¹⁸⁹Ir IT decay (3.7 ms) 1975Ke06,1975An08

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017					

Parent: ¹⁸⁹Ir: E=2332.8 3; J^{π} =(25/2⁺); $T_{1/2}$ =3.7 ms 2; %IT decay=100.0

¹⁸⁹Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	3/2+		
113.8 8	5/2+		
300.4 8	7/2+		
372.1 12	$11/2^{-}$	13.3 ms 3	Total transition intensity feeding this isomer is 11 5 in relative units.
453.9 12	9/2+		
736.8 15	13/2-		
745.8 12	$11/2^{+}$		
837.8 14	$15/2^{-}$		
918.1 <i>17</i>	$13/2^{+}$		
1268.2 17	$17/2^{-}$		
1296.2 14	$15/2^{+}$		
1383.5 <i>16</i>	19/2-		
1481.6 22	$(17/2)^+$		
1875.48 <i>21</i>	$(21/2^{-})$		
1910.2 <i>21</i>	$(19/2^+)$		
1919.8 <i>16</i>	19/2+		
2059.8 22	$(21/2^{-})$		
2085.0 24	23/2-		
2108.8 4	(21/2 ⁻)		841γ and a tentative 972γ placed by $1975An08$ deexciting this level, but the intensity balance arguments for levels fed by these two transitions do not support these placements.
2127.8 23	$23/2^{+}$		1
2248.5 <i>3</i>	$(23/2^-, 25/2^-)$		
2332.8 3	(25/2+)	3.7 ms 2	$T_{1/2}$: weighted average of 3.8 ms 2 (1975Ke06) and 3.2 ms 4 (1975An08); from γ (t).

[†] From least-squares fit to $E\gamma$ values. [‡] From Adopted Levels.

I γ normalization: From I(γ +ce)(120.8 γ +224 γ +247.6 γ)=100.

