ (29/2^{-}) \ (E2) \ 0.01721 \ DCO=1.01 \ II \\ \alpha(K)=0.01309 \ I9; \ \alpha(L)=0.00314 \ 5; \\ \alpha(M)=0.000756 \ II \\ \alpha(N)=0.000186 \ 3; \ \alpha(O)=3.18\times10^{-5} \ 5; $	
$\alpha(\mathbf{K})=0.01309 \ 19; \ \alpha(\mathbf{L})=0.00314 \ 5; \\ \alpha(\mathbf{M})=0.000756 \ 11 \\ \alpha(\mathbf{N})=0.000186 \ 3; \ \alpha(\mathbf{O})=3.18\times10^{-5} \ 5;$	
$\alpha(M)=0.000756 \ II$ $\alpha(N)=0.000186 \ 3; \ \alpha(O)=3.18\times10^{-5} \ 5;$	
$\alpha(N)=0.000186 \ 3; \ \alpha(O)=3.18\times 10^{-5} \ 5;$	
$\alpha(P)=1.385\times10^{-6}\ 20$	
589.4 <i>I</i> 33.8 <i>I</i> 7 2303.60 (29/2 ⁻) 1714.20 (25/2 ⁻) (E2) 0.01677 DCO=1.13 <i>I</i> 3 (X) 0.01278 <i>I</i> 8 (I) 0.00204 5	
$\alpha(\mathbf{K})=0.01278 \ 18; \ \alpha(\mathbf{L})=0.00304 \ 5; \ \alpha(\mathbf{M})=0.000731 \ 11$	
$\alpha(M) = 0.000751717$ $\alpha(N) = 0.000180 3; \alpha(O) = 3.08 \times 10^{-5} 5;$	
$\alpha(P) = 1.352 \times 10^{-6} I9$	
596.1 5 7357.9 6761.8	
600.7 5 1.7 5 1555.6 23/2 ⁺ 954.90 21/2 ⁺ D+Q DCO=0.72 21	
$604.0 \ I 12.1 \ I8 3292.30 (35/2^{-}) 2688.30 (31/2^{-}) Q \qquad \qquad DCO=1.07 \ I5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
633.2.1 12.2.18 2688.30 (31/2-) 2055.10 (27/2-) 0 DCO=0.95.21	
$649.5 I 11.3 I7 1361.40 17/2^{-} 711.90 13/2^{-} Q \qquad DCO=1.10 II$	
$660.2 \ 1 36.4 \ 18 2189.40 29/2^+ 1529.20 25/2^+ Q \qquad \qquad \text{DCO}=0.97 \ 7$	
$663.7 \ 3 7.5 \ 11 2219.3 \qquad (27/2^+) 1555.6 23/2^+ \qquad Q \qquad DCO=1.13 \ 13$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6/5.2 I 21.5 II 2864.6 $33/2$ 2189.40 29/2 Q DCO=1.09 5 6861 I 32.0 I6 1185.20 $10/2^+$ 400.10 $17/2^+$ DLO DCO=0.45.5	
699.9.3 8.4.13 3574.0 (37/2-) 2874.1 (33/2-) 0 DCO=1.09.16	
700.45 1.75 4647.3 (45/2 ⁺) 3946.9 (41/2 ⁺) Q DCO=1.34	
707.7 <i>I</i> 12.9 <i>I</i> 9 1361.40 17/2 ⁻ 653.70 15/2 ⁺ D DCO=0.72 <i>I</i> 0	
707.8 5 8843.0 8135.2	
712.2 3 4.0 12 2931.5 $(31/2^+)$ 2219.3 $(27/2^+)$ Q DCO=1.08 15	
715.95 2.78 4168.5 (41/2-) 3452.6 (37/2-) Q DCO=1.33717.62 4.2.12 2582.2 (27/2+) 2864.6 22/2+ O DCO=1.02.15	
717.05 4.5 15 5582.2 (57/2) 2804.0 55/2 Q DCO=1.02 15 740 7 3 3 3 10 1695 60 (23/2 ⁻) 954 90 21/2 ⁺	
$740.9.5$ 7582.4 6841.5 $(57/2^+)$	
759.9 5 1.3 4 2979.2 $(31/2^+)$ 2219.3 $(27/2^+)$ Q DCO=1.3 5	
763.4 5 2.1 6 2818.5 2055.10 (27/2 ⁻)	
777.3 5 8135.2 7357.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\delta U \delta . 2 \ 3 \ 3 0 \ / 2 . \delta \ 2 \delta 0 4 . 0 \ 3 5 \ / 2 . 0 \ 5 5 \ (25)^{-1} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	
837.6 I 17.6 26 4686.1 (45/2 ⁺) 3848.5 (43/2 ⁺) D+O DCO=0.40 5	

¹⁷⁶Yb(¹⁸O,5nγ) **2009Hu12** (continued)

