¹⁸⁹Ir ε decay (13.2 d) 1970Ma37,1969Gr10,1962Ha24

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

Parent: ¹⁸⁹Ir: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=13.2$ d *1*; $Q(\varepsilon)=537$ *13*; $\%\varepsilon$ decay=100.0

¹⁸⁹Ir-J^{π},T_{1/2}: From ¹⁸⁹Ir Adopted Levels.

¹⁸⁹Ir-Q(ε): From 2017Wa10.

1970Ma37: measured $E\gamma$, $I\gamma$, E(ce), I(ce), (ce)ce(t).

1969Gr10: measured $E\gamma$, $I\gamma$, (x ray)(ce)(t).

Others: 1971Be71 ($\gamma\gamma(\theta)$), 1966Sy01, 1963Cr06.

¹⁸⁹Os Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	3/2-		
30.79 4	9/2-	5.81 h 10	
36.173 25	$1/2^{-}$	0.53 ns 3	
69.512 24	5/2-	1.62 ns 4	T _{1/2} : weighted average of delayed coincidence measurements 1.59 ns 8 (1970Ma37), 1.63 ns 4 (1969Gr10), and 1.7 ns <i>I</i> (1969An17) in ¹⁸⁹ Ir ε decay.
95.23 <i>3</i>	3/2-	0.23 ns 3	$T_{1/2}$: other: <0.3 ns (1969Gr10).
216.64 4	$7/2^{-}$		
219.36 5	$7/2^{-}$		
233.53 6	$5/2^{-}$		
275.84 5	5/2-	0.17 ns 3	J^{π} : 3/2,5/2 from $\gamma\gamma(\theta)$ in 1971Be71.
438.64 6	1/2-,3/2-		

[†] From Adopted Levels.

[‡] From 1970Ma37, except where noted otherwise, based on $\gamma\gamma$ (t).

 ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(98 13)	438.64	0.076 9	7.8 3	εK=0.27 17; εL=0.53 12; εM+=0.20 6
(261 13)	275.84	10.1 11	7.0 1	εK=0.724 8; εL=0.206 6; εM+=0.0694 22
(303 13)	233.53	1.09 12	8.1 <i>1</i>	εK=0.743 5; εL=0.193 4; εM+=0.0642 14
(442 13)	95.23	11.6 17	7.5 1	εK=0.7740 19; εL=0.1705 14; εM+=0.0555 6
(467 13)	69.512	35 5	7.1 <i>1</i>	εK=0.7774 17; εL=0.1680 12; εM+=0.0546 5
(501 13)	36.173	2.0 17	8.4 4	εK=0.7811 14; εL=0.1653 10; εM+=0.0535 4
(537 13)	0.0	40 7	7.2 1	εK=0.7846 12; εL=0.1628 9; εM+=0.0526 4

[†] Absolute intensity per 100 decays.

¹⁸⁹Ir ε decay (13.2 d) **1970Ma37,1969Gr10,1962Ha24** (continued)

$\gamma(^{189}\text{Os})$

I γ normalization: From I(K x ray)=1270 70 (1970Ma37) and corrections for fluorescence yield, internal conversion, and I(K x ray)/I ϵ .

 $\gamma\gamma(\theta)$ angular correlations (1971Be71). NaI(Tl), resolving time of 50 ns, chemical separation of sources. Assignments below were made by evaluators assuming $J^{\pi}(0)=3/2^{-}$, $J^{\pi}(69)=5/2^{-}$, and $J^{\pi}(95)=3/2^{-}$ from Adopted Levels. All parities are from Adopted Levels.

Experimental conversion coefficients from 1970Ma37, 1962Ha24. Other: 1966Sy01. Normalized assuming $\alpha(K)\exp(245\gamma)=0.101$.

