¹⁸⁹ Re β^- decay (24.3 h) 1973Ho27,1979Sa18

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

Parent: ¹⁸⁹Re: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=24.3$ h 4; $Q(\beta^-)=1008$ 8; $\%\beta^-$ decay=100.0

 189 Re-J^{π},T_{1/2}: From 189 Re Adopted Levels.

¹⁸⁹Re-Q(β^-): From 2017Wa10. Other: Q(β^-)=924 10 for measured mass excess(¹⁸⁹Re)=-38063 10 (2013Sh30) and mass excess(¹⁸⁹Os)=-38986.7 7 (2017Wa10).

1973Ho27: measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin.

1979Sa18: measured E γ , I γ , I(ce), $\gamma\gamma$ -coin, $\beta\gamma$ -coin.

Others: 1965Bl06, 1963Cr06.

¹⁸⁹Os Levels

E(level)	J^{π}	T _{1/2}	E(level)	J^{π}	E(level)	J^{π}
0.0	3/2-		219.399 25	7/2-	498.78 5	1/2-,3/2-
30.82 4	$9/2^{-}$	5.81 h <i>10</i>	233.54 3	$5/2^{-}$	549.89 6	3/2-
36.21 <i>3</i>	$1/2^{-}$		275.90 <i>3</i>	$5/2^{-}$	599.57 4	3/2-
69.551 22	$5/2^{-}$		365.77 5	$7/2^{-}$	621.97 <i>11</i>	$(3/2^{-}, 5/2^{-})$
95.269 10	3/2-		427.93 4	5/2-,7/2-	672.18 8	5/2-
216.68 <i>3</i>	$7/2^{-}$		438.67 6	1/2-,3/2-	716.82 5	5/2-

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(291 8)	716.82	0.32 8	7.6 1	av E β =81.6 25
(336 8)	672.18	0.045 13	8.7 <i>1</i>	av E β =95.5 26
(386 8)	621.97	0.016 5	9.3 2	av E β =111.5 26
(408 8)	599.57	1.3 2	7.5 1	av E β =118.8 27
(458 8)	549.89	0.24 5	8.4 <i>1</i>	av E β =135.2 27
(509 8)	498.78	0.32 6	8.4 <i>1</i>	av E β =152.4 28
(580 8)	427.93	0.20 4	8.8 1	av $E\beta = 176.8\ 28$
(642 [‡] 8)	365.77	< 0.03	>9.8	av E β =198.7 29
(732 8)	275.90	5.6 10	7.6 1	av $E\beta = 231.1 \ 30$
· /				E(decay): 725 30 from 1963Cr06.
(774 8)	233.54	0.21 4	9.2 1	av E β =246.7 30
(789 8)	219.399	7.4 13	7.7 1	av E β =251.9 30
				E(decay): see comment on β to 217 level.
(791 8)	216.68	13 2	7.4 1	av E β =252.9 30
				E(decay): E β =800 20 (1965B106), E β =780 20 (1963Cr06) to the 217+219 levels.
(913 [‡] 8)	95.269	<5	>8.1	av Eβ=298.6 <i>31</i>
(938‡8)	69.551	<4	>8.2	av E β =308.4 31
(972 8)	36.21	2.6 16	8.9 ¹ <i>u</i> 3	av E β =323.7 30
(977 8)	30.82	3.9 23	8.8 ¹ <i>u</i> 3	av E β =325.7 30
· · · · ·				$I\beta^{-1}$: from the intensity balance through the 30.8 level assuming no direct β feeding.
				Note that for $\log t^{\text{lu}} t > 8.5$, $I\beta < 6\%$.
(1008 8)	0.0	62 7	7.1 <i>I</i>	av E β =335.2 31
. /				$I\beta^{-1}$: other measured values: 60 20 (1965Bl06), 58 25 (1963Cr06).
				E(decay): 1015 20 from 1965Bl06, other value: 1000 50 (1963Cr06).

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

689
õ
1
3-2

 $\gamma(^{189}\text{Os})$

Iγ normalization: From weighted average of Iγ(186γ+189γ)=0.025 10, Iγ(217γ+219γ)=0.11 3, and Iγ(245γ)=0.04 2 for γ-ray singles per ¹⁸⁹Re β; and Iγ(217γ+219γ)=0.09 3 from βγ coincidences (1963Cr06).

Experimental conversion coefficients from 1963Cr06, 1965Bl06, and 1979Sa18 assuming $\alpha(K)\exp(185.9\gamma)=0.49$.

