¹⁰⁶Pd(⁸⁶Kr,3nγ) 2015Ho14

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017					

2015Ho14: E(⁸⁶Kr)=355 MeV from K130 cyclotron facility at Jyvaskyla. Measured E γ , I γ , $\gamma\gamma$, recoil-isomer-tagged prompt $\gamma\gamma$ and prompt- delayed and delayed-delayed $\gamma\gamma$ spectra, and angular intensity ratios using JUROGAM-II array of 39 Compton-suppressed HPGe detectors. Recoiling nuclei were transported through the RITU separator, followed by detection of events using GREAT spectrometer consisting of a multiwire proportional counter (MWPC), two double-sided silicon strip detectors (DSSDs), three Clover Ge detectors, and a planar Ge detector; the Ge detector system of the GREAT spectrometer was used to detect γ rays from isomer decay as well as those from β^- decay of implanted nuclei. Recoil-isomer tagging and recoil-gated γ detection techniques were used. Deduced a dipole band above the $31/2^-$, $22-\mu$ s isomer, conversion coefficients, multipolarities, configuration, and alignments. Comparison with structure of neighboring nuclei.

¹⁸⁹Pb Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
40 4	13/2+	50 s 3	%ε+%β ⁺ ≈100; %α≤0.40 Additional information 1. Half-life and decay modes are from ¹⁸⁹ Pb Adopted Levels.
677.5 8	$13/2^{+}$, I
858.9 7	$17/2^{+}$		
950.7 7	$15/2^{+}$		
1181.9 7	$17/2^{+}$		
1327.2 10	$21/2^{+}$		
1340.3 9	19/2+		
1607.6 9	$21/2^+$		
1813.1 11	$23/2^+$		
1865.5 11	25/2+		J^{n} : negative parity in level-scheme Figure 5 of 2015Ho14 seems a misprint.
2137.8 10	25/2+		
2280.2 13	27/21		
2474.5 # 12	$31/2^{-}$	22.2 µs +69–14	%IT=100
	(22)(24)		$T_{1/2}$: from Adopted Levels.
2654.3? 12	$(33/2^{+})$		J^{n} : (33/2) in Adopted Levels.
2680.9 [#] 12	33/2-		
3069.7 [#] 12	$35/2^{(-)}$		
3229.0? 16	$(33/2^{-})$		
3488.4? [#] 13	$37/2^{(-)}$		
3923.4? [#] 13	$(39/2^{-})$		
1336.62 [#] 13	$(41/2^{-})$		
4671 79# 15	(+1/2)		
40/1./?" 13	(43/2)		

[†] From least-squares fit by evaluators to $E\gamma$ values, assuming 1 keV uncertainty when not listed, and fixing the energy of the $13/2^+$ isomer at 40 keV. Energies listed in 2015Ho14 are relative to zero for the $13/2^+$ isomer.

[‡] Assignments are from 2015Ho14, based on those in 2009Dr03 for levels up to the 31/2⁻ isomer at 2474.5 keV.

[#] Band(A): Magnetic-rotational (shears) dipole band. In comparison to structure of neighboring nuclides, this band is proposed as based on $\pi[s_{1/2}^{-2}h_{9/2}i_{13/2}]_{11-} \otimes \nu i_{13/2}^{-1}$ configuration.

¹⁰⁶Pd(⁸⁶Kr,3nγ) **2015Ho14** (continued)

$\gamma(^{189}\text{Pb})$

 $R(\theta)$ =angular intensity ratio obtained from recoil-tagged $\gamma\gamma$ matrix. Based on presently measured $R(\theta)$ for four transitions of known multipolarity in ¹⁸⁹Tl, 2015Ho14 establish average $R(\theta)$ =0.54 4 for stretched dipole, and 1.07 3 for stretched quadrupole transition.

Relative K x ray and Gamma-ray intensities								
E(x ra 75.0, 84.9, 206.4 413.2 418.7 435.0	ay) or Εγ K _{αl} K _{βl}	I(x 435 127 412 136 456 180	ray) or 6 81 7 50 0 100 7 56 4 83 4 72	Ιγ				
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α b	Comments
142 179.8 ^c 3	16.6 4	2280.2 2654.3? 2474_5	$27/2^+$ (33/2 ⁺) 31/2 ⁻	2137.8 2474.5 2280.2	$25/2^+$ $31/2^-$ $27/2^+$	D м2 [@]		R(θ)=0.49 δ.
206.4 <i>I</i>	99.9 16	2680.9	33/2-	2474.5	31/2-	M1	1.199	α(K)exp=1.11 4 (2015Ho14) α(K)=0.979 14; α(L)=0.1683 24; α(M)=0.0394 6 α(N)=0.01002 14; α(O)=0.00200 3; α(P)=0.000214 3 Mult.: from $α(K)exp$ deduced from K-x ray and γ intensities obtained from recoil-isomer tagged $γγ$ matrix with a gate on the 389-keV transition. In this procedure, theoretical x-ray intensities from the internal conversion of the 419-, 435-, and 413-keV $γ$ -rays was subtracted from the total x-ray intensity, with the assumption of M1 for 413, 419 and 435 $γ$ rays. If E1 is assumed for all these three $γ$ rays, then $α(K)exp=1.35 4 (2015Ho14)$ for 206.4 $γ$, inconsistent with either the E1 or M1 for this transition. R(θ)=0.56 5.
231 267 272 280 324 325		1181.9 1607.6 2137.8 1607.6 1181.9 2137.8	17/2 ⁺ 21/2 ⁺ 25/2 ⁺ 21/2 ⁺ 17/2 ⁺ 25/2 ⁺	950.7 1340.3 1865.5 1327.2 858.9 1813.1	15/2 ⁺ 19/2 ⁺ 25/2 ⁺ 21/2 ⁺ 17/2 ⁺ 23/2 ⁺			
335.1 ^c 6	18.3 9	4671.7?	(43/2 ⁻)	4336.6?	(41/2 ⁻)	(M1) ^{<i>a</i>}	0.316	$\begin{aligned} &\alpha(\mathbf{K}) = 0.258 \ 4; \ \alpha(\mathbf{L}) = 0.0440 \ 7; \ \alpha(\mathbf{M}) = 0.01029 \ 16 \\ &\alpha(\mathbf{N}) = 0.00261 \ 4; \ \alpha(\mathbf{O}) = 0.000521 \ 8; \\ &\alpha(\mathbf{P}) = 5.58 \times 10^{-5} \ 9 \end{aligned}$ Due to poor statistics, firm coincidence evidence of the placement of the 335.1-keV γ ray from recoil-isomer-tagged prompt $\gamma\gamma$ spectra is lacking. Present placement is based on systematic arguments. $\mathbf{R}(\theta) = 0.38 \ 13. \end{aligned}$
337 388.8 2	100.0 17	2474.5 3069.7	31/2 ⁻ 35/2 ⁽⁻⁾	2137.8 2680.9	25/2 ⁺ 33/2 ⁻	E3 [@] (M1) ^a	0.211	$\alpha(K)=0.1729\ 25;\ \alpha(L)=0.0293\ 5;\ \alpha(M)=0.00686$
						. ,		