 \mathbf{P}

E_{γ}^{\dagger}	$I_{\gamma}^{@b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.&	δ&	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
25.65 [‡] 10	0.40 5	95.23	3/2-	69.512	5/2-	M1+E2	0.11 +5-3	84 <i>34</i>		α (L)=64 26; α (M)=15.3 65 α (N)=3.7 16; α (O)=0.60 23; α (P)=0.0293 6 α (L1)exp=55 18; L1:L2:L3=22 7:12.5 38:4.2 +70-42
30.80 [‡] 4		30.79	9/2-	0.0	3/2-	M3+E4	0.04 2	3.13×10 ⁵ 10	124 4	ce(L)/(γ +ce)=0.707 <i>19</i> ; ce(M)/(γ +ce)=0.227 <i>11</i> ce(N)/(γ +ce)=0.057 <i>3</i> ; ce(O)/(γ +ce)=0.0085 <i>5</i> ; ce(P)/(γ +ce)=0.000152 <i>6</i> α (L)=2.21×10 ⁵ <i>6</i> ; α (M)=7.1×10 ⁴ <i>4</i> α (N)=1.79×10 ⁴ <i>9</i> ; α (O)=2.66×10 ³ <i>10</i> ; α (P)=47.6 <i>8</i> L1:L2:L3:M1:M3=17.4 <i>10</i> :1.8 <i>30</i> :90 <i>6</i> :6.0 <i>15</i> :26 <i>8</i> . Others: 1962Ha24, 1966Sy01. I _(γ+ce) : from intensity balance assuming no direct ε feeding. Other: I(γ +ce)=153 <i>10</i> from ce(L3)(30.8 γ)/I γ (69.5 γ)=90 <i>5</i> /59 <i>6</i> .
33.31 [‡] 4	0.113 14	69.512	5/2-	36.173	1/2-	E2		723		α (L)=546 9; α (M)=138.5 21 α (N)=33.0 5; α (O)=4.83 8; α (P)=0.00382 6 L2/L3=0.94 8 (1970Ma37) I _{γ} : from ce(L3)(33 γ)/I γ (69.6)=33 2/59 6.
36.17 [‡] 4	11.2 10	36.173	1/2-	0.0	3/2-	M1+E2	0.046 5	20.2 4		α (L)=15.6 3; α (M)=3.60 7 α (N)=0.877 17; α (O)=0.150 3; α (P)=0.01064 16 α (L1)exp=12 1; L1:L2:L3=135 6:21.3 6:4.4 20 L1:L2:L3:M:N=360:50:13:140:45 (1962Ha24).
56.50 [‡] 4	2.5 5	275.84	5/2-	219.36	7/2-	M1		5.17		$\begin{array}{l} \alpha(\text{L}){=}3.99\ 6;\ \alpha(\text{M}){=}0.916\ 13\\ \alpha(\text{N}){=}0.224\ 4;\ \alpha(\text{O}){=}0.0386\ 6;\ \alpha(\text{P}){=}0.00287\ 4\\ \alpha(\text{L}1)\text{exp}{=}3.5\ (1962\text{Ha}24);\ \text{L}1\text{L}2\text{:M}{=}39\text{:}5\text{:}10\\ (56\gamma)(219\gamma)(\theta):\ \text{A}_2{=}{-}0.075\ 25,\ \text{A}_4{=}{+}0.031\ 30;\\ \text{J}(276){=}3/2,7/2\ \text{and}\ \text{J}(219){=}5/2;\ \text{sign of}\ \delta(56)\ \text{not}\\ \text{determined;\ or}\ \text{J}(276){=}5/2\ \text{and}\ \text{J}(219){=}7/2^-,\\ \delta(56){=}{-}0.09\ 4. \end{array}$
59.05 ^{<i>c</i>‡} 2	20 ^c 2	95.23	3/2-	36.173	1/2-	M1+E2	0.085 10	4.83 10		$\begin{array}{l} \alpha(\text{L1}) \exp = 3.6 \ 4; \ \text{L1:L2:L3:M1} = 75 \ 8:8.8 \ 10:3.0 \\ 30:25 \ 19 \\ \alpha(\text{L}) = 3.72 \ 8; \ \alpha(\text{M}) = 0.860 \ 19 \\ \alpha(\text{N}) = 0.210 \ 5; \ \alpha(\text{O}) = 0.0358 \ 7; \ \alpha(\text{P}) = 0.00250 \ 4 \\ \delta: \ \text{other:} \ 0.06 \ 4 \ \text{from } \varepsilon \ \text{decay.} \\ \text{I}_{\gamma}: \ \text{I}_{\gamma}(59.0\gamma + 59.3\gamma) = 21 \ 2. \ \text{See comment on } 59.3\gamma. \end{array}$