 \mathbf{b}

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{c}	$I_{(\gamma+ce)}^{d}$	Comments
25.65 10	0.035& 13	95.269	3/2-	69.551	5/2-	M1+E2	0.11 +5-3	1.3×10 ³ 13		$ α(L)=1.02\times10^3 98; α(M)=2.6\times10^2 25 $ α(N)=61 59; α(O)=9.0 86; α(P)=0.0217 78 $ E_{\gamma}: from {}^{189}$ Ir ε decay (1970Ma37). Included here for completeness.
30.82 5		30.82	9/2-	0.0	3/2-	M3+E4	0.04 2	3.12×10 ⁵ 10	227 39	M1/M3=0.32 5 (1963Cr06) ce(L)/(γ +ce)=0.707 19; ce(M)/(γ +ce)=0.227 11 ce(N)/(γ +ce)=0.057 3; ce(O)/(γ +ce)=0.0085 5; ce(P)/(γ +ce)=0.000152 6 α (L)=2.20×10 ⁵ 6; α (M)=7.1×10 ⁴ 4 α (N)=1.78×10 ⁴ 9; α (O)=2.65×10 ³ 10; α (P)=47.4 8
										E_{γ} : weighted average of values from β-decay (1962Cr02) by measurement of the conversion electrons.
										$I_{(\gamma+ce)}: \text{ from ce(M3)(30.8\gamma)/ce(L3)(69.5\gamma)=550} 60/465 10 measured in equilibrium. The indirect feeding into the 30.8 level is I(γ+ce)=5.6 4. δ: <0.09 from M1/M3 in β- decay.$
33.31 4	0.027 ^{&} 3	69.551	5/2-	36.21	1/2-	E2		723		α(L)=546 9; α(M)=138.5 21 α(N)=33.0 5; α(O)=4.83 8; α(P)=0.00382 6 $ I_{\gamma}: referred from ε decay, the ratio of 0.113:59 $ (in ε) or 0.027:14.0 (in β ⁻ decay). $ E_{\gamma}: From {}^{189}$ Ir ε decay (1970Ma37). Included here for completeness
36.17 [#] 5	4.3 13	36.21	1/2-	0.0	3/2-	M1+E2	0.046 5	20.2 4		α(L1)exp=13.8 +67-44 (1973Ho27) α(L)=15.6 3; α(M)=3.60 7 α(N)=0.877 17; α(O)=0.150 3; α(P)=0.01064 16 δ: other: <0.8 from ce data in β
56.50 [@] 4	1.23 12	275.90	5/2-	219.399	7/2-	M1		5.17		α (L)=3.99 6; α (M)=0.916 13 α (N)=0.224 4; α (O)=0.0386 6; α (P)=0.00287 4
59.1 [#] 1	1.7 ^{<i>a</i>} 6	95.269	3/2-	36.21	1/2-	M1+E2	0.085 10	4.81 10		$\alpha(L)=3.71 \ 8; \ \alpha(M)=0.857 \ 19$ $\alpha(N)=0.209 \ 5; \ \alpha(O)=0.0357 \ 7; \ \alpha(P)=0.00250 \ 4$
59.1 <i>1</i>	≈0.5 ^{<i>a</i>}	275.90	5/2-	216.68	7/2-	(M1+E2)	≈0.9	≈22.0		L1/L2 \approx 5 (1962Ha24) α (L) \approx 16.6; α (M) \approx 4.20 α (N) \approx 1.007; α (O) \approx 0.1504; α (P) \approx 0.001543