Continued on next page (footnotes at end of table)

¹⁰⁶Pd(⁸⁶Kr,3nγ) **2015Ho14** (continued)

$\gamma(^{189}\text{Pb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	$\alpha^{\boldsymbol{b}}$	Comments
								10 $\alpha(N)=0.001744\ 25;\ \alpha(O)=0.000348\ 5;$ $\alpha(P)=3.72\times10^{-5}\ 6$ $R(\theta)=0.49\ 6.$
390		1340.3	$19/2^{+}$	950.7	$15/2^{+}$			
413.2 3	16.7 7	4336.6?	(41/2 ⁻)	3923.4?	(39/2 ⁻)	(M1) ^{&}	0.179	α (K)=0.1469 21; α (L)=0.0249 4; α (M)=0.00582 9 α (N)=0.001479 21; α (O)=0.000295 5; α (P)=3.16×10 ⁻⁵ 5 R(θ)=0.69 24.
418.7 3	39.6 10	3488.4?	37/2 ⁽⁻⁾	3069.7	35/2 ⁽⁻⁾	(M1) ^{&}	0.1731	$\alpha(K)=0.1418 \ 20; \ \alpha(L)=0.0240 \ 4; \\ \alpha(M)=0.00561 \ 8 \\ \alpha(N)=0.001427 \ 21; \ \alpha(O)=0.000284 \ 4; \\ \alpha(P)=3.05\times10^{-5} \ 5 \\ R(\theta)=0.44 \ 10.$
426		1607.6	$21/2^{+}$	1181.9	$17/2^{+}$			
435.0 3	24.7 8	3923.4?	(39/2 ⁻)	3488.4?	37/2 ⁽⁻⁾	(M1) ^{&}	0.1563	$\alpha(K)=0.1280 \ 18; \ \alpha(L)=0.0217 \ 3; \\ \alpha(M)=0.00506 \ 8 \\ \alpha(N)=0.001287 \ 19; \ \alpha(O)=0.000257 \ 4; \\ \alpha(P)=2.75\times10^{-5} \ 4 \\ R(\theta)=0.62 \ 17.$
468 473		1327.2 1813.1	21/2 ⁺ 23/2 ⁺	858.9 1340.3	17/2 ⁺ 19/2 ⁺			
481		1340.3	$19/2^{+}$	858.9	$17/2^{+}$			
504		1181.9	$17/2^+$	677.5	$13/2^+$			
538		1865.5	25/2 $25/2^+$	1327.2	$\frac{21}{2}^{+}$			
609		2474.5	31/2-	1865.5	$25/2^+$	(E3) [@]		
637		677.5	$13/2^{+}$	40	$13/2^{+}$			
754.5 [°] 10	19.8 9	3229.0?	$(33/2^{-})$	2474.5	31/2-	D		$R(\theta)=0.36\ 20.$
811		2137.8	25/2+	1327.2	21/2+			
019 911		858.9 950 7	$\frac{1}{15/2^+}$	40 40	$\frac{13}{2^+}$			
1142		1181.9	$17/2^+$	40	$13/2^+$			

[†] For γ rays from levels up to 2474.5 keV, 2015Ho14 quote values from 2009Dr03. For higher levels, values are from Table I of 2015Ho14.

 \ddagger Intensities listed here are from Table I of 2015Ho14 divided by a factor of 10.

[#] Stretched dipole from $R(\theta)$, except when noted otherwise.

[@] From Adopted Gammas.

[&] From stretched dipole, and analysis of K-conversion coefficient for 206.4 γ . See comment for 206.4 γ from 2681 level. Also possible transition in a magnetic-dipole rotational band.

^{*a*} From stretched dipole from $R(\theta)$, and transition intensity balance arguments. Also possible transition in a magnetic-dipole rotational band.

^b Theoretical values from BrIcc code with "Frozen Orbitals" approximation.

^c Placement of transition in the level scheme is uncertain.

 $^{189}_{82}\mathrm{Pb}_{107}$

4

¹⁰⁶Pd(⁸⁶Kr,3nγ) 2015Ho14

 $^{189}_{82}\mathrm{Pb}_{107}$