History												
Туре	Author	Citation	Literature Cutoff Date									
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017									

Parent: ¹⁸⁹Hg: E=0; $J^{\pi}=3/2^{-}$; $T_{1/2}=7.6 \text{ min } 2$; $Q(\varepsilon)=3960 \ 40$; $\%\varepsilon+\%\beta^{+} \text{ decay}=100.0$

¹⁸⁹Hg-J^{π},T_{1/2}: From ¹⁸⁹Hg Adopted Levels.

¹⁸⁹Hg-Q(ε): From 2017Wa10.

1996Wo04: mass separated ¹⁸⁹gHg samples from the decay of ¹⁸⁹Tl following ¹⁸¹Ta(¹⁶O,8n) reaction. Measured E γ , I γ , Ice, $\gamma\gamma$, ce γ , γ (x ray) and e(x ray) coincidences. Deduced levels, J^{π} . Ge(Li), Si(Li) detectors. See also 1976Wo10 where several authors are the same as in 1996Wo04.

authors are the same as in 1996Wo04. 1988Ko22: ¹⁸⁹Au structure from ε decay of ^{189g}Hg and ^{189m}Hg produced by heavy ion induced reaction. Measured $\gamma\gamma$, $\gamma(x rays)$, $\gamma(ce)$, and ce(x rays) coincidences. Ge(Li) and Si(Li) detectors. Deduced band structure. Several authors in 1988Ko22 are the same as in 1996Wo04.

1975Be17: ^{189g}Hg, ^{189m}Hg from Pb(p,xn3p), mass separated; Measured E γ , I γ , Ice, $\gamma\gamma$, (ce) γ . Deduced levels, J^{π} , T_{1/2}. Ge(Li), Si(Li) and magnetic spectrometer.

¹⁸⁹Au Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0#	$1/2^{+}$	28.7 min 4	
9.93 [#] 12	3/2+	30 ns 4	$T_{1/2}$: from ce(x ray)(t) and ce-ce(t) (1975Be17).
203.77 [#] 12	$3/2^{+}$		
247.25 [@] 16	11/2-	4.59 min 11	$\%\epsilon + \%\beta^+ \approx 100; \%$ IT=? E(level): from Adopted Levels.
248.59 [#] 12	$5/2^{+}$		
307.77 [#] 14	5/2+		
325.10 ^{&} 22	9/2-	190 ns 15	$T_{1/2}$: from ce(x ray)(t) (1975Be17).
483.99 [@] 18	7/2-	0.15 ns 5	$T_{1/2}$: from ce(γ)(t) (1975Be17).
491.51 ^{&} 21	5/2-	0.30 ns 3	T _{1/2} : from ce(Compton continuum in 120-300 keV region)(t) (1975Be17).
512.43 [#] 19 602.92 16	7/2 ⁺ 1/2 ⁺ ,3/2 ⁺		
647.13 [#] 14	7/2+		
7/0.73 27 801.96 18 811.79 24 814.3 3 862.2 [@] 3 879.67 23 887.2 3 911.0 3 977.8 10 1058.73 [@] 14 1098.1 3 1104.79 ^{&} 24 1107.4 11 1116.05 23 1133.6 6	//2 ⁺ ,3/2 ⁺ (5/2,3/2,1/2) ⁺ 1/2 ⁻ 9/2 ⁻ + (3/2,5/2) ⁻ 7/2 ⁻ 3/2 ⁻ 3/2 ⁻ 7/2 ⁻ ,5/2 ⁻		
1156.0 3 1165.0 10 1165.7 6 1254.23 [@] 20 1260.8 10	(5/2 ⁻ ,7/2 ⁻) 5/2 ⁻ ,7/2 ⁻		

¹⁸⁹Hg ε decay (7.6 min) 1996Wo04 (continued)

¹⁸⁹Au Levels (continued)

el) [†]	$J^{\pi \ddagger}$	Comments
11		
5		
9.5		
3 11		
4		J^{π} : in 1996Wo04, this level is shown in their Figure 15 with other low-lying negative parity levels. However no J^{π} was assigned to this level
4		
D <i>11</i>		
0 11		
4 4		
0.11		
98	-	
43		
) 3		
55		
14		
84		
88 22		
) 3		
23		
74		
16		
5 11		
2 11		
48 18	3/2-,5/2-	
05 21	-	
73	(_)	
3 3	_	
2 23	_	
6		
6 18	<i>.</i>	
3	(-)	
10		
4	_	
)		
3		
10		
1		

$\pi(s_{1/2}, d_{3/2}, d_{5/2})^{-1}$ structure. @ $\pi h_{11/2}^{-1}$ structure. & $\pi h_{9/2}$ structure.

 $\gamma(^{189}\mathrm{Au})$

Annihilation intensity $I\gamma(\gamma^{\pm})=50$ 5.

ω

In the absence of unknown $\varepsilon + \beta^+$ feeding to the g.s, the decay scheme has not been normalized.

