¹⁹³Rn α decay (1.15 ms) 2006An36

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	31-Aug-2021				

Parent: ¹⁹³Rn: E=0; T_{1/2}=1.15 ms 27; Q(α)=8040 12; % α decay \approx 100.0

¹⁹³Rn-E,T_{1/2}: From ¹⁹³Rn Adopted Levels in the ENSDF database (March 2017 update). No new references after this update. ¹⁹³Rn-Q(α): From 2021Wa16.

¹⁹³Rn-% α decay: % $\alpha \approx 100$ for ¹⁹³Rn decay (2006An36).

2006An36: ¹⁹³Rn produced and identified in ¹⁴⁴Sm(⁵²Cr,3n) reaction at E=252 MeV; ¹⁴⁴SmF₃ rotating target onto a carbon backing. UNILAC heavy-ion facility at GSI, with SHIP velocity filter for separating evaporation residues.

Several different types of detectors were used by 2006An36. The decays of the evaporation residues were measured by implanting residues in a thick 16-strip position-sensitive silicon detector (PSSD) with a typical FWHM \approx 20 keV for α particles in 6-8 MeV range. An array of six silicon detectors of similar shape (BOX detectors), mounted upstream of PSSD detector, was used to measure the energies of α , β and conversion electrons. Three thin time-of-flight detectors in front of the PSSD and BOX detectors permitted identification of reaction products from the scattered beam particles; and distinction between the decay events and implantation events through anti-coincidence technique. An additional thick Si detector was installed as a veto detector behind the PSSD detector in an anti-coincidence mode. This allowed distinction between the decays and the punch-through events (from high-energy protons and α particles produced in the reactions on the carbon backing). For γ rays, a four-fold segmented 'Clover' Ge detector was used behind the PSSD detectors for prompt and delayed γ (residues) coin and/or $\alpha\gamma$ coin measurements. Measured α , γ , $\alpha\gamma$ coin, α (residues) coin.

¹⁸⁹Po Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †	Comments
0	(5/2 ⁻)	3.5 ms 5	
194	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)		J^{π} : (M1) γ to the (5/2 ⁻). The α hindrance factor of 1.9 suggests favored α decay, and similar J^{π} values for this level and the ¹⁹³ Rn g.s. parent.

[†] From the Adopted Levels.

α radiations

Εα	E(level)	$I\alpha^{\#}$	$\mathrm{HF}^{\dagger\ddagger}$	Comments		
7685 <i>15</i>	194	74 20	≈1.6	HF: 1 (2006An36).		
7875 <i>20</i>	0	26 12	≈17	HF: ≈11 (2006An36).		

[†] Deduced by evaluators using $r_0(^{189}Po)=1.5875$ 130, from unweighted average of $r_0(^{190}Po)=1.590$ 11 and $r_0(^{192}Po)=1.585$ 15 taken from 2020Si16 evaluation.

[±] The nuclear radius parameter $r_0(^{189}\text{Po})=1.588$ 13 as specified by the user.

[#] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

γ(¹⁸⁹Po)

Eγ	Iγ	E_i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}$	Comments
194	28 8	194	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)	0	(5/2-)	(M1)	1.69	74 20	$\alpha(K)=1.38; \alpha(L)=0.24; \alpha(M)=0.057;$

 $\alpha(N)=0.0147$; $\alpha(O)=0.00308$; $\alpha(P)=0.000398$ α : Theoretical conversion coefficient from BrIcc code.

 $I_{(\gamma+ce)}$: from I α =74 20 per 100 α decays.

 I_{γ} : from $I(\gamma+ce)$ and α .

¹⁹³Rn α decay (1.15 ms) 2006An36 (continued)

γ (¹⁸⁹Po) (continued)

 E_{γ} E_i (level)

Comments

Mult.: from $\alpha(K)\exp\approx 2$ (from ce data,2006An36).

[†] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³Rn α decay (1.15 ms) 2006An36

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

¹⁸⁹₈₄Po₁₀₅