				18	³⁹ Irεd	ecay (13.2 d)	1970Ma3	7,1969Gr10,1	962Ha24 (continued)	
γ ⁽¹⁸⁹ Os) (continued)										
${\rm E}_{\gamma}^{\dagger}$	Ι _γ @ <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&}$	α^{a}	Comments	
59.05 ^c 2	≈1 ^c	275.84	5/2-	216.64	7/2-	(M1+E2)	≈0.9	≈22.1	$\begin{array}{l} \alpha(L) \approx 16.70; \ \alpha(M) \approx 4.22 \\ \alpha(N) \approx 1.011; \ \alpha(O) \approx 0.1510; \ \alpha(P) \approx 0.001547 \\ L1/L2 \approx 5 \ (1962Ha24) \\ L1 \text{ not completely resolved.} \\ I_{\gamma}: \text{ from ce}(L3)(59.3\gamma)/I\gamma(245\gamma) \approx 0.03. \\ \delta: \text{ estimated from intensity balance through 216.7 level assuming no feeding to that level.} \\ E_{\gamma}: \text{ note that this transition is not confirmed in } (n,\gamma) \ \gamma\gamma \ \text{coin measurements.} \end{array}$	
69.52 [‡] 3	59 6	69.512	5/2-	0.0	3/2-	M1+E2	+0.683 25	8.3 <i>3</i>	$\begin{array}{l} \alpha(\text{L2})\text{exp}=3.0 \ 3\\ \text{L1:L2:L3}=100 \ 5:180 \ 5:169 \ 5\\ \alpha(\text{L})=6.26 \ 23; \ \alpha(\text{M})=1.56 \ 6\\ \alpha(\text{N})=0.375 \ 14; \ \alpha(\text{O})=0.0573 \ 20; \ \alpha(\text{P})=0.00113 \ 3\\ \text{L1:L2:L3:M:N}=490:830:780:570:180 \ (1962\text{Ha24}).\\ \delta: \ \text{other:} \ 0.70 \ 3 \ \text{from ce data in } \varepsilon \ \text{decay. Sign from 1968Ku17,}\\ 1968\text{Pe09, 1972Wa24.} \end{array}$	
95.23 [‡] 4	6.4 5	95.23	3/2-	0.0	3/2-	M1+E2	+0.32 2	6.37	α (K)exp=5.3 6 α (K)=4.93 9; α (L)=1.10 4; α (M)=0.262 8 α (N)=0.0635 20; α (O)=0.0105 3; α (P)=0.000577 10 δ : other: 0.29 4 from ε decay. K:L1:L2:L3=33.8 8:4.8 8:1.35 15:0.97 20.	
138.3 1	<0.01 1.14 <i>13</i>	233.53	5/2-	95.23	3/2-	M1+E2	-0.8 2	1.84 <i>13</i>	α(K)=1.29 18; α(L)=0.42 4; α(M)=0.102 11 α(N)=0.025 3; α(O)=0.0039 4; α(P)=0.000146 23 α(K)exp=0.22; K:L12:L3=16 8:2.0 10:0.8 $(138\gamma)(95\gamma)(θ): A_2=-0.123 19, A_4=-0.004 9; for δ(95)=+0.32:$ J(233)=1/2, δ(138)=+0.19; J(233)=3/2, δ(138)=-0.37; J(233)=5/2, δ(138)=+0.043. K,L12 from 1966Sy01 and L3 from 1962Ha24. From 1962Ha24 K=13, and L1,L2 were reported as a composite of 2 different lines and M was observed but not completely resolved. $α(K)exp$ calculated using intensities from 1962Ha24	
147.1 <i>1</i>	1.80 <i>14</i>	216.64	7/2-	69.512	5/2-	M1+E2	-1.0 +4-3	1.43 21	calculated using intensities from 1962Ha24. $\alpha(K) \exp=0.73$ $\alpha(K) = 0.96\ 28;\ \alpha(L) = 0.36\ 5;\ \alpha(M) = 0.088\ 15$ $\alpha(N) = 0.021\ 4;\ \alpha(O) = 0.0033\ 5;\ \alpha(P) = 1.07 \times 10^{-4}\ 35$ $(147\gamma)(69\gamma)(\theta):\ A_2 = -0.184\ 34,\ A_4 = +0.049\ 19;\ J(217) = 7/2.$ K:L1:L2:L3=130: $\approx 25:\approx 20:\approx 15.$ Intensities obtained by multiplying by a factor of 10 to compare with γ intensity from 1970Ma37. δ : other: $-1\ 2 + 34 - 4$ from ε decay	
149.9 <i>1</i>	1.41 10	219.36	7/2-	69.512	5/2-	E2		0.915	$\alpha(K)=0.352\ 5;\ \alpha(L)=0.425\ 6;\ \alpha(M)=0.1082\ 16$	