The experimental subshell ratios and conversion coefficients are from 1996Wo04. When specified as 'other', those values are from 1975Be17.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	$\mathbf{I}_{(\gamma+ce)}$	Comments
9.9 2		9.93	3/2+	0.0	1/2+	[M1]		278 18	>250	ce(M)/(γ +ce)=0.77 4 ce(N)/(γ +ce)=0.191 16; ce(O)/(γ +ce)=0.035 4; ce(P)/(γ +ce)=0.00237 22 α (M)=214 14 α (N)=53 4; α (O)=9.8 7; α (P)=0.66 5 E _{γ} : observed as M-conversion line in singles and ce- γ coin by 1975Be17.
44.7 2		248.59	5/2+	203.77	3/2+	M1+E2	0.15 2	18.2 13	5	
59.2 2 77.9 2		307.77 325.10	5/2 ⁺ 9/2 ⁻	248.59 247.25	5/2+ 11/2 ⁻	M1+E2	0.3 2	3.7 15	3 >140	$I_{(\gamma+ce)}$: from 1996Wo04. $\alpha(L)=2.8 \ II; \ \alpha(M)=0.68 \ 29 \ \alpha(N)=0.168 \ 69; \ \alpha(O)=0.029 \ II; \ \alpha(P)=0.00138 \ I6 \ M/L12=0.29 \ 7; \ L3/L12\leq 0.15; \ L/M=4.2 \ 4 \ I_{(\gamma+ce)}$: from intensity balance. $\delta<0.6$ from ce data in the present experiment.
104 <i>I</i> 135 <i>I</i>		307.77 647.13	5/2 ⁺ 7/2 ⁺	203.77 512.43	3/2 ⁺ 7/2 ⁺	M1+E2	0.7 +4-5	2.6 5		$\alpha(K)=1.83\ 62;\ \alpha(L)=0.57\ 13;\ \alpha(M)=0.139\ 37$ $\alpha(N)=0.0344\ 89;\ \alpha(O)=0.0059\ 13;\ \alpha(P)=2.18\times10^{-4}\ 76$ $1.12/K=0\ 25\ 9;\ M/K=0\ 09\ 9;\ 1.3/K<0\ 06$
166.5 2	70 15	491.51	5/2-	325.10	9/2-	E2		0.714		$\alpha(K)=0.26 \ 4; \ \alpha(L)=0.338 \ 5; \ \alpha(M)=0.0872 \ 13$ $\alpha(N)=0.0215 \ 4; \ \alpha(O)=0.00348 \ 6; \ \alpha(P)=2.70\times10^{-5} \ 4$ $\alpha(K)\exp=0.26 \ 7; \ L12/K=1.00 \ 24; \ L3/K=0.56 \ 15;$
176.3 2	9.8 25	483.99	7/2-	307.77	5/2+	E1		0.0988		$\alpha(K) = 0.307 12; \ \alpha(L) = 0.01393 20; \ \alpha(M) = 0.00323 5$ $\alpha(N) = 0.000795 12; \ \alpha(O) = 0.0001398 20;$ $\alpha(P) = 7.19 \times 10^{-6} 11$ $\alpha(K) \approx n = 0.001398 20;$
(194) 195.6 <i>4</i>	<0.7 1.4 5	203.77 1254.23	3/2 ⁺ 5/2 ⁻ ,7/2 ⁻	9.93 1058.73	3/2 ⁺ 3/2 ⁻	E2		0.404 7		$\alpha(K) = 0.179 \ 3; \ \alpha(L) = 0.169 \ 3; \ \alpha(M) = 0.0434 \ 8$ $\alpha(N) = 0.01070 \ 18; \ \alpha(O) = 0.00175 \ 3; \ \alpha(P) = 1.83 \times 10^{-5} \ 3$ $\alpha(K) = 0.7070 \ 25; \ L12/K = 0.67 \ 10$
203.9 2	89 10	203.77	3/2+	0.0	1/2+	M1+E2	0.63 +14-15	0.79 6		$\alpha(K) = 0.61 7; \alpha(L) = 0.1345 22; \alpha(M) = 0.0322 8$