 \mathbf{b}

E _γ ‡	$I_{\gamma}^{\dagger g}$	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. ^C	δ^{c}	α^{f}	$I_{(\gamma+ce)}^{g}$	Comments
(68.1)	4.1 25	2127.8	23/2+	2059.8	(21/2 ⁻)	[E1]		0.220	5.0 31	α (L)=0.1693 24; α (M)=0.0393 6 α (N)=0.00943 14; α (O)=0.001525 22; α (P)=6.81×10 ⁻⁵ 10 $I_{(\gamma+ce)}$: deduced from intensity balance at 2128 level.
										I_{γ} : from I(γ +ce) and α .
71.7 <i>I</i>	&	372.1	11/2-	300.4	7/2+	M2(+E3)	<0.1	76 4		$\begin{array}{l} \alpha(\text{L}) = 57 \ 3; \ \alpha(\text{M}) = 14.6 \ 8 \\ \alpha(\text{N}) = 3.63 \ 18; \ \alpha(\text{O}) = 0.62 \ 3; \\ \alpha(\text{P}) = 0.0361 \ 6 \end{array}$
84.5 <i>3</i>	1.8 6	2332.8	$(25/2^+)$	2248.5	(23/2 ⁻ ,25/2 ⁻)	(E1+M2)	0.18 +4-6	3.7 17		$\alpha(K)=2.5 \ l2; \ \alpha(L)=0.9 \ 5; \ \alpha(M)=0.24$
										12 α (N)=0.06 3; α (O)=0.010 5; α (P)=0.0006 4 Mult.: from α (exp)=3.7 17 (deduced from intensity balance at 2248 level).
101.0 3	0.2 ^b 1	837.8	15/2-	736.8	13/2-	(M1)		5.95		
113.8 <i>1</i>	0.9 [#] 2	113.8	5/2+	0.0	3/2+	M1+E2	0.55 5	3.88 8		$\begin{array}{l} \alpha(\mathrm{K}) = 2.82 \ 11; \ \alpha(\mathrm{L}) = 0.81 \ 4; \\ \alpha(\mathrm{M}) = 0.196 \ 10 \\ \alpha(\mathrm{N}) = 0.0479 \ 23; \ \alpha(\mathrm{O}) = 0.0079 \ 4; \\ \alpha(\mathrm{P}) = 0.000347 \ 13 \end{array}$
115.2 3	0.31 [@] 15	1383.5	19/2-	1268.2	17/2-	[M1+E2]		3.3 8		
120.8 <i>3</i>	6.8 23	2248.5	(23/2 ⁻ ,25/2 ⁻)	2127.8	23/2+	(E1)		0.246		$\%$ I γ =34 9, using the deduced normalization factor.
140.1 3	2.8 9	2059.8	$(21/2^{-})$	1919.8	19/2+	(E1) ^d		0.169		
149.6 <i>3</i>	1.6 ^e 5	2059.8	$(21/2^{-})$	1910.2	$(19/2^+)$	(E1) d		0.143		
153.6 <i>3</i>	$0.2^{\textcircled{0}}$ 1	453.9	9/2+	300.4	7/2+	[M1+E2]		1.3 5		
172.1 3	0.034 [@] 21	918.1	13/2+	745.8	$11/2^+$	[M1+E2]		0.9 4		
186.7 <i>1</i>	1.1 [#] 2	300.4	7/2+	113.8	5/2+	M1+E2	-0.7 2	0.84 8		$\alpha(\mathbf{K})=0.64 \ 9; \ \alpha(\mathbf{L})=0.152 \ 6; \\ \alpha(\mathbf{M})=0.0364 \ 18 \\ \alpha(\mathbf{N})=0.0089 \ 4; \ \alpha(\mathbf{O})=0.00150 \ 5; \\ \alpha(\mathbf{P})=7 \ 8 \times 10^{-5} \ 11 $
208.2 3	1.3 6	2127.8	23/2+	1919.8	19/2+	E2		0.301		$\alpha(K) = 0.1530 \ 23; \ \alpha(L) = 0.1117 \ 18; \alpha(M) = 0.0283 \ 5 \alpha(N) = 0.00686 \ 11; \ \alpha(O) = 0.001072 \ 18; \alpha(P) = 1.554 \times 10^{-5} \ 23$
209.3 6	0.9 [@] 6	2085.0	23/2-	1875.48	$(21/2^{-})$	[M1+E2]		0.53 23		
217.5 4	0.8 4	2127.8	23/2+	1910.2	(19/2 ⁺)	[E2]		0.261		

