¹⁹³At α decay (21 ms) 2003Ke08

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	31-Aug-2021					

Parent: ¹⁹³At: E=5 10; $J^{\pi}=(7/2^{-})$; $T_{1/2}=21$ ms 5; $Q(\alpha)=7572$ 7; $\%\alpha$ decay ≈ 100.0 ¹⁹³At-Q(α): From 2021Wa16.

¹⁹³At-E, J^{π} , $T_{1/2}$: From ¹⁹³At Adopted Levels in the ENSDF database (March 2017 update), where values are taken from 2003Ke08. No new references since the 2017 evaluation. Energy of this state is given as 8 keV 9 in 2021Ko07 evaluation. Note that the measured value of half-life in 2003Ke08 was 31.8 ms +15-13, but was adjusted to account for assumed feeding by an E3 transition from a 27-ms $(13/2^+)$ level to the $(7/2^-)$ level in the parent. See 2003Ke08 for details. $^{193}\text{At-}\%\alpha$ decay: $\%\alpha{\approx}100$ for ^{193}At isomer decay.

2003Ke08: ¹⁹³At produced in ¹⁴¹Pr(⁵⁶Fe,4ny) reaction, at E=264-272 MeV; recoil fragment mass separation; measurement using recoil-tagged α - α and α - γ coincidences, and considering α -decay links to levels in the daughter nuclides ¹⁸⁹Bi and ¹⁸⁵Tl.

1995Le15: source produced by ¹⁴¹Pr(⁵⁶Fe,4n) E=265 MeV. Gas-filled mass separator. Measured position-correlated α events. Half-life measured as ≈ 40 ms, E α =7.34-7.40 MeV in coin with 680-ms ¹⁸⁹Bi decay. 2005Ke10, 2005Uu03 and 2007DoZW are conference reports from the same group as 2003Ke08.

189Bi Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	Comments		
0	(9/2 ⁻)	658 ms 22	J^{π} : hindrance factor of ≈ 1.8 suggests favored α decay with the same J^{π} values for this level and the 5-keV level in ¹⁹³ At parent.		
99.6 <i>5</i>	(7/2 ⁻)	<10 ns			

 $T_{1/2}$: from $\alpha \gamma(t)$ (2003Ke08).

[†] From Adopted Levels.

99.

α radiations

Eα	E(level)	Iα [‡]	HF^{\dagger}	Comments		
7325 <i>5</i> 7423 <i>5</i>	99.6 0	98 2 2 2	≈1.9 ≈190	HF: 1.1 3 (2003Ke08). HF: 64 64 (2003Ke08).		

[†] The nuclear radius parameter $r_0(^{189}Bi)=1.5519$ 62 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides, evaluated in 2020Si16. Values from 2003Ke08 are given under comments.

[‡] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

$$\gamma(^{189}\text{Bi})$$

$$\frac{E_{\gamma}}{9.65} = \frac{I_{\gamma}^{\dagger}}{9.15} = \frac{E_{i}(\text{level})}{99.6} = \frac{J_{i}^{\pi}}{(7/2^{-})} = \frac{E_{f}}{0} = \frac{J_{f}^{\pi}}{(9/2^{-})} = \frac{\text{Mult.}}{\text{M1(+E2)}} = \frac{\delta}{\langle 0.6\rangle} = \frac{\alpha^{\ddagger}}{9.85} = \frac{I_{(\gamma+ce)}^{\dagger}}{982} = \frac{\text{Comments}}{\alpha(\text{K})=8.3621; \alpha(\text{L})=1.483; \alpha(\text{M})=0.089018; \alpha(\text{O})=0.01824; \alpha(\text{P})=0.002165 \text{E}_{\gamma}: \text{from } 2003\text{Ke08, seen in coin with } \alpha \text{ particles.}$$

$$I_{(\gamma+ce)}: \text{from } I_{\alpha}=982 \text{ per } 100 \text{ } \alpha \text{ decays.}$$

$$I_{\gamma}: \text{from } I_{(\gamma+ce)}: \text{from } I_{\gamma} \text{ and } I_{(\text{K} x-ray).}$$

¹⁹³At α decay (21 ms) 2003Ke08 (continued)

$\gamma(^{189}\text{Bi})$ (continued)

[†] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹³At α decay (21 ms) 2003Ke08

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{189}_{83}{\rm Bi}_{106}$