					¹⁸⁹ Hg	ε decay (7.6	min) 1996W	004 (contin	ued)
						$\gamma(^{18}$	⁹ Au) (continued		
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	E_{f}	J_f^π	Mult. [#]	δ [#]	α &	Comments
					ř				α (N)=0.00799 <i>18</i> ; α (O)=0.001418 <i>22</i> ; α (P)=7.2×10 ⁻⁵ <i>8</i> α (K)exp=0.63 <i>9</i> ; L12/K=0.18 <i>3</i> ; L3/K=0.041 <i>6</i> ; K/L=6.1 <i>6</i> ; M/K=0.042 <i>7</i> L3/K taken from Table 2 of 1996Wo04 as the value listed in authors' Table 3 seems a misprint.
217 <i>I</i>	2.9 8	1104.79	3/2-	887.2	(3/2,5/2)-	M1(+E2)	<1.3	0.64 17	δ =0.67 +14-15 from ce data in the present experiment. α (K)=0.50 17; α (L)=0.1102 23; α (M)=0.0264 10 α (N)=0.00655 22; α (O)=0.00116 3; α (P)=5.9×10 ⁻⁵ 21 α (K)=0.00752 18
229 1	3.7 15	1116.05	7/2 ⁻ ,5/2 ⁻	887.2	(3/2,5/2) ⁻	M1+E2	0.8 3	0.52 9	$\alpha(K)\exp=0.32$ 78 $\alpha(K)=0.40$ 9; $\alpha(L)=0.0923$ 24; $\alpha(M)=0.0222$ 5 $\alpha(N)=0.00551$ 12; $\alpha(O)=0.00097$ 3; $\alpha(P)=4.7\times10^{-5}$ 11 $\alpha(K)\exp=0.41$ 8
235 1	15 5	483.99	7/2-	248.59	5/2+	E1		0.0484 9	$\alpha(K)\exp=0.41$ s $\alpha(K)=0.0398$ 7; $\alpha(L)=0.00664$ 12; $\alpha(M)=0.00154$ 3 $\alpha(N)=0.000379$ 7; $\alpha(O)=6.73\times10^{-5}$ 12; $\alpha(P)=3.68\times10^{-6}$ 7 Mult.: $\alpha(K)\exp\leq0.04$ from ^{189m} Hg ε decay; ≈0.03 from ¹⁸⁹ gHg ε decay (1996Wo04)
236 1	48 7	483.99	7/2-	247.25	11/2-	E2		0.216 5	$\alpha(K) = 0.1125 \ 20; \ \alpha(L) = 0.0777 \ 18; \ \alpha(M) = 0.0198 \ 5$ $\alpha(N) = 0.00489 \ 11; \ \alpha(O) = 0.000805 \ 18; \ \alpha(P) = 1.168 \times 10^{-5} \ 21 \ \alpha(N) = 0.0188 \ 10^{-5} \ 21 \ 10^{-5} \ 10^{-5} \ 21 \ 10^{-5} \ 21 \ 10$
238.7 2	47 6	248.59	5/2+	9.93	3/2+	M1+E2	2.3 3	0.274 18	$\alpha(K)\exp[-0.19]{0}$, $L12/K=0.0520$, $M/K=0.5310$ $\alpha(K)=0.17317$; $\alpha(L)=0.075912$; $\alpha(M)=0.01903$ $\alpha(N)=0.004707$; $\alpha(O)=0.00079013$; $\alpha(P)=1.92\times10^{-5}21$ $\alpha(K)\exp[-0.203]$; $L12/K=0.336$; $L3/K=0.112$ Other: $\alpha(K)\exp[-0.212]$.
248.7 2	49 6	248.59	5/2+	0.0	1/2+	E2		0.182	$\alpha(K) = 0.0987 \ 14; \ \alpha(L) = 0.0629 \ 9; \ \alpha(M) = 0.01601 \ 23 \ \alpha(N) = 0.00395 \ 6; \ \alpha(O) = 0.000653 \ 10; \ \alpha(P) = 1.031 \times 10^{-5} \ 15 \ \alpha(K) = 0.01611 \ 23 \ 5 \ 10 \ 12 \ 13 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 15 \ 10^{-5} \ 10$
264.0 2	4.9 10	512.43	7/2+	248.59	5/2+	M1+E2	0.4 +2-3	0.43 5	$\alpha(K) exp=0.11 \ 2, \ L5/K=0.20 \ 7, \ M/K=0.25 \ 5 \\ \alpha(K) = 0.35 \ 4; \ \alpha(L) = 0.0621 \ 21; \ \alpha(M) = 0.0145 \ 4 \\ \alpha(N) = 0.00362 \ 10; \ \alpha(O) = 0.000658 \ 24; \ \alpha(P) = 4.1 \times 10^{-5} \ 5 \\ \alpha(K) exp = 0.37 \ 9; \ L12/K = 0.20 \ 5; \ L3/K < 0.02; \ M/K = 0.031 \ 4 \\ \delta < 0.3 \ from \ ca \ data \ in the present experiment$
268.8 <i>3</i>	7.2 14	1156.0	(5/2 ⁻ ,7/2 ⁻)	887.2	(3/2,5/2)-	M1+E2	1.7 +12-8	0.221 91	$\alpha(K)=0.155\ 85;\ \alpha(L)=0.050\ 5;\ \alpha(M)=0.0124\ 8$ $\alpha(K)=0.00306\ 19;\ \alpha(O)=0.00052\ 5;\ \alpha(P)=1.8\times10^{-5}\ 11$ $\alpha(K)=n=0\ 26\ 6:\ L\ 12K=0\ 27\ 5:\ L\ 3K=0\ 15\ 5$
279.3 2	13.4 20	770.73	7/2-	491.51	5/2-	M1+E2	0.9 2	0.28 4	$\alpha(K) \approx 0.226$ (i) $E12(K=0.275)$ (ii) $E12(K=0.155)$ $\alpha(K) = 0.224$; $\alpha(L) = 0.0483$; $\alpha(M) = 0.01155$ $\alpha(N) = 0.0028713$; $\alpha(O) = 0.000514$; $\alpha(P) = 2.5 \times 10^{-5}6$ $\alpha(K) \approx p = 0.224$
290 1	4.0 15	1104.79	3/2-	814.3	1/2-	M1		0.364 7	$\alpha(K) = 0.3005; \alpha(L) = 0.04959; \alpha(M) = 0.0114720$ $\alpha(N) = 0.002865; \alpha(O) = 0.0005269; \alpha(P) = 3.56 \times 10^{-5}6$ $\alpha(K) = 0.358$
295 ^b 297.9 2	<0.7 100 <i>10</i>	602.92 307.77	1/2 ⁺ ,3/2 ⁺ 5/2 ⁺	307.77 9.93	5/2 ⁺ 3/2 ⁺	M1(+E2)	<0.8	0.29 5	E _γ : from level scheme Fig. 13 in 1996Wo04. α (K)=0.24 5; α (L)=0.043 3; α (M)=0.0101 6