 $^{189}_{77}\mathrm{Ir}_{112}\text{-}2$

	¹⁸⁹ Ir IT decay (3.7 ms) 1975Ke06,1975An08 (continued)									
γ ⁽¹⁸⁹ Ir) (continued)										
E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	α^{f}	Comments		
224 1	0.5 2	2332.8	(25/2+)	2108.8	(21/2 ⁻)	(M2)	2.93	$\alpha(K)=2.225; \alpha(L)=0.54512; \alpha(M)=0.1333$ $\alpha(N)=0.03288; \alpha(O)=0.0057313; \alpha(P)=0.0003909$ %Iy=2.511, using the calculated normalization.		
247.6 3	93	2332.8	(25/2+)	2085.0	23/2-	(E1)	0.0402	Mult.: from $\alpha(\exp)=2.2$ 17 (deduced from intensity balance at 2108 level). $\alpha(K)=0.0332$ 5; $\alpha(L)=0.00538$ 8; $\alpha(M)=0.001235$ 18 $\alpha(N)=0.000300$ 5; $\alpha(O)=5.15\times10^{-5}$ 8; $\alpha(P)=3.22\times10^{-6}$ 5 % Iy=45 11, using the calculated normalization.		
252.5 <i>3</i>	0.8 4	2127.8	$23/2^{+}$	1875.48	$(21/2^{-})$	[E1]	0.038			
258.3 2	&	372.1	11/2-	113.8	5/2+	E3	0.876	α (K)=0.248 4; α (L)=0.470 8; α (M)=0.1235 19 α (N)=0.0301 5; α (O)=0.00468 7; α (P)=4.26×10 ⁻⁵ 7		
292.1 2	1.4 ^b 7	745.8	11/2+	453.9	9/2+	M1	0.302	α (K)=0.250 4; α (L)=0.0403 6; α (M)=0.00927 14 α (N)=0.00228 4; α (O)=0.000404 6; α (P)=3.06×10 ⁻⁵ 5		
300.4 1	1.9 [#] 5	300.4	7/2+	0.0	3/2+	E2	0.0943	α (K)=0.0598 9; α (L)=0.0262 4; α (M)=0.00652 10 α (N)=0.001584 23; α (O)=0.000253 4; α (P)=6.43×10 ⁻⁶ 9		
340.2 1	2.2 6	453.9	9/2+	113.8	5/2+	E2	0.0657	α (K)=0.0439 7; α (L)=0.01659 24; α (M)=0.00410 6 α (N)=0.000998 15; α (O)=0.0001610 23; α (P)=4.79×10 ⁻⁶ 7		
364.7 <i>1</i> 378.1 <i>3</i> ×400.6 2	2.8 7 0.9 <i>3</i>	736.8 1296.2	13/2 ⁻ 15/2 ⁺	372.1 918.1	$\frac{11/2^{-}}{13/2^{+}}$	[M1+E2] (M1+E2)	0.11 6 0.10 5	E : observed only by $1075 \Delta n_{0.000}$ in delayed any coincidence data		
400.0 2 429 <i>1</i> 430.4 <i>1</i>	0.5 [@] 3 1.1 6	1910.2 1268.2	(19/2 ⁺) 17/2 ⁻	1481.6 837.8	(17/2) ⁺ 15/2 ⁻	M1	0.1067	$\alpha(K)=0.0884 \ 13; \ \alpha(L)=0.01412 \ 20; \ \alpha(M)=0.00324 \ 5 \ \alpha(N)=0.00797 \ 12; \ \alpha(O)=0.0001414 \ 20; \ \alpha(P)=1.073\times10^{-5} \ 15 \ 15 \ 15 \ 15 \ 15 \ 15 \ 15 \ $		
438.3 <i>3</i>	0.63 21	1919.8	19/2+	1481.6	(17/2)+	M1	0.1016	I_{γ} : from $I_{\gamma}(429+430)=1.5$ 5 and $I_{\gamma}(429)=0.44$ from adopted γ branching ratios. $\alpha(K)=0.0842$ 12; $\alpha(L)=0.01344$ 20; $\alpha(M)=0.00309$ 5		
445.3 1	3.5 9	745.8	11/2+	300.4	7/2+	E2	0.0318	$\alpha(N)=0.000759717; \alpha(O)=0.000134620; \alpha(P)=1.022\times10^{-5}75$ $\alpha(K)=0.02304; \alpha(L)=0.0066570; \alpha(M)=0.00161623$ $\alpha(N)=0.0003046; \alpha(O)=640\times10^{-5}10; \alpha(P)=258\times10^{-6}4$		
464.4 2	2 ^{<i>a</i>} 1	918.1	13/2+	453.9	9/2+	E2	0.0285	$\alpha(K)=0.000343, \ \alpha(L)=0.00580, \ \theta; \ \alpha(M)=0.001407, \ 20$ $\alpha(K)=0.00343, \ 5; \ \alpha(Q)=5.67\times10^{-5}, \ 8; \ \alpha(P)=2.35\times10^{-6}, \ 4$		
465.7 1	8 ^{<i>a</i>} 4	837.8	15/2-	372.1	11/2-	E2	0.0283	$\alpha(K)=0.0207 \ 3; \ \alpha(L)=0.00575 \ 8; \ \alpha(M)=0.001395 \ 20 \ \alpha(N)=0.00340 \ 5; \ \alpha(Q)=5.62\times10^{-5} \ 8; \ \alpha(P)=2.33\times10^{-6} \ 4$		
491.9 2	1.2 3	1875.48	$(21/2^{-})$	1383.5	19/2-	[M1+E2]	0.05 3			
531.4.3	0.6 ^b 3	1268.2	$17/2^{-}$	736.8	$13/2^{-}$	[E2]	0.0205			
545.7 1	9.6 24	1383.5	19/2-	837.8	15/2-	E2	0.0192	α (K)=0.01456 21; α (L)=0.00356 5; α (M)=0.000854 12 α (N)=0.000208 3; α (O)=3.49×10 ⁻⁵ 5; α (P)=1.652×10 ⁻⁶ 24		
550.3 1	4.4 11	1296.2	15/2+	745.8	11/2+	E2	0.0188	α (K)=0.01430 20; α (L)=0.00347 5; α (M)=0.000833 12 α (N)=0.000203 3; α (O)=3.40×10 ⁻⁵ 5; α (P)=1.622×10 ⁻⁶ 23		
563.5 2	1.2 6	1481.6	$(17/2)^+$	918.1	$13/2^+$	(E2)	0.0178	I_{γ} : from intensity balance at 1481 level.		
607.4 <i>3</i>	$0.8^{\textcircled{0}}4$	1875.48	$(21/2^{-})$	1268.2	$17/2^{-}$	[E2]	0.015			
614.0 2	2.0 7	1910.2	$(19/2^+)$	1296.2	$15/2^+$	(E2)	0.0146			