 $^{189}_{76}\mathrm{Os}_{113}$ -2

				¹⁸⁹ R	e β^- decay (1973Ho27,197	7 <mark>9Sa18</mark> (con	ntinued)	
						γ (¹⁸⁹ Os	s) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α ^c	Comments
69.54 <i>4</i>	14.0 5	69.551	5/2-	0.0	3/2-	M1+E2	+0.683 25	8.2 <i>3</i>	E _γ : note that this transition is not confirmed in (n,γ), γγ coin measurements. α (L2)exp=2.55 +26-24 (1973Ho27) α (L)=6.25 23; α (M)=1.56 6 α (N)=0.375 14; α (O)=0.0572 20; α (P)=0.00113 3 L1:L2:L3:M1:M2:M3=367 20:470 20:465 10:52 20:108 15:115 15.
^x 90.0 [@] 1 95.27 1	0.31 <i>12</i> 0.55 6	95.269	3/2-	0.0	3/2-	M1+E2	+0.32 2	6.36	b. other: $+0.02 + 11-9 \text{ In }\beta^{-1}$ decay. L12:L3=63 30:32 24 (1963Cr06); $\alpha(\text{K})\text{exp}=6.5 25$ (1979Sa18) $\alpha(\text{L1})\text{exp}=0.82 + 145-53$ (1973Ho27) $\alpha(\text{K})=4.92 9$; $\alpha(\text{L})=1.10 3$; $\alpha(\text{M})=0.261 8$ $\alpha(\text{N})=0.0634 19$; $\alpha(\text{O})=0.0105 3$; $\alpha(\text{P})=0.000577 10$ δ : other: $+0.3 + 5-1$ from β^{-1} decay.
101.1 [@] 5	0.06 ^b 3	599.57	3/2-	498.78	1/2-,3/2-	M1		5.45 11	$\alpha(K)=4.50 \ 9; \ \alpha(L)=0.733 \ 15; \ \alpha(M)=0.168 \ 4 \\ \alpha(N)=0.0411 \ 9; \ \alpha(O)=0.00709 \ 15; \ \alpha(P)=0.000527 \ 11 \\ \alpha(K)\exp=5.7 \ 18 \ (1979Sa18)$
117.27 [@] 5	0.18 6	716.82	5/2-	599.57	3/2-	M1		3.56	$\alpha(K)=2.945; \alpha(L)=0.4787; \alpha(M)=0.109716$ $\alpha(N)=0.02684; \alpha(O)=0.004637; \alpha(P)=0.0003445$ $\alpha(K)\exp=4.513$ (1979Sa18)
^x 118.60 [@] 5	0.12 6								
121.39 [#] 5	0.53 6	216.68	7/2-	95.269	3/2-	[E2]		2.02	α (K)=0.567 8; α (L)=1.098 16; α (M)=0.280 4 α (N)=0.0672 10; α (O)=0.00996 14; α (P)=5.30×10 ⁻⁵ 8
124.14 [#] 5	0.53 6	219.399	7/2-	95.269	3/2-	[E2]		1.85	α (K)=0.541 8; α (L)=0.991 14; α (M)=0.253 4 α (N)=0.0607 9; α (O)=0.00900 13; α (P)=5.03×10 ⁻⁵ 7
132.28 [@] 5	0.086 25	365.77	7/2-	233.54	5/2-	[M1]		2.53	α (K)=2.09 3; α (L)=0.339 5; α (M)=0.0777 11 α (N)=0.0190 3; α (O)=0.00328 5; α (P)=0.000244 4
138.24 [@] 5	0.45 4	233.54	5/2-	95.269	3/2-	M1+E2	-0.8 2	1.84 <i>13</i>	α (K)=1.29 <i>18</i> ; α (L)=0.42 <i>4</i> ; α (M)=0.102 <i>11</i> α (N)=0.025 <i>3</i> ; α (O)=0.0039 <i>4</i> ; α (P)=0.000146 <i>23</i>
147.09 [#] 5	22.6 6	216.68	7/2-	69.551	5/2-	M1+E2	-1.0 +4-3	1.43 <i>21</i>	$\alpha(K)\exp=0.94\ 20\ (1973Ho27)$ $\alpha(K)=0.96\ 28;\ \alpha(L)=0.36\ 5;\ \alpha(M)=0.088\ 15$ $\alpha(N)=0.021\ 4;\ \alpha(O)=0.0033\ 5;\ \alpha(P)=1.07\times10^{-4}\ 35$ Additional information 1
149.84 5	14.3 <i>3</i>	219.399	7/2-	69.551	5/2-	E2		0.917	$\alpha(K)=0.352 \ 5; \ \alpha(L)=0.426 \ 6; \ \alpha(M)=0.1083 \ 16$ $\alpha(N)=0.0260 \ 4; \ \alpha(O)=0.00388 \ 6; \ \alpha(P)=3.21\times10^{-5} \ 5$ $\alpha(K)\exp=0.75 \ 32 \ (1973Ho27)$
152.03 [@] 5	0.47 4	427.93	5/2-,7/2-	275.90	5/2-				
160.93 [@] 5	0.51 6	599.57	3/2-	438.67	1/2-,3/2-	M1		1.451	$\alpha(K)=1.199 \ 17; \ \alpha(L)=0.194 \ 3; \ \alpha(M)=0.0445 \ 7 \ \alpha(N)=0.01086 \ 16; \ \alpha(O)=0.00188 \ 3; \ \alpha(P)=0.0001396 \ 20 \ \alpha(K)exp=1.9 \ 3 \ (1979Sa18)$

