109 Ag(82 Kr,2n γ),(83 Kr,3n γ) 2004Hu15,2002Hu14

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	31-Aug-2021					

Includes ¹⁴²Nd(⁵²Cr,p4n γ),E=239-307 MeV from 2001An11, where 357-keV isomer in ¹⁸⁹Bi was identified through recoils- α - γ correlated decay curve.

2004Hu15 (also 2007DoZW): E=340 MeV. Measured E γ , I γ , $\gamma\gamma$ with the Jurosphere II array comprised of 27

Compton-suppressed HPGe detectors. Delayed γ -rays were detected at the RITU focal plane with a HPGe detector, which was replaced by a more efficient setup of BGO detectors for the ¹⁰⁹Ag(⁸³Kr,3n γ) experiment. The fusion-evaporation residues were selected by the gas-filled separator RITU and identified event by event using their α -decay characteristics in order to apply the Recoil Decay Tagging (RDT) technique.

2004Hu15 state that many γ transitions were also observed in coin with the α decay of the 1/2⁺ isomer of ¹⁸⁹Bi, but no levels could be established due to the lack of counting statistics and $\gamma\gamma$ coincidences.

2002Hu14: ¹⁰⁹Ag(⁸²Kr,2nγ),¹⁰⁹Ag(⁸³Kr,3nγ),E=337 MeV; Position sensitive detectors; Jurosphere II array of Ge detectors, Ge detector with a BGO wall; Recoil decay tagging technique. Measured half-life of the 13/2⁺ isomer.

2001An11: ¹⁴²Nd(⁵²Cr,p4n γ),E=239-307 MeV. Identified isomer in ¹⁸⁹Bi at 357 keV and measured its half-life by recoils- α - γ (t) using velocity filter SHIP at GSI facility.

The data are from 2004Hu15 and 2002Hu14 unless otherwise stated.

189 Bi Levels

E(level)	J^{π}	T _{1/2}	Comments					
0	$9/2^{-}$	006 22	6/ ITP 100					
357	13/2*	886 ns 32	%11=100 $T_{1/2}$: weighted average of 888 ns 32 (2007DoZW, recoils- α - γ correlation decay curve); 880 ns 50 (2002Hu14, 357 γ (t), note that units of ms in Fig. 2 and text of 2004Hu15 are misprints). Other: ≥360 ns 120 (2001An11, recoils- α - γ (t) in ¹⁴² Nd(⁵² Cr,p4n γ),E=239-307 MeV).					
777‡	$17/2^{+}$							
1090 [‡]	$21/2^+$							
1465	$25/2^+$							
1911	$(29/2^+)$							
2421	$(33/2^+)$							
2972 [‡]	$(37/2^+)$							

[†] As assigned in 2004Hu15 based on systematics of neighboring nuclei for the g.s. and $13/2^+$ isomer, and from band structure and limited $\gamma(\theta)$ data for higher levels. All assignments are given in parentheses in Adopted Levels.

[‡] Band(A): Band based on $17/2^+$. Band built on $\pi i_{13/2}$ intruder orbital.

$\gamma(^{189}\text{Bi})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.	α #	Comments
x180 x239 313 x337 [‡]	1090	21/2+	777	17/2+	†		
x348+ 357	357	13/2+	0	9/2-	M2	0.969	α (K)=0.738; α (L)=0.175; α (M)=0.0429; α (N)=0.01105 Mult.: from α (K)exp=0.9 <i>I</i> (2001An11, from number of K-x rays and γ rays from the decay of the isomer populated in
375	1465	25/2+	1090	21/2+	Ť		142 Nd(52 Cr,p4n γ)).

Continued on next page (footnotes at end of table)

109 Ag(82 Kr,2n γ),(83 Kr,3n γ) 2004Hu15,2002Hu14 (continued)

$\gamma(^{189}\text{Bi})$ (continued)

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	
420	777	$17/2^{+}$	357 13/2+		510	2421	$(33/2^+)$	1911	$(29/2^+)$	
446	1911	$(29/2^+)$	1465 25/2+	Ť	551	2972	$(37/2^+)$	2421	$(33/2^+)$	
^x 450					^x 628 [‡]					
^x 463										

[†] Assigned as $\Delta J=2$, E2 in 2004Hu15 based on $\gamma(\theta)$ data; but no details of the $\gamma(\theta)$ are provided in the paper.

 [‡] Transition feeds the 13/2⁺ isomer.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 109 Ag(82 Kr,2n γ),(83 Kr,3n γ) 2004Hu15,2002Hu14

Level Scheme

¹⁸⁹₈₃Bi₁₀₆

¹⁰⁹Ag(⁸²Kr,2nγ),(⁸³Kr,3nγ) 2004Hu15,2002Hu14

 $^{189}_{83}{\rm Bi}_{106}$