4

 $^{189}_{79}\mathrm{Au}_{110}$ -4

L

					189	Hg ε decay (7.6 min) 1 9	96Wo04 (cor	ntinued)
						<u>.</u>	$\gamma(^{189}Au)$ (cont	inued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments
(308)	-3	307 77	5/2+	0.0	1/2+				$ \begin{array}{l} \alpha(\mathrm{N}) = 0.00252 \ 15; \ \alpha(\mathrm{O}) = 0.00046 \ 4; \ \alpha(\mathrm{P}) = 2.8 \times 10^{-5} \ 6 \\ \alpha(\mathrm{K}) \exp = 0.24 \ 3; \ \mathrm{K/L} = 6.8 \ 15; \ \mathrm{L12/K} = 0.175 \ 25; \ \mathrm{M/K} = 0.048 \ 8; \\ \mathrm{L3/K} < 0.03 \end{array} $
308 1	1.0 [@] 5	512.43	7/2+	203.77	3/2+	E2		0.0947 16	α(K)=0.0582 10; α(L)=0.0275 6; α(M)=0.00693 13 α(N)=0.00171 4; α(O)=0.000286 6; α(P)=6.23×10-6 10 α(K)exp≤0.17 Mult.: E2(+M1),δ>0.9 from 1996Wo04, but ΔJ=2 requires pure E2.
322.9 3	40 6	814.3	1/2-	491.51	5/2-	E2		0.0825	$\alpha(K)=0.0519 \ 8; \ \alpha(L)=0.0231 \ 4; \ \alpha(M)=0.00580 \ 9$ $\alpha(N)=0.001433 \ 21; \ \alpha(O)=0.000241 \ 4; \ \alpha(P)=5.58\times10^{-6} \ 8$ $\alpha(K)\exp=0.050 \ 13; \ L12/K=0.50 \ 2; \ L3/K=0.2 \ 1; \ M/K=0.15 \ 10$
(334) 345.2 <i>3</i>	<0.6 6.7 <i>12</i>	1104.79 1116.05	3/2 ⁻ 7/2 ⁻ ,5/2 ⁻	770.73 770.73	7/2 ⁻ 7/2 ⁻	M1		0.227	$\alpha(K)=0.187 \ 3; \ \alpha(L)=0.0307 \ 5; \ \alpha(M)=0.00712 \ 11 \ \alpha(N)=0.00177 \ 3; \ \alpha(O)=0.000326 \ 5; \ \alpha(P)=2.21\times10^{-5} \ 4 \ \alpha(K)\exp=0.19 \ 6$
356 ^b 378.3 <i>3</i>	<0.3 2.3 7	602.92 862.2	1/2 ⁺ ,3/2 ⁺ 9/2 ⁻	248.59 483.99	5/2 ⁺ 7/2 ⁻	M1(+E2)	<0.5	0.165 <i>13</i>	E _γ : from level scheme Fig. 13 in 1996Wo04. $\alpha(K)=0.135 \ I2; \ \alpha(L)=0.0229 \ I2; \ \alpha(M)=0.00532 \ 25$ $\alpha(N)=0.00132 \ 7; \ \alpha(O)=0.000242 \ I3; \ \alpha(P)=1.59\times10^{-5} \ I4$ $\alpha(K)=0.0132 \ T; \ \alpha(D)=0.000242 \ I3; \ \alpha(P)=1.59\times10^{-5} \ I4$
385 1	4.8 10	1156.0	(5/2 ⁻ ,7/2 ⁻)	770.73	7/2-	M1		0.169 <i>3</i>	$\alpha(K) = 0.1395 22; \ \alpha(L) = 0.0229 4; \ \alpha(M) = 0.00529 9$ $\alpha(N) = 0.001319 21; \ \alpha(O) = 0.000243 4; \ \alpha(P) = 1.65 \times 10^{-5} 3$ $\alpha(K) \exp = 0.15 6$
(392) 395.7 2	<0.5 34 5	1254.23 887.2	$5/2^{-}, 7/2^{-}$ $(3/2, 5/2)^{-}$	862.2 491.51	9/2 ⁻ 5/2 ⁻	M1+E2	1.1 +4-3	0.097 18	α (K)=0.076 <i>16</i> ; α (L)=0.0158 <i>16</i> ; α (M)=0.0038 <i>4</i> α (N)=0.00093 <i>9</i> ; α (O)=0.000166 <i>18</i> ; α (P)=8.8×10 ⁻⁶ <i>19</i> α (K)exp=0.074 <i>14</i> ; L12/K=0.15 <i>8</i> ; L3/K≈0.05
399 ^a 1	6.0 ^{<i>a</i>} 20	602.92	1/2+,3/2+	203.77	3/2+	M1+E2	1.0 +5-4	0.100 26	$\alpha(K)=0.079\ 23;\ \alpha(L)=0.0159\ 24;\ \alpha(M)=0.0038\ 5$ $\alpha(N)=0.00093\ 13;\ \alpha(O)=0.00017\ 3;\ \alpha(P)=9.2\times10^{-6}\ 28$ $\alpha(K)\exp=0.08\ 2$
399 ^a 1	7.6 ^{<i>a</i>} 20	647.13	7/2+	248.59	5/2+	M1		0.1539	$\alpha(K) = 0.1269 \ 18; \ \alpha(L) = 0.0208 \ 3; \ \alpha(M) = 0.00481 \ 7 \ \alpha(N) = 0.001198 \ 17; \ \alpha(O) = 0.000221 \ 4; \ \alpha(P) = 1.498 \times 10^{-5} \ 22 \ \alpha(K) \exp = 0.09 \ 4 \ \delta < 2.1 \ \text{from cc data in the present experiment.}$
419.5 <i>3</i>	12.4 25	911.0	7/2-	491.51	5/2-	M1+E2	0.8 +5-4	0.098 24	$\alpha(K)=0.079\ 21;\ \alpha(L)=0.0147\ 23;\ \alpha(M)=0.0035\ 5$ $\alpha(N)=0.00086\ 13;\ \alpha(O)=0.000155\ 25;\ \alpha(P)=9.2\times10^{-6}\ 26$ $\alpha(K)\exp=0.11\ 3;\ L12/K=0.23\ 8$ $\delta<0.9$ from ce data in the present experiment.
443.4 <i>4</i> 445.6 2	1.0 ^w 5 14.8 20	647.13 770.73	7/2+ 7/2 ⁻	203.77 325.10	3/2 ⁺ 9/2 ⁻	M1+E2	0.8 3	0.083 16	α (K)=0.067 <i>14</i> ; α (L)=0.0124 <i>15</i> ; α (M)=0.0029 <i>4</i> α (N)=0.00072 <i>9</i> ; α (O)=0.000131 <i>17</i> ; α (P)=7.8×10 ⁻⁶ <i>17</i> α (K)exp=0.068 <i>11</i> ; L12/K=0.22 <i>5</i>