ω

	189 Re β^- decay (24.3 h) 1973Ho27,1979Sa18 (continued)													
	γ ⁽¹⁸⁹ Os) (continued)													
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments					
164.02 [@] 5	0.38 4	233.54	5/2-	69.551	5/2-	M1+E2	<1.7	1.1 3	α (K)=0.82 32; α (L)=0.22 4; α (M)=0.053 12 α (N)=0.013 3; α (O)=0.0021 4; α (P)=9.3×10 ⁻⁵ 40					
166.95 [@] 5	0.14 3	716.82	5/2-	549.89	3/2-	E2(+M1)	>2	0.69 7	α (K)=0.35 9; α (L)=0.256 10; α (M)=0.065 3 α (N)=0.0155 7; α (O)=0.00235 8; α (P)=3.5×10 ⁻⁵ 11 α (K)exp=0.35 14 (1979Sa18)					
^x 175.1 ^f 5	0.5 2								E_{γ} : observed only by 1973Ho27. Inspection of the spectrum indicates that this transition may be the same as one identified at 180.7 in 1979Sa18.					
180.67 [@] 5	0.35 4	275.90	5/2-	95.269	3/2-	M1+E2	>0.2	0.75 28	α (K)=0.53 <i>31</i> ; α (L)=0.165 <i>24</i> ; α (M)=0.040 <i>8</i> α (N)=0.0097 <i>18</i> ; α (O)=0.00155 <i>19</i> ; α (P)=5.9×10 ⁻⁵ <i>39</i>					
185.89 <i>5</i>	34.3 7	216.68	7/2-	30.82	9/2-	M1+E2	<0.5	0.91 6	$\alpha(K) = 0.74 \ 6; \ \alpha(L) = 0.133 \ 5; \ \alpha(M) = 0.0309 \ 14$ $\alpha(N) = 0.0075 \ 4; \ \alpha(O) = 0.00128 \ 4; \ \alpha(P) = 8.6 \times 10^{-5} \ 8$ K:L1:L3=194 25:37 13:14 12 (1963Cr06,1965Bl06) $\alpha(K) = 0.83 \ 14 \ (1973H_027)$					
188.53 9	9.06 18	219.399	7/2-	30.82	9/2-	M1+E2	1.5 +10-4	0.57 9	$\alpha(K)\exp(-0.35 T1 (1973H027))$ $\alpha(K)\exp(-10.3 (1973H027))$ $\alpha(K)=0.374 98; \alpha(L)=0.147 6; \alpha(M)=0.0363 20$ $\alpha(N)=0.0088 5; \alpha(O)=0.00137 5; \alpha(P)=4.0\times10^{-5} 12$ $\alpha(K)=0.0088 5; \alpha(O)=0.00137 5; \alpha(P)=4.0\times10^{-5} 12$					
197.33 5	1.97 6	233.54	5/2-	36.21	1/2-	E2		0.347	$\alpha(\text{K})=0.1757\ 25;\ \alpha(\text{L})=0.1299\ 19;\ \alpha(\text{M})=0.0328\ 5$ $\alpha(\text{N})=0.00788\ 11;\ \alpha(\text{O})=0.001191\ 17;\ \alpha(\text{P})=1.643\times10^{-5}$ 23					
206.36 5	1.21 <i>16</i>	275.90	5/2-	69.551	5/2-	M1+E2	>1.9	0.34 5	α (K)=0.20 5; α (L)=0.1066 20; α (M)=0.0266 7 α (N)=0.00640 16; α (O)=0.000983 16; α (P)=2.07×10 ⁻⁵ 60					
211.26 [@] 5	0.25 4	427.93	5/2-,7/2-	216.68	7/2-	E2(+M1)	>1	0.38 10	α (K)=0.25 <i>11</i> ; α (L)=0.0959 <i>24</i> ; α (M)=0.0236 <i>11</i> α (N)=0.00570 <i>23</i> ; α (O)=0.000892 <i>14</i> ; α (P)=2.7×10 ⁻⁵ <i>13</i> K/(L1+L2)≈2 4 (1965B106)					
216.69 7	100.0 25	216.68	7/2-	0.0	3/2-	E2		0.254	$\alpha(K)=0.1376\ 20;\ \alpha(L)=0.0881\ 13;\ \alpha(M)=0.0221\ 4$ $\alpha(N)=0.00532\ 8;\ \alpha(O)=0.000809\ 12;\ \alpha(P)=1.307\times10^{-5}$ 19 $\alpha(L1)\exp=0.047\ 25\ (1973Ho27)$					
218 [@] 1	0.6 ^b 3	716.82	5/2-	498.78	1/2-,3/2-	[M1]		0.621 12	$\alpha(K)=0.514 \ 10; \ \alpha(L)=0.0826 \ 16; \ \alpha(M)=0.0189 \ 4$					
219.40 5	82.5 18	219.399	7/2-	0.0	3/2-	E2		0.244	$\alpha(K)=0.00405 \ 9; \ \alpha(O)=0.000799 \ 10; \ \alpha(P)=3.90\times10^{-9} \ 12$ $\alpha(K)=0.1332 \ 19; \ \alpha(L)=0.0837 \ 12; \ \alpha(M)=0.0210 \ 3$ $\alpha(N)=0.00506 \ 7; \ \alpha(O)=0.000769 \ 11; \ \alpha(P)=1.268\times10^{-5}$ 18 $\alpha(K)=0.127 \ 33 \ (1973Ho27)$					
(222.84 8)	0.14 3	498.78	1/2-,3/2-	275.90	5/2-				E_{γ},I_{γ} : from Adopted Gammas, based on (n,γ) E=thermal data. It is possible that an unplaced $E_{\gamma}=223.80 5$ with $I_{\gamma}=0.37 12$ corresponds to the γ					