ω

 $^{189}_{77}\mathrm{Ir}_{112}\mathrm{-3}$

I

 $^{189}_{77}\mathrm{Ir}_{112}\text{-}3$

From ENSDF

¹⁸⁹Ir IT decay (3.7 ms) **1975Ke06,1975An08** (continued)

$\gamma(^{189}$ Ir) (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^C	α^{f}	Comments
623.6 1	3.8 13	1919.8	19/2+	1296.2	$15/2^+$	E2	0.01411	$\alpha(K)=0.01093 \ 16; \ \alpha(L)=0.00243 \ 4; \ \alpha(M)=0.000580 \ 9$
(7(2)2)	0.218 15	2050.0	(21/2-)	1202 5	10/2-			α (N)=0.0001416 20; α (O)=2.39×10 ⁻⁵ 4; α (P)=1.244×10 ⁻⁶ 18
6/6.3 3 701 4 2	0.31° 15	2059.8	(21/2)	1383.5	19/2	E2	0.01007	$(\mathbf{W}) = 0.00955 12 = (\mathbf{U}) = 0.001775 25 = (\mathbf{W}) = 0.000420 \mathbf{C}$
/01.4 2	8.7 29	2085.0	23/2	1383.3	19/2	E2	0.01087	$\alpha(\mathbf{K})=0.00835\ 12;\ \alpha(\mathbf{L})=0.001775\ 23;\ \alpha(\mathbf{M})=0.000420\ 6$ $\alpha(\mathbf{N})=0.0001027\ 15;\ \alpha(\mathbf{O})=1.746\times10^{-5}\ 25;\ \alpha(\mathbf{P})=9.75\times10^{-7}\ 14$
725.3 <i>3</i>	1.6 5	2108.8	$(21/2^{-})$	1383.5	19/2-			

[†] Delayed intensities from 1975Ke06, except where noted. Uncertainties of $\approx 30\%$ are assigned by the evaluators.

[‡] From ¹⁸⁷Re(α ,2n γ).

[#] Deduced from intensity balance, not including the feeding from 13.3-ms isomer.

[@] Relative intensity calculated from prompt- γ data.

& Due to the long half-life of the isomer at 372 keV, the intensities of the gamma rays are time-dependent, thus cannot be deduced.

^{*a*} Intensity of 464.7 γ and 466.0 γ divided by evaluators on the basis of the level scheme intensity balance. I γ (465 γ +466 γ)=8.8.

^b From branching ratios in Adopted Gammas.

^c From Adopted Gammas, except for the assumed multipolarities, which are from ΔJ^{π} , and listed in square brackets here.

^d From intensity balance arguments.

^e The relative intensities of the 149 γ and 676 γ are equal in the prompt ¹⁸⁷Re(α ,2n γ) data but differ by a factor of 5 in the delayed data.

^f Theoretical values from BrIcc code (2008Ki07) with "Frozen Orbitals" approximation, unless otherwise stated.

^g For absolute intensity per 100 decays, multiply by 5.0 11.

^{*x*} γ ray not placed in level scheme.

 $^{189}_{77}\mathrm{Ir}_{112}\text{-}4$

 $^{189}_{77}\mathrm{Ir}_{112}$