Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	31-Aug-2021						

 $S(n)=8949 \ 30; \ S(p)=1516 \ 25; \ Q(\alpha)=7694 \ 15 \ 2021Wa16$

Q(ε)=8640 30, S(2n)=20390 40, S(2p)=1013 23, Q(εp)=9100 24 (2021Wa16).

1999An52, 2001Hu21: ¹⁸⁹Po produced by ¹⁴²Nd(⁵²Cr,5n), E=239-307 MeV, identified by the α -decay to the excited state of

¹⁸⁵Pb. Target: 290 μ g/cm² ¹⁴²NdF₃ enriched to 99.8%. Velocity filter SHIP.

2005An17: Cross section for production of ¹⁸⁹Po in heavy-ion reactions.

2005Va04: activity produced by ¹⁴²Nd(⁵²Cr,5n),E=5.27 MeV/nucleon; ¹⁴²Nd(⁵⁰Cr,3n),E=5.04 MeV/nucleon; 99.8% enriched

 142 Nd₂F₃ target; Detectors: velocity filter (SHIP), 16-strip position sensitive silicon detector for α -particles; 6 silicon detectors for

conversion electrons; four-fold segmented Clover detector for γ . Measured E(α), I(α), E(γ), $\alpha\gamma$ -coin, α (ce) coin, α_{tot} . Theoretical calculations: consult NSR database at www.nndc.bnl.gov/nsr/ for 25 primary references for α decay, and three

references (by the same author) on pre-scission neutron, proton, and α multiplicities in the fission process.

189Po Levels

Cross Reference (XREF) Flags

A 193 Rn α decay (1.15 ms)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments		
0	(5/2 ⁻)	3.5 ms 5	A	 %α≈100 (2005Va04) %α: only α decay has been observed by 2005Va04 (and 1999An52) with Eα=7259 15, 7309 20 and 7532 20. In 1999An52, the possibility of an additional α decay from an additional isomeric level is mentioned, and based on a comparison with ¹⁹¹Po, it was suggested that the decay energy and half-life should be similar to decay from the ground state. 2005Va04, from the same experimental group, presented potential energy surface calculations suggesting there should be only one state from which α decay can occur. Although this is referred to as an isomeric state, it is likely that what is meant is the ground state. J^π: particle-plus-rotor model calculations produce a negative-parity prolate minimum for 7/2[514] configuration (2005Va04). However, (5/2⁻) is supported by favored α decay to 278, (5/2⁻) state in ¹⁸⁵Pb which has possible configuration=v5/2[512]. T_{1/2}: from α decay curve (2005Va04). Other: 5 ms <i>1</i> (1999An52). 2005Va04 and 1999An52 are from the same group. The evaluators assume that half-life and α decay energies as reported in 2005Va04 supersede those in 1999An52. 		
				, , , , , , , , , , , , , , , , , , ,	<u>γ(¹⁸⁹Po)</u>	<u>)</u>
E _i (level)	J^π_i	Eγ	$I_{\gamma} = E_f$	J_f^{π} N	Mult. α^{\dagger}	Comments
194	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)	194 1	00 0	(5/2 ⁻) (1	M1) 1.69	9 $\alpha(K)=1.38; \alpha(L)=0.24; \alpha(M)=0.057; \alpha(N)=0.0147; \alpha(O)=0.00308; \alpha(P)=0.000398$ Mult.: from ce data in ¹⁹³ Rn α decay (2006An36) and prompt character of the transition.

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