4

From ENSDF

1

 $^{189}_{76}\mathrm{Os}_{113}\text{-}4$

				¹⁸⁹ Re	β ⁻ deca	ay (24.3 h)	1973Ho27 ,	1979Sa18 (c	ontinued)
						$\gamma(^{189}$	Ds) (continued	1)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{c}	Comments
									ray seen in (n,γ) , although energy deviation of $\approx 1 \text{ keV}$
x223.80@ 5	0 37 12								seems quite large in view of quoted low uncertainties.
233.6 1	1.29 6	233.54	5/2-	0.0	3/2-	M1+E2	1.7 +6-3	0.28 4	$\alpha(K)=0.19 \ 3; \ \alpha(L)=0.0657 \ 10; \ \alpha(M)=0.01609 \ 24 \ \alpha(N)=0.00389 \ 6; \ \alpha(O)=0.000613 \ 11; \ \alpha(P)=2.1\times10^{-5} \ 4$
239.7 [@] 1	0.25 6	275.90	5/2-	36.21	1/2-	[E2]		0.183	$\alpha(K) = 0.0057 \ I5; \ \alpha(L) = 0.0585 \ 9; \ \alpha(M) = 0.01464 \ 21$ $\alpha(K) = 0.00252 \ 5; \ \alpha(D) = 0.000520 \ 8; \ \alpha(M) = 1.021 \times 10^{-5} \ 15$
245 09 [#] 10	64.8	275 90	5/2-	30.82	9/2-	F2		0 1704	$\alpha(N)=0.00352.5, \alpha(O)=0.000359.8, \alpha(F)=1.021\times10^{-1.5}$ $\alpha(K)=0.0997.14; \alpha(L)=0.0536.8; \alpha(M)=0.01338.19$
213.09 10	010	273.90	5/2	50.02	//2			0.1701	$\alpha(N) = 0.003225; \alpha(O) = 0.0004937; \alpha(P) = 9.67 \times 10^{-6} 14$ $\alpha(K) \exp = 0.13763 (1973 Ho 27)$
256.2 [@] 1	0.12 3	621.97	(3/2 ⁻ ,5/2 ⁻)	365.77	7/2-	[M1+E2]		0.27 13	$\alpha(K)=0.21 \ 12; \ \alpha(L)=0.049 \ 4; \ \alpha(M)=0.0117 \ 5$ $\alpha(N)=0.00283 \ 14; \ \alpha(O)=0.00046 \ 5; \ \alpha(P)=2.3\times10^{-5} \ 15$
265.2 [@] 1	0.33 5	498.78	1/2-,3/2-	233.54	5/2-				
270.6 [@] 1	0.172 18	365.77	7/2-	95.269	3/2-	[E2]		0.1249	α (K)=0.0770 <i>11</i> ; α (L)=0.0363 <i>6</i> ; α (M)=0.00903 <i>13</i> α (N)=0.00218 <i>3</i> ; α (O)=0.000336 <i>5</i> ; α (P)=7.60×10 ⁻⁶ <i>11</i>