ω

					¹⁸⁹	[r ε decay (13.2 d) 1970)Ma37,196	9Gr10,1962Ha24 (continued)
							$\gamma(^{189}$	Os) (contir	nued)
E_{γ}^{\dagger}	Ι _γ @ <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&}	α^{a}	Comments
			_						α (N)=0.0260 4; α (O)=0.00388 6; α (P)=3.20×10 ⁻⁵ 5 α (K)exp=0.43 (1962Ha24) K:L2:L3:M:N=6:3.5:2.4:2.2:6.3.
164.0 <i>1</i>	1.23 6	233.53	5/2-	69.512	5/2-	M1+E2	<1.7	1.1 3	L2 not completely resolved. $\alpha(K)=0.82 \ 32; \ \alpha(L)=0.22 \ 4; \ \alpha(M)=0.054 \ 12$ $\alpha(N)=0.013 \ 3; \ \alpha(O)=0.0021 \ 4; \ \alpha(P)=9.3\times10^{-5} \ 40$ K/L1=7.3; $\alpha(K)\exp=1.1 \ (1962Ha24)$
180.5 <i>1</i>	0.49 5	275.84	5/2-	95.23	3/2-	M1+E2	>0.2	0.75 28	δ: deduced assuming 50% uncertainty for α (K)exp and K/L1. α (K)=0.53 32; α (L)=0.166 24; α (M)=0.040 8 α (N)=0.0098 18; α (O)=0.00155 19; α (P)=5.9×10 ⁻⁵ 39 α (K)exp=0.86 (1966Sy01) (180γ)(95γ)(θ): A ₂ =-0.087 15, A ₄ =+0.066 63; J(276)=1/2,3/2,5/2; δ (95γ)=+0.32. K/L=3.0 15/2.8 10.
185.85 <i>1</i>	3.0 <i>3</i>	216.64	7/2-	30.79	9/2-	M1+E2	<0.5	0.91 6	α (K)exp is calculated using intensities from 1962Ha24 where K=3.2. K/L1 \approx 7.2; α (K)exp=0.82 (1962Ha24) α (K)=0.74 6; α (L)=0.133 5; α (M)=0.0309 14 α (N)=0.0075 4; α (O)=0.00128 4; α (P)=8.6×10 ⁻⁵ 8
188.6 <i>1</i>	0.86 7	219.36	7/2-	30.79	9/2-	M1+E2	1.5 +10-4	0.57 9	<i>δ</i> : deduced assuming 50% uncertainty for <i>α</i> (K)exp and K/L1. <i>α</i> (K)=0.373 97; <i>α</i> (L)=0.147 6; <i>α</i> (M)=0.0362 20 <i>α</i> (N)=0.0087 5; <i>α</i> (O)=0.00137 5; <i>α</i> (P)=4.0×10 ⁻⁵ 12 K/L3≈10; <i>α</i> (K)exp=0.39 (1962Ha24)
197.4 <i>1</i>	4.4 2	233.53	5/2-	36.173	1/2-	E2		0.347	<i>δ</i> : deduced assuming <i>α</i> (K)exp and K/L3 uncertainties are 50%. <i>α</i> (K)=0.1755 <i>25</i> ; <i>α</i> (L)=0.1298 <i>19</i> ; <i>α</i> (M)=0.0327 <i>5</i> <i>α</i> (N)=0.00787 <i>12</i> ; <i>α</i> (O)=0.001189 <i>17</i> ; <i>α</i> (P)=1.642×10 ⁻⁵ <i>23</i> K/L2≈5.3; <i>α</i> (K)exp=0.40 (1962Ha24) (197γ)(36γ)(θ): isotropic; J(36 level)=1/2.
206.3 1	1.33 5	275.84	5/2-	69.512	5/2-	M1+E2	>1.9	0.35 5	L2 was not completely resolved. $\alpha(K)=0.20 5; \alpha(L)=0.1067 20; \alpha(M)=0.0266 7$ $\alpha(N)=0.00641 16; \alpha(O)=0.000984 16; \alpha(P)=2.07\times10^{-5} 60$ K/L \approx 2.6; $\alpha(K)$ exp=0.15 (1962Ha24) (206 γ)(69 γ)(θ): A ₂ =-0.100 20, A ₄ =+0.058 38; J(276)=3/2,5/2,7/2.
216.7 <i>1</i>	8.6 4	216.64	7/2-	0.0	3/2-	E2		0.254	δ: deduced assuming uncertainties for α (K)exp and K/L to be 50% percent. α (K)=0.1376 20; α (L)=0.0881 13; α (M)=0.0221 4 α (N)=0.00532 8; α (O)=0.000809 12; α (P)=1.307×10 ⁻⁵ 19 α (K)exp=0.14 (1962Ha24)
219.4 <i>I</i>	8.8 4	219.36	7/2-	0.0	3/2-	E2		0.244	K:L2:L3:M=15:4.5:3.1:2; L2 not completely resolved. $\alpha(K)=0.1332 \ 19; \ \alpha(L)=0.0837 \ 12; \ \alpha(M)=0.0210 \ 3$ $\alpha(N)=0.00506 \ 8; \ \alpha(O)=0.000769 \ 11; \ \alpha(P)=1.268\times10^{-5} \ 18$ $\alpha(K)\exp=0.93 \ (1962Ha24)$ K:L1:L2:L3:M=13: \approx 1.5:4.5:2.4:2.1.
233.5 1	5.0 2	233.53	5/2-	0.0	3/2-	M1+E2	1.7 +6-3	0.28 4	L2 was not completely resolved. K/L3=16; α (K)exp=0.22 (1962Ha24) α (K)=0.19 3; α (L)=0.0658 10; α (M)=0.01612 24