	$\gamma(^{189}\text{Pt})$ (continued)												
Eγ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments						
859.8 1	15.0 23	4708.3	$(47/2^+)$	3848.5	$(43/2^+)$	Q	DCO=1.03 10						
862.3 1	20 3	1361.40	$17/2^{-}$	499.10	$17/2^{+}$	D	DCO=1.05 9						
876.7 <i>3</i>	4.5 14	3066.1	$(33/2^+)$	2189.40	$29/2^{+}$	Q	DCO=1.25 16						
944.8 <i>5</i>	1.3 4	1443.90	$(21/2^+)$	499.10	$17/2^{+}$	Q	DCO=1.14 23						
972.7 <i>3</i>	3.1 9	6474.7	$(57/2^{-})$	5502.0	$(53/2^{-})$	Q	DCO=1.2 3						
986.0 <i>1</i>	10.9 16	4795.2	$(45/2^{-})$	3809.2	$(41/2^{-})$	Q	DCO=1.01 10						
1010.4 5	2.9 9	2539.6	$(27/2^+)$	1529.20	$25/2^+$	D+Q	DCO=0.48 11						
1039.4 <i>3</i>	6.0 9	4848.6	$(45/2^{-})$	3809.2	$(41/2^{-})$	Q	DCO=1.09 18						
1054.5 5	2.6 8	2009.40	$(25/2^+)$	954.90	$21/2^{+}$	Q	DCO=1.1 3						
1106.2 <i>3</i>	3.5 11	2635.40	$(29/2^+)$	1529.20	$25/2^{+}$	Q	DCO=0.98 20						
1122.8 <i>1</i>	12.7 19	6476.4	$(55/2^+)$	5353.6	$(53/2^+)$	D+Q	DCO=0.60 7						
1200.1 5	1.2 4	2729.3	$(29/2^+)$	1529.20	$25/2^+$	Q	DCO=1.2 4						

[†] From DCO ratios and RUL for E2 and M2 when level lifetimes are known. Mult=Q indicated stretched quadrupole (most likely E2); mult=D or D+Q indicates stretched dipole (E1 or M1 with small E2 admixture). For stretched quadrupole transitions, (E2) is assigned here for $E\gamma < 600$ keV based on assumed level half-life less than 20 ns (typical coincidence resolving time) and RUL for E2 and M2.

^{\ddagger} 2009Hu12 state uncertainty as 0.1-0.5 keV. The evaluators assign as follows: 0.1 keV for I γ >10, 0.3 keV for I γ =3-10 and 0.5 keV for I γ <3.

2009Hu12 state uncertainty as 5-30%. Evaluators assign as follows: 5% for I γ >20, 15% for I γ =5-20 and 30% for I γ <5.

[@] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.

& Multiply placed with intensity suitably divided.

¹⁸⁹₇₈Pt₁₁₁

¹⁷⁶Yb(¹⁸O,5nγ) 2009Hu12

¹⁷⁶Yb(¹⁸O,5nγ) 2009Hu12 Legend Level Scheme (continued) $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ ٠ Intensities: Relative I_{γ} • @ Multiply placed: intensity suitably divided ٠ ---] ^{240,23,3} 1^{83,6,23,3} $(23/2^{-})$ 1695.60 (E2) 12.6 Das < 000 55.5 555 (E) 2) Ð с²6.0 5 Ì $\frac{23/2^+}{25/2^+}$ 1555.6 1529.20 $\begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ 500. 0.00 9.8 8.8 $\frac{21/2^{-}}{(21/2^{-})}$ ⁴⁶⁰5 1512.00 Ń 1490.30 (21/2+) 1443.90 $\exists s_{3_{j_{s}}} a_{4_{0}} a_{4_{0}$ 17/2 1361.40 + 423,4 + 19/2+ 1185.20 $= \begin{bmatrix} 45.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 46.6 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 46.8 \\ 46.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.9 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 40.8 \\ 100 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\ 40.8 \\ 40.8 \\ 40.8 \\ 40.8 \\ 40.8 \end{bmatrix} + \begin{bmatrix} 45.6 \\ 40.8 \\$: 0x06 151 (53) $(17/2^{-})$ 1081.00 19/2+ 983.40 $\frac{21/2^+}{(17/2^+)}$ 175.4 ps 49 954.90 ŧ ۰. ł + 5395 (23) 1,50 + 1 943.90 6.52⁻0⁴0⁴⁵¹,⁵²,⁶ (E2) 34.0 13/2-711.90 15/2+ 653.70 ~` 5 (13/2-) 608.60 Ì ______, Ð 305.8° $(15/2^+)$ 531.20 $17/2^+$ 499.10 211.4 ps 55 + ³50,3 3,4 | + 231.0 E2 356.70 1960 1960 1973 $\frac{(9/2^-)}{(13/2^+)}$ 237.40 191.30 143 µs 5 9/2 172.40 464 ns 25 5/2-6.40 3/2-0

 $^{189}_{78}{\rm Pt}_{111}$

608.60

237.40

6.40

 $^{189}_{78}$ Pt $_{111}$