273.6 [@] 5	0.15 3	549.89	3/2-	275.90	5/2-	[M1]		0.332	α (K)=0.275 4; α (L)=0.0440 7; α (M)=0.01009 15 α (N)=0.00246 4; α (O)=0.000426 7; α (P)=3.18×10 ⁻⁵ 5 E _y : 1973Ho27 report a 275.8 8 which may be this transition, although the large mimetch makes this unlikely.
275.9 1	5.6 3	275.90	5/2-	0.0	3/2-	M1+E2	1.8 2	0.167 10	$\alpha(K)=0.119 \ 9; \ \alpha(L)=0.0359 \ 7; \ \alpha(M)=0.00873 \ 14 \ \alpha(N)=0.00211 \ 4; \ \alpha(O)=0.000336 \ 7; \ \alpha(P)=1.29\times10^{-5} \ 11$
296.0 [@] 1	0.49 12	365.77	7/2-	69.551	5/2-	[M1]		0.268	α (K)=0.222 4; α (L)=0.0355 5; α (M)=0.00813 12 α (N)=0.00199 3; α (O)=0.000343 5; α (P)=2.57×10 ⁻⁵ 4
306.6 [@] 5	0.12 ^b 6	672.18	5/2-	365.77	7/2-	[M1+E2]		0.165 80	α (K)=0.129 74; α (L)=0.027 5; α (M)=0.0065 9 α (N)=0.00158 23; α (O)=0.00026 6; α (P)=1.45×10 ⁻⁵ 89
323.7 [@] 1	0.18 6	599.57	3/2-	275.90	5/2-	[M1]		0.211	$\alpha(K)=0.1745\ 25;\ \alpha(L)=0.0278\ 4;\ \alpha(M)=0.00637\ 9$ $\alpha(N)=0.001556\ 22;\ \alpha(O)=0.000269\ 4;\ \alpha(P)=2.01\times10^{-5}\ 3$
^x 332.9 [@] 1	0.31 12								
343.5 [@] 1	0.80 12	438.67	1/2-,3/2-	95.269	$3/2^{-}$				
351.1 [@] 1	0.6 3	716.82	5/2-	365.77	7/2-	[M1]		0.1692	α (K)=0.1403 20; α (L)=0.0223 4; α (M)=0.00511 8 α (N)=0.001247 18; α (O)=0.000216 3; α (P)=1.614×10 ⁻⁵ 23
366.1 1	0.74 6	599.57	3/2-	233.54	$5/2^{-}$				
380.2 ^w 1	0.43 12	599.57	3/2-	219.399	7/2-	[E2]		0.0464	α (K)=0.0326 5; α (L)=0.01050 15; α (M)=0.00256 4 α (N)=0.000619 9; α (O)=9.79×10 ⁻⁵ 14; α (P)=3.38×10 ⁻⁶ 5
382.8 [@] 1	0.61 12	599.57	3/2-	216.68	7/2-	[E2]		0.0456	α (K)=0.0321 5; α (L)=0.01026 15; α (M)=0.00250 4 α (N)=0.000605 9; α (O)=9.57×10 ⁻⁵ 14; α (P)=3.33×10 ⁻⁶ 5
388.3 [@] 4	0.12 6	621.97	(3/2 ⁻ ,5/2 ⁻)	233.54	5/2-	[M1+E2]		0.087 43	α (K)=0.069 39; α (L)=0.0134 37; α (M)=0.0031 8 α (N)=0.00076 19; α (O)=1.28×10 ⁻⁴ 37; α (P)=7.8×10 ⁻⁶ 46
397.0 1	1.88 18	427.93	5/2-,7/2-	30.82	9/2-				

S

Т

¹⁸⁹Re β^- decay (24.3 h) 1973Ho27,1979Sa18 (continued)