4

From ENSDF

 $^{189}_{76}\mathrm{Os}_{113}\text{-}4$

 $^{189}_{76}\mathrm{Os}_{113}\text{-}4$

				¹⁸⁹ Ir	ε deca	ıy (13.2 d)	1970 N	1a37,1969G	r10,1962Ha24 (continued)
							<u>γ(¹⁸⁹0</u>	os) (continue	<u>d)</u>
E_{γ}^{\dagger}	Ι _γ @ <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ&	α^{a}	Comments
245.1 <i>1</i>	100	275.84	5/2-	30.79	9/2-	E2		0.1703	α (N)=0.00389 6; α (O)=0.000614 11; α (P)=2.1×10 ⁻⁵ 4 δ : other: 1.4 +10-4 from ε decay. α (K)=0.0997 14; α (L)=0.0535 8; α (M)=0.01338 19 α (N)=0.00322 5; α (O)=0.000493 7; α (P)=9.67×10 ⁻⁶ 14 α (K)exp=0.59 (1962Ha24)
275.8 1	9.0 5	275.84	5/2-	0.0	3/2-	M1+E2	1.8 2	0.167 <i>10</i>	K:L1:L2:L3:M:N=100: \approx 15:25:18:14:4. 1962Ha24 note this a recurring transition listed twice. α (K)=0.120 9; α (L)=0.0360 7; α (M)=0.00874 14 α (N)=0.00211 4; α (O)=0.000337 7; α (P)=1.29×10 ⁻⁵ 11 α (K)exp=0.2 K:L1:L2:L3:M1=14:27: \approx 1.3:08:1
343.2 [#] 1	0.91 6	438.64	1/2-,3/2-	95.23	3/2-	[M1]		0.180	δ: deduced assuming 50 percent uncertainty for α(K)exp and all ratios. α(K)=0.1491 21; α(L)=0.0237 4; α(M)=0.00543 8 α(N)=0.001327 19; α(O)=0.000229 4; α(P)=1.717×10-5 24
402.8 [#] 1	<0.01 0.11 <i>1</i>	438.64	1/2-,3/2-	36.173	1/2-	[M1]		0.1173	α (K)=0.0973 <i>14</i> ; α (L)=0.01541 <i>22</i> ; α (M)=0.00353 <i>5</i> α (N)=0.000861 <i>12</i> ; α (O)=0.0001489 <i>21</i> ; α (P)=1.117×10 ⁻⁵ <i>16</i>
438.5 [#] 1	0.06 2	438.64	1/2-,3/2-	0.0	3/2-	[M1]		0.0936	E_{γ} : somewhat poor fit, level-energy difference=402.46. $\alpha(K)=0.0777 \ 11; \ \alpha(L)=0.01228 \ 18; \ \alpha(M)=0.00281 \ 4$ $\alpha(N)=0.000686 \ 10; \ \alpha(O)=0.0001186 \ 17; \ \alpha(P)=8.91\times10^{-6} \ 13$

[†] Weighted average of 1963Cr06 and 1970Ma37 (from ¹⁸⁹Ir ε decay), and 1973Ho27 and 1979Sa18 (from ¹⁸⁹Re β^- decay), unless otherwise noted. Uncertainty of 0.1 keV assumed when not available.

[‡] From electron measurements in 1970Ma37.

S

[#] Only in 1970Ma37.
[@] From 1970Ma37.
[&] From Adopted Gammas.

^{*a*} From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.

^b For absolute intensity per 100 decays, multiply by 0.060 6.

^c Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

¹⁸⁹Ir ε decay (13.2 d) 1970Ma37,1969Gr10,1962Ha24