S

L

¹⁸⁹ Hg ε decay (7.6 min) 1996Wo04 (continued)													
						γ (¹⁸⁹ Au) (contir	nued)					
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\#}$	α &	Comments				
456 1	2.3 7	1058.73	3/2-	602.92	1/2+,3/2+								
472 <i>1</i> 502.3 <i>3</i>	2.7 8 12 2	1286.3 512.43	7/2+	814.3 9.93	1/2 ⁻ 3/2 ⁺	E2		0.0255	$\alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00521 \ 8; \ \alpha(M)=0.001273 \ 18 \\ \alpha(N)=0.000315 \ 5; \ \alpha(O)=5.45\times10^{-5} \ 8; \ \alpha(P)=2.07\times10^{-6} \ 3 \\ \alpha(K)\exp\approx0.025$				
504 <i>1</i> 544.7 ^b 3 553 <i>1</i> 557 <i>1</i> 571 <i>1</i>	2.9 9 3.6 9 1.8 9 2.7 8 2.5 12	811.79 1431.9 801.96 1371.3 879.67	(5/2,3/2,1/2) ⁺ 1/2 ⁺ ,3/2 ⁺ +	307.77 887.2 248.59 814.3 307.77	5/2 ⁺ (3/2,5/2) ⁻ 5/2 ⁺ 1/2 ⁻ 5/2 ⁺								
574.8 3	29 4	1058.73	3/2-	483.99	7/2-	E2		0.0186	α (K)=0.01397 20; α (L)=0.00349 5; α (M)=0.000845 12 α (N)=0.000209 3; α (O)=3.66×10 ⁻⁵ 6; α (P)=1.552×10 ⁻⁶ 22 α (K)exp=0.019 3				
585.9 <i>3</i>	5.5 12	911.0	7/2-	325.10	9/2-	M1		0.0558	$\alpha(K)=0.0461\ 7;\ \alpha(L)=0.00747\ 11;\ \alpha(M)=0.001726\ 25$ $\alpha(N)=0.000430\ 6;\ \alpha(O)=7.91\times10^{-5}\ 12;\ \alpha(P)=5.40\times10^{-6}\ 8$ $\alpha(K)\exp=0.047\ 12$				
593 ^b 595 1	<0.4	602.92 1107.4	1/2+,3/2+	9.93 512 43	$3/2^+$ $7/2^+$				E_{γ} : from level scheme Fig. 13 in 1996Wo04.				
598.4 <i>3</i>	8.7 15	801.96	1/2+,3/2+	203.77	3/2+	M1+E2	≈1.0	≈0.0349	$\alpha(K) \approx 0.0282; \ \alpha(L) \approx 0.00509; \ \alpha(M) \approx 0.001192$ $\alpha(N) \approx 0.000296; \ \alpha(O) \approx 5.37 \times 10^{-5}; \ \alpha(P) \approx 3.27 \times 10^{-6}$ $\alpha(K) \approx n \approx 0.03$				
603.0 2	21 3	602.92	1/2+,3/2+	0.0	1/2+	M1		0.0518	$\alpha(K) = 0.0428 \ 6; \ \alpha(L) = 0.00692 \ 10; \ \alpha(M) = 0.001600 \ 23 \ \alpha(N) = 0.000398 \ 6; \ \alpha(O) = 7.34 \times 10^{-5} \ 11; \ \alpha(P) = 5.01 \times 10^{-6} \ 7 \ \alpha(K) = x_0 = 0.050 \ 9; \ M/K = 0.07 \ 3; \ L3/K < 0.03$				
608.5 4	2.5 12	811.79	(5/2,3/2,1/2)+	203.77	3/2+	E2(+M1)	>2	0.020 4	$\alpha(K)=0.015 \ 3; \ \alpha(L)=0.0033 \ 4; \ \alpha(M)=0.00080 \ 9$ $\alpha(N)=0.000199 \ 22; \ \alpha(O)=3.5\times10^{-5} \ 4; \ \alpha(P)=1.7\times10^{-6} \ 4$ $\alpha(K)=0.013 \ 5$				
613.2 2	12.9 25	1104.79	3/2-	491.51	5/2-	M1(+E2)	<0.8	0.043 7	$\alpha(K)=0.035\ 6;\ \alpha(L)=0.0059\ 8;\ \alpha(M)=0.00137\ 17$ $\alpha(N)=0.00034\ 4;\ \alpha(O)=6.2\times10^{-5}\ 8;\ \alpha(P)=4.1\times10^{-6}\ 7$ $\alpha(K)=0.04\ 1$				
614.8 <i>3</i>	1.7 [@] 6	862.2	9/2-	247.25	11/2-	M1		0.0492	$\alpha(K)=0.0407 6; \alpha(L)=0.00658 10; \alpha(M)=0.001520 22$ $\alpha(N)=0.000379 6; \alpha(O)=6.97\times10^{-5} 10; \alpha(P)=4.76\times10^{-6} 7$ $\alpha(K)=x_{D}=0.041 5; L12/K=0.19 3$				
624.6 2	5.5 20	1116.05	7/2 ⁻ ,5/2 ⁻	491.51	5/2-	M1		0.0473	α(K)=0.0391 6; α(L)=0.00631 9; α(M)=0.001458 21 α(N)=0.000363 5; α(O)=6.69×10-5 10; α(P)=4.57×10-6 7 Mult.: α(K)exp=0.055 1 from ^{189g} Hg ε decay (1996Wo04). Other: α(K)exp=0.019 5 from ¹⁸⁹ Hg ε decay (7.6 min+8.6 min) (1975Be17), implies a M1+E2 transition of δ≈1.8.				
637.2 1	1.0 [@] 5	647.13	7/2+	9.93	3/2+	E2		0.01469	$\alpha(K)=0.01127 \ 16; \ \alpha(L)=0.00261 \ 4; \ \alpha(M)=0.000629 \ 9 \ \alpha(N)=0.0001559 \ 22; \ \alpha(O)=2.74\times10^{-5} \ 4; \ \alpha(P)=1.252\times10^{-6} \ 18 \ \alpha(K)\exp=0.008 \ 2$				
664 1	7.4 15	1156.0	(5/2 ⁻ ,7/2 ⁻)	491.51	5/2-	M1+E2	≈0.4	≈0.0366	$\alpha(K) \approx 0.0302; \ \alpha(L) \approx 0.00496; \ \alpha(M) \approx 0.001148$				

