158 Gd(36 Ar,5n γ), 164 Er(29 Si,4n γ) 2005Ba51

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

Includes 157 Gd(36 Ar,4n γ) from 1995Sp01.

First experiment: 158 Gd(36 Ar,5n γ): E=178 MeV. Measured E γ , I γ , $\gamma\gamma$, particle- γ coin with 10 Compton-suppressed Ge detectors and parallel-grid avalanche counter (PGAC). Fragment mass analyzer (FMA) used to accept evaporation residues recoiling from target according to their mass/charge ratio. Reaction products detected by PGAC via energy loss (Δ E) and focal-plane-position signals.

Second experiment: ${}^{164}\text{Er}({}^{29}\text{Si},4n\gamma)$: E=140 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$, lifetimes with six Compton-suppressed Ge detectors and two planar low-energy photon spectrometer (LEPS) detectors of the CAESAR array.

1995Sp01: 157 Gd(36 Ar,4n γ) E=173 MeV. Measured E γ and $\gamma\gamma$ using EUROBALL array. 609-538-468-818 γ cascade reported.

¹⁸⁹Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
40 ^{&} 4	(13/2+)		Additional information 1. E(level): from Adopted Levels.
677.51 23	$(13/2^+)$		
858.82 ^{&} 10	$(17/2^+)$		
950.46 [@] 17	$(15/2^+)$		
1181.42 [#] 16	$(17/2^+)$	<6.9 ns	
1327.23 ^{&} <i>13</i>	$(21/2^+)$	<2.1 ns	
1340.04 [@] 13	$(19/2^+)$		
1607.33 [#] 15	$(21/2^+)$	<2.8 ns	
1865.41 ^{&} 16	$(25/2^+)$		
2137.73 [#] 16 2280.1 3 2476.4 5	(25/2 ⁺) (27/2)	<2.1 ns	
3142.4 7			

[†] Deduced by evaluators from least-squares fit to $E\gamma$ data, keeping the energy of the 40-keV level as fixed, its uncertainty of 4 keV is not carried over in the energies of the higher levels. Note that level in 2005Ba51 are given relative to the isomeric level at 40 keV.

[‡] Assignments are based on systematics of neighboring isotopes and isotones, multipolarities of transitions and related transition strengths.

[#] Band(A): Band based on $(17/2^+), \alpha = +1/2$. 2005Ba51 compared this band with 9/2[624] band in ¹⁸⁷Pb.

[@] Band(a): Band based on $(15/2^+), \alpha = -1/2$. 2005Ba51 compared this band with 9/2[624] band in ¹⁸⁷Pb.

[&] Band(B): $vi_{13/2}^{-3}$ band.

$\gamma(^{189}\text{Pb})$

E_{γ}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
142.4 2	7.0 24	2280.1	(27/2)	2137.73	$(25/2^+)$
(230.9 ^{†#} 2)		1181.42	$(17/2^+)$	950.46	$(15/2^+)$
^x 264 ^{†#@}					
(267.4 ^{†#} 3)		1607.33	$(21/2^+)$	1340.04	$(19/2^+)$
(272.4 ^{†#} 2)		2137.73	$(25/2^+)$	1865.41	$(25/2^+)$
^x 279 ^{‡@}					

¹⁵⁸Gd(³⁶Ar, $5n\gamma$),¹⁶⁴Er(²⁹Si, $4n\gamma$) **2005Ba51** (continued)

$\gamma(^{189}\text{Pb})$ (continued)

Eγ	Ιγ ^{&}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Comments
(279.7 ^{†#} 2)		1607.33	$(21/2^+)$	1327.23	$(21/2^+)$	
389.72 x_{394}	≈8	1340.04	(19/2 ⁺)	950.46	$(15/2^+)$	
425.9 1	≈ 8	1607.33	$(21/2^+)$	1181.42	$(17/2^+)$	
468.4 1	75 8	1327.23	$(21/2^+)$	858.82	$(17/2^+)$	Additional information 3.
^x 470 [@]						E_{γ} : seen in coin with a 854 line.
(481.2 ^{†#} <i>I</i>)		1340.04	$(19/2^+)$	858.82	$(17/2^+)$	
(503.8 ^{†#} 3)		1181.42	$(17/2^+)$	677.51	(13/2 ⁺)	E_{γ} : possibly masked by 502 transitions from ¹⁸⁹ Tl in mass gate.
530.3 <i>1</i>	≈ 8	2137.73	$(25/2^+)$	1607.33	$(21/2^+)$	0
538.2 1	24.0 24	1865.41	$(25/2^+)$	1327.23	$(21/2^+)$	Additional information 4.
$x_{602}^{\ddagger @}$						
611.0 4	20 4	2476.4		1865.41	$(25/2^+)$	Additional information 5.
637.4 <i>3</i>	20 2	677.51	$(13/2^+)$	40	$(13/2^+)$	
666.0 5	12 4	3142.4		2476.4		
810.8 2	92	2137.73	$(25/2^+)$	1327.23	$(21/2^+)$	
818.8 <i>I</i>	100	858.82	$(17/2^+)$	40	$(13/2^+)$	Additional information 2.
^x 854 ^{†#@}						
910.6 <i>3</i>	22.0 22	950.46	$(15/2^+)$	40	$(13/2^+)$	
1142.1 6	20 6	1181.42	$(17/2^+)$	40	$(13/2^+)$	

[†] Prominent line in coin with A=189 recoils, but assignment to a nuclide could not be made. The 264 γ was seen in recoil- $\gamma\gamma$ data to be in coin with 279, 394 and 602 lines, but not seen in coin with any of the ¹⁸⁹Pb γ rays in the work of 2005Ba51. Possibly prompt transition feeding the isomer.

[‡] Seen in coin with 264γ , but no coin with any of the other ¹⁸⁹Pb γ rays in the present study. This may be a prompt transition feeding the $22-\mu$ s isomer.

[#] Observed in isomer decay.

[@] Isotopic assignment uncertain.

& Values are from in-beam measurements. All values scaled down by a factor of five so as to renormalize the decay scheme to an intensity of 100 for the 818 γ -ray.

^{*x*} γ ray not placed in level scheme.

 $^{189}_{82}{\rm Pb}_{107}$