γ (¹⁸⁹Os) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{c}	Comments
402.6 [@] 3 403.6 1 428.8 5	0.12 6 1.35 <i>12</i> 0.86 <i>18</i>	438.67 498.78 427.93	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 5/2 ⁻ ,7/2 ⁻	36.21 95.269 0.0	1/2 ⁻ 3/2 ⁻ 3/2 ⁻			α (K)=0.0244 4; α (L)=0.00702 11; α (M)=0.001702 25 α (N)=0.000411 6; α (O)=6.57×10 ⁻⁵ 10; α (P)=2.57×10 ⁻⁶ 4
428.85 $x432.0^{@}8$	1.11 <i>18</i> 0.19 <i>12</i>	498.78	1/2-,3/2-	69.551	5/2-			
438.50 ^e 10	0.38 ^e 12	672.18	5/2-	233.54	5/2-	[M1+E2]	0.063 31	α (K)=0.050 28; α (L)=0.0094 29; α (M)=0.00220 62 α (N)=5.3×10 ⁻⁴ 16; α (O)=9.0×10 ⁻⁵ 29; α (P)=5.7×10 ⁻⁶ 33
438.8°° 8 441.2 5	$0.055^{ex} 20$ 0.12 6	438.67 716.82	1/2 ⁻ ,3/2 ⁻ 5/2 ⁻	0.0 275.90	3/2 ⁻ 5/2 ⁻			I_{γ} : from 1979Sa18. Other value: 2.4 <i>3</i> from 1973Ho27 is inconsistent with the spectrum of 1979Sa18 and presumably includes an impurity
(452.91 10)	0.26 9	672.18	5/2-	219.399	7/2-	[M1+E2]	0.058 29	$\alpha(K)=0.046\ 25;\ \alpha(L)=0.0086\ 27;\ \alpha(M)=0.00200\ 58$ $\alpha(N)=4.9\times10^{-4}\ 15;\ \alpha(O)=8.2\times10^{-5}\ 27;\ \alpha(P)=5.2\times10^{-6}\ 30$
454.7 2	2.8 5	549.89	3/2-	95.269	3/2-	M1	0.0851	α (K)=0.0707 10; α (L)=0.01115 16; α (M)=0.00255 4 α (N)=0.000623 9; α (O)=0.0001077 16; α (P)=8.09×10 ⁻⁶ 12 α (K)exp=0.09 4 (1979Sa18)
462.6 [@] 1	2.58 6	498.78	1/2-,3/2-	36.21	1/2-	M1	0.0813	α (K)=0.0675 <i>10</i> ; α (L)=0.01065 <i>15</i> ; α (M)=0.00244 <i>4</i> α (N)=0.000595 <i>9</i> ; α (O)=0.0001029 <i>15</i> ; α (P)=7.73×10 ⁻⁶ <i>11</i> α (K)exp=0.08 <i>3</i> (1979Sa18)
480.4 [@] 1	0.55 18	549.89	3/2-	69.551	5/2-	M1	0.0736	α (K)=0.0612 9; α (L)=0.00963 14; α (M)=0.00220 3 α (N)=0.000538 8; α (O)=9.31×10 ⁻⁵ 13; α (P)=6.99×10 ⁻⁶ 10 α (K)exp=0.055 25 (1979Sa18)
483.2 [@] 1	0.68 18	716.82	5/2-	233.54	5/2-	[M1]	0.0725	α (K)=0.0602 9; α (L)=0.00949 14; α (M)=0.00217 3 α (N)=0.000530 8; α (O)=9.16×10 ⁻⁵ 13; α (P)=6.89×10 ⁻⁶ 10
497.3 1	2.3 6	716.82	5/2-	219.399	7/2-			
498.8 ^w 1	1.29 12	498.78	1/2-,3/2-	0.0	3/2-	M1	0.0667	$\alpha(K)=0.0554 \ 8; \ \alpha(L)=0.00872 \ 13; \ \alpha(M)=0.00199 \ 3$ $\alpha(N)=0.000487 \ 7; \ \alpha(O)=8.42\times10^{-5} \ 12; \ \alpha(P)=6.33\times10^{-6} \ 9$ $\alpha(K)\exp=0.095 \ 35 \ (1979Sa18)$
504.1 <i>I</i>	4.5 4	599.57	3/2-	95.269	3/2-	M1	0.0649	E _γ : 1973Ho27 report a γ of 496.8 keV 8 which may correspond to this transition, although a large mismatch makes this unlikely. $\alpha(K)$ =0.0539 8; $\alpha(L)$ =0.00848 12; $\alpha(M)$ =0.00194 3
								α (N)=0.000474 7; α (O)=8.19×10 ⁻⁵ 12; α (P)=6.16×10 ⁻⁶ 9 α (K)exp=0.050 18 (1979Sa18)
530.3 <i>3</i>	1.05 6	599.57	3/2-	69.551	5/2-	M1	0.0569	α (K)=0.0473 7; α (L)=0.00742 <i>11</i> ; α (M)=0.001697 24 α (N)=0.000414 6; α (O)=7.17×10 ⁻⁵ <i>10</i> ; α (P)=5.39×10 ⁻⁶ 8 α (K)exp=0.058 40 (1979Sa18)
550.0 [@] 3	0.68 6	549.89	3/2-	0.0	3/2-	M1	0.0517	$\alpha(K)=0.0430 \ 6; \ \alpha(L)=0.00674 \ 10; \ \alpha(M)=0.001542 \ 22 \ \alpha(N)=0.000376 \ 6; \ \alpha(O)=6.51\times10^{-5} \ 10; \ \alpha(P)=4.90\times10^{-6} \ 7 \ \alpha(K)=0.0058 \ 40 \ (19708.218)$
563.4 1	9.0 5	599.57	3/2-	36.21	1/2-	M1	0.0486	$\alpha(K) = 0.04046; \alpha(L) = 0.006339; \alpha(M) = 0.00144721$