6

From ENSDF

 $^{189}_{79}\mathrm{Au}_{110}$ -6

189 Hg ε decay (7.6						cay (7.6 min)	199	6W004 (cor	ntinued)	
						$\gamma(^{189}\text{Au})$	(continu	ued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	$I_{(\gamma+ce)}$	Comments
670 <i>1</i> 675.9 2 751.1 <i>3</i> 770.2 2	3.3 9 11.2 20 2.3 7 13.5 20	977.8 879.67 1058.73 1254.23	+ 3/2 ⁻ 5/2 ⁻ ,7/2 ⁻	307.77 203.77 307.77 483.99	5/2+ 3/2+ 5/2+ 7/2-	E2(+M1) M1		0.0275		$\begin{aligned} &\alpha(N) \approx 0.000286; \ \alpha(O) \approx 5.25 \times 10^{-5}; \ \alpha(P) \approx 3.52 \times 10^{-6} \\ &\alpha(K) \exp \approx 0.03 \end{aligned}$ $\alpha(K) \exp \approx 0.01$ $\alpha(K) = 0.0228 \ 4; \ \alpha(L) = 0.00365 \ 6; \ \alpha(M) = 0.000844 \\ I2 \\ &\alpha(N) = 0.000210 \ 3; \ \alpha(O) = 3.87 \times 10^{-5} \ 6; \\ &\alpha(P) = 2.65 \times 10^{-6} \ 4 \\ &\alpha(K) \exp = 0.027 \ 4 \end{aligned}$
791.7 <i>3</i> 802 <i>1</i> 802.1 <i>3</i>	2.5 7 2.0 <i>10</i> 8.0 <i>15</i>	801.96 811.79 801.96	1/2 ⁺ ,3/2 ⁺ (5/2,3/2,1/2) ⁺ 1/2 ⁺ ,3/2 ⁺	9.93 9.93 0.0	3/2+ 3/2+ 1/2+	M1(+E2)	<0.8	0.022 4		 Other: α(K)exp=0.007 2 from ¹⁸⁹Hg ε decay (7.6 min+8.6 min) (1975Be17), implies a pure E2 transition. α(K)=0.018 3; α(L)=0.0029 4; α(M)=0.00068 9 α(N)=0.000169 21; α(O)=3.1×10⁻⁵ 4; α(P)=2.1×10⁻⁶ 4 α(K)exp=0.021 5
809.6 <i>3</i> 811.5 <i>3</i> 825.8 <i>5</i> 844 <i>1</i>	3.6 9 2.4 8 1.8 6 2.0 10	1058.73 811.79 1133.6 1755.0	3/2 ⁻ (5/2,3/2,1/2) ⁺	248.59 0.0 307.77 911.0	5/2+ 1/2+ 5/2+ 7/2 ⁻					
848 ^{<i>a</i>} 1	3.0 ^{<i>a</i>} 10	1156.0	(5/2 ⁻ ,7/2 ⁻)	307.77	5/2+	[E1]		0.00299		$\alpha(K)=0.00251 \ 4$; $\alpha(L)=0.000376 \ 6$; $\alpha(M)=8.59\times10^{-5} \ 13$ Mult.: M1 in 2003Wu02 evaluation is inconsistent with ΔJ^{π} ; $\alpha(K)\exp=0.037 \ 12$ is consistent with M1 for the second component from the 2101.8 level
848 ^{<i>a</i>} 1	3.0 ^{<i>a</i>} 10	2101.8	(¯)	1254.23	5/2-,7/2-	(M1)		0.0215		$\alpha(K) \exp=0.037 \ I2$ $\alpha(K)=0.0178 \ 3; \ \alpha(L)=0.00285 \ 4; \ \alpha(M)=0.000657$ $I0; \ \alpha(K)=0.0001637 \ 24$
855.5 4	4.8 10	1058.73	3/2-	203.77	3/2+	E1		0.00295		$\alpha(K)=0.00247 \ 4; \ \alpha(L)=0.000369 \ 6; \alpha(M)=8.45\times10^{-5} \ 12 \alpha(N)=2.09\times10^{-5} \ 3; \ \alpha(O)=3.82\times10^{-6} \ 6; \alpha(P)=2.51\times10^{-7} \ 4 \alpha(K)\exp<0.004$
894.9 5 900.4 3	1.7 6 4.5 5 2.1 15	1098.1 2154.6	_	203.77 1254.23	3/2' 5/2 ⁻ ,7/2 ⁻	M1(+E2)				I _γ : from table 3 of 1996Wo04. Mult.: α (K)exp=0.020 8 if Iγ=2.5 10 is used. However, if Iγ=4.5 5 from table 4 is used, α (K)exp=0.011 4 and δ =0.9 +16-8.

