Adopted Levels

Hi	story
111	StOI y

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

 $Q(\beta^{-})=4670 SY; S(n)=4360 SY; S(p)=10660 SY; Q(\alpha)=-1090 SY$ 2017Wa10

Estimated uncertainties (2017Wa10): 360 for Q(β^-), 420 for S(n), 590 for S(p) and Q(α).

S(2n)=10490 420 (syst,2017Wa10). S(2p)=20220 (1997Mo25,theory).

2009Al30 (also 2012Al05): ¹⁸⁹Hf identified in ⁹Be(²⁰⁸Pb,X) at 1 GeV/nucleon at GSI facility. Secondary fragmentation residues were separated and identified event-by-event using GSI Fragment Separator with a setting centered on ¹⁹⁰Ta or ¹⁹²Ta. Secondary ions were implanted into the RISING stopper with a series of double-sided silicon strip detectors (DSSSDs) to determine the position of the implanted ions correlated with β^- decays. The RISING array of Ge detectors also provided β and γ correlated events following the decay of secondary fragments. Time-of-flight and energy loss techniques provided the identification of projectile fragments. In the two-dimensional particle identification plots, ¹⁸⁹Hf is clearly identified in Fig. 3 of 2009Al30 (also a similar plot in 2012Al05), as mentioned also in 2012Gr19, but is not discussed.

2014Ku02: ¹⁸⁹Hf formed in ⁹Be(²⁰⁸Pb,X), E=1 GeV/nucleon, measured production using FRS separator at GSI facility. Authors claim first experimental discovery of ¹⁸⁹Hf, but in evaluators' opinion, 2009Al30 already had evidence for its production.

¹⁸⁹Hf Levels

F(l)	evel)
L (1	

Comments

0 %β⁻=100

While no decay mode has been experimentally observed, evaluators assign $\%\beta^-=100$ by inference, as β^- is the only decay mode energetically possible.

Production σ =3.8 nb 8 (2014Ku02) in ⁹Be(²⁰⁸Pb,X), E=1 GeV/nucleon reaction.

E(level): the observed fragments are assumed to be in the ground state of ¹⁸⁹Hf nuclei.

 J^{π} : $3/2^{-}$ from systematic trend (2017Au03); $9/2^{-}$ in theoretical considerations (1997Mo25).

T_{1/2}: no experimental value has been reported. A lower limit of 300 ns is implied from time of flight through the FRS separator (2008StZY). Assuming a systematic decreasing trend of half-lives in neutron-rich nuclei, as the neutron number increases, an upper limit of 3 min is suggested from the known half-lives of 4.1 h, 3.5 min and 2.6 min for ¹⁸⁴Hf, ¹⁸⁵Hf and ¹⁸⁶Hf, respectively. 2017Au03 in NUBASE list 2 s from a certain systematic trend. Theoretical values are 1.2 s (2003Mo09) and 11.7 s (2016Ma12).