6

From ENSDF

					189	$\operatorname{Re} \beta^- \operatorname{dec} a$	ay (24.3 h) 1973Ho27,1979Sa18 (continued)					
$\gamma(^{189}\text{Os})$ (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α ^C	Comments					
599.6 1	5.1 4 599.57 $3/2^{-}$ 0.0 $3/2^{-}$ M1 0.0413 $\alpha(N)=0.000353 5; \alpha(O)=6.11\times10^{-5} 9; \alpha(P)=4.60\times10^{-6} 7 \alpha(K)\exp=0.032 10 (1979Sa18) \alpha(K)=0.00538 8; \alpha(M)=0.001229 18 \alpha(N)=0.000300 5; \alpha(O)=5.19\times10^{-5} 8; \alpha(P)=3.91\times10^{-6} 6 \alpha(K)\exp=0.034 10 (1979Sa18)$											
[†] Wei [‡] Fron [#] Wei [@] Fron ^{&} Fron	 [†] Weighted average of values from 1973Ho27 and 1979Sa18, unless otherwise noted. [‡] From Adopted Gammas. [#] Weighted average of 1963Cr06 (electron measurements) and 1979Sa18. [@] From 1979Sa18. 											
^{<i>a</i>} From ^{<i>b</i>} Ded ^{<i>c</i>} From	From adopted gammas branching ratios, $1\gamma(59.0\gamma+59.3\gamma)=2.0$ 5. ^a From $I\gamma(59.0\gamma+59.3\gamma)=21$ 2 in ¹⁸⁹ Ir ε decay, $I\gamma(59.0\gamma+59.3\gamma)=2.2$ 5 ¹⁸⁹ Re β^- decay, and relative intensities deexciting the 95 and 276 levels. ^b Deduced from coincidence data in 1979Sa18. ^c From BrIce v2.3b (16-Dec-2014) 2008Ki07. "Frozen Orbitals" appr.											
^d For ^e Mul ^f Plac	 ^d For absolute intensity per 100 decays, multiply by 0.055 9. ^e Multiply placed with intensity suitably divided. ^f Placement of transition in the level scheme is uncertain. 											

 $x^{x} \gamma$ ray not placed in level scheme.

7

From ENSDF

 $^{189}_{76}\mathrm{Os}_{113}$ -7

189 Re β^- decay (24.3 h) 1973Ho27,1979Sa18

 $^{189}_{76}\mathrm{Os}_{113}$

8

 8.9^{1u}

8.8¹*u*

7.1

9/2

3/2-

2.6

3.9

62

$^{189}\mathrm{Re}~\beta^-$ decay (24.3 h) 1973Ho27,1979Sa18

Decay Scheme (continued) Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided Legend $\begin{array}{ll} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ $5/2^+$ 0.0 24.3 h 4 $Q_{\beta} = 1008.8$ $\%\beta^{-}=100.0$ $^{189}_{75}$ Re $_{114}$ $I\beta^{-}$ Log ft 39,88 39,86 21,00 15,26 15,26 15,26 0.20 5/2-,7/2-8.8 427.93 'n, 2.00 2.00 2.00 2.00 2.00 < 0.03 >9.8 7/2 365.77 Ľ 5.6 7.6 275.90 5/2 162 1860 1960 1960 1960 22 28 219-219-188-20 E 129-84 E 129-84 E 0.21 9.2 233.54 5/2 7.4 13 7.7 219.399 7/2-7.4 7/2 216.68 8.8.4 V.8.4 <5 > 8.13/2 95.269 5 $+ \frac{5}{3_{6,I_2}} M_{H_{H_2}}$ 99.24 33.34 33.34 1 30 82 M34E4 1 - 10 <4 >8.2 69.551 5/2

5.81 h 10

36.21 30.82

0.0

9