 \neg

 $^{189}_{79}\mathrm{Au}_{110}$ -7

¹⁸⁹₇₉Au₁₁₀-7

L

					189 Hg $arepsilon$ de	cay (7.6 mi	in) 1996W	004 (continu	ed)
						γ (¹⁸⁹ A	u) (continued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	δ#	α &	Comments
917.1 5 918.8 3	1.8 5 5.3 6	1165.7 2074.7	(⁻)	248.59 1156.0	5/2 ⁺ (5/2 ⁻ ,7/2 ⁻)	M1+E2	0.8 +8-6	0.0133 38	α (K)=0.0110 32; α (L)=0.0018 5; α (M)=0.00042 11 α (N)=0.00010 3; α (O)=1.92×10 ⁻⁵ 49; α (P)=1.26×10 ⁻⁶ 38 α (K)exp=0.011 3
926 <i>1</i>	2.1 7	2030.88		1104.79	3/2-				
933.4 <mark>b</mark> 4	2.4 5	2030.88		1098.1					
936.6 <i>3</i>	7.5 8	2092.8	-	1156.0	(5/2 ⁻ ,7/2 ⁻)	M1		0.01669	$\alpha(K)=0.01382 \ 20; \ \alpha(L)=0.00220 \ 3; \ \alpha(M)=0.000509 \ 8$ $\alpha(N)=0.0001267 \ 18; \ \alpha(O)=2.33\times10^{-5} \ 4; \ \alpha(P)=1.604\times10^{-6} \ 23$ $\alpha(K)\exp=0.016 \ 3$
946.3 <i>3</i>	2.5 10	1254.23	5/2-,7/2-	307.77	5/2+				
952 ^b 1	2.0 7	1156.0	$(5/2^-, 7/2^-)$	203.77	3/2+				
952 1	5.3 6	1862.9	-	911.0	7/2-	M1		0.01601	α (K)=0.01326 <i>19</i> ; α (L)=0.00211 <i>3</i> ; α (M)=0.000488 <i>7</i> α (N)=0.0001215 <i>18</i> ; α (O)=2.24×10 ⁻⁵ <i>4</i> ; α (P)=1.538×10 ⁻⁶ 22
958.6 <i>3</i>	5.4 6	2074.7	(⁻)	1116.05	7/2 ⁻ ,5/2 ⁻	M1		0.01573	α (K)exp=0.017 4 α (K)=0.01303 19; α (L)=0.00208 3; α (M)=0.000479 7 α (N)=0.0001193 17; α (O)=2.20×10 ⁻⁵ 3; α (P)=1.511×10 ⁻⁶ 22 α (K)exp=0.015 4
969.0 <i>3</i>	4.1 10	2074.05	-	1104.79	3/2-				
972 1	1.5 6	2030.88		1058.73	3/2-				
977.7 3	3.4 3	2093.62	_	1116.05	7/2 ⁻ ,5/2 ⁻	M1		0.01496	$\alpha(K)=0.01240 \ ls; \ \alpha(L)=0.00197 \ 3; \ \alpha(M)=0.000455 \ 7$ $\alpha(N)=0.0001134 \ l6; \ \alpha(O)=2.09\times10^{-5} \ 3; \ \alpha(P)=1.437\times10^{-6}$ 2l $\alpha(K)=0.026 \ 6$
995.5 ^b 4	2.0.10	2101.46		1104.79	3/2-				
1004.2 3	3.1 8	2258.7		1254.23	5/2-,7/2-				
1007.7 2	11.0 <i>11</i>	2066.48	3/2-,5/2-	1058.73	3/2-	M1		0.01386	α (K)=0.01148 <i>16</i> ; α (L)=0.00183 <i>3</i> ; α (M)=0.000421 <i>6</i> α (N)=0.0001049 <i>15</i> ; α (O)=1.93×10 ⁻⁵ <i>3</i> ; α (P)=1.330×10 ⁻⁶ <i>19</i>
1015.3 <i>3</i>	9.2 10	2074.05	-	1058.73	3/2-	M1		0.01360	α (K)exp=0.013 2 α (K)=0.01127 16; α (L)=0.00179 3; α (M)=0.000413 6 α (N)=0.0001029 15; α (O)=1.90×10 ⁻⁵ 3; α (P)=1.305×10 ⁻⁶ 19
1034.6 <i>3</i>	7.5 8	2093.62	-	1058.73	3/2-	M1		0.01296	α (K)exp=0.011 3 α (K)=0.01074 15; α (L)=0.001708 24; α (M)=0.000394 6 α (N)=9.81×10 ⁻⁵ 14; α (O)=1.81×10 ⁻⁵ 3; α (P)=1.244×10 ⁻⁶ 18 α (K)exp=0.016 3
1048 <i>1</i> 1057 <i>1</i>	1.4 5 1.8 5	1058.73 1260.8	3/2-	9.93 203.77	3/2 ⁺ 3/2 ⁺				-()F

 ∞

	189 Hg ε decay (7.6 min) 1996Wo04 (continued)													
						γ	(¹⁸⁹ Au) (co	ntinued)						
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α &	Comments						
1058.5 <i>3</i>	9.7 10	1058.73	3/2-	0.0	1/2+	E1	0.00199	$\alpha(K)=0.001673 \ 24; \ \alpha(L)=0.000247 \ 4; \ \alpha(M)=5.65\times10^{-5} \ 8$ $\alpha(N)=1.400\times10^{-5} \ 20; \ \alpha(O)=2.56\times10^{-6} \ 4; \ \alpha(P)=1.714\times10^{-7} \ 24$ $\alpha(K)\exp{\leq}0.0016$						
1087.9 <i>3</i>	4.1 10	1098.1		9.93	3/2+									
1096.6 4	2.3 7	2155.3		1058.73	3/2-									
1142.8 4	1.9 6	1346.6		203.77	3/2+									
1155.1 4	3.0 8	1358.9		203.77	3/2+									
1165 /	2.4 8	1165.0		0.0	1/2+									
11/9 1	1.0.5	2066.2		887.2	(3/2, 5/2)									
1200 1	2.0 / 2.0 / 7	2258.7		1058.73	$\frac{3}{2}$									
1221^{-1} I 1221 $\frac{a}{1}$ I	2.0^{-1} / 2.0 ⁻¹	2034.7		014.3 870.67	1/∠ +									
1221 1	2.0 9	2101.40	_	81/1 3	1/2-									
1259.95	298	1476 1		203 77	$\frac{1}{2}$									
1278 1	3.1.8	2092.8	-	814.3	$1/2^{-}$									
1292^{b} 1	2012	1767.0		482.00	7/2-									
1205 1	1.8 10	2101.46		801.96	$1/2^+$ $3/2^+$									
1331.0.3	268	2101.40		770 73	$7/2^{-}$									
1367 1	2.0.10	1851.0		483.99	$7/2^{-}$									
1379.4 2	8.6 20	1863.4		483.99	$7/2^{-}$									
1428.1 2	6.3 12	2030.88		602.92	$1/2^+, 3/2^+$									
1431.7 <i>3</i>	2.0 7	2034.7		602.92	$1/2^+, 3/2^+$									
1454.4 3	5.5 12	2101.46		647.13	7/2+									
1463.5 <i>3</i>	4.5 10	2066.48	3/2-,5/2-	602.92	$1/2^+, 3/2^+$									
1466.3 4	2.8 8	1476.1		9.93	3/2+									
1471 <i>I</i>	2.8 15	2074.05	-	602.92	$1/2^+, 3/2^+$									
1476.1 3	3.5 9	1960.1		483.99	7/2-									
1487 1	1.7 10	1970.8	_	483.99	1/2 ⁻									
1550 9 2	2.5 8	1862.9		307.77	5/2 5/2+									
1559.8 3	2.1 8 3 2 11	1808.4		248.59	5/2 · 5/2-									
1571 2 5	5.211 308	2001.3 1870.0		491.31 307 77	5/2 5/2+									
1589 4 4	27.8	2101.8	(-)	512.43	$\frac{3}{2}}{7}$									
1663.0.4	3.9.9	1970.8	()	307 77	5/2+									
1664.9 4	2.7 8	1913.5		248.59	$5/2^+$									
1675.2 3	4.3 10	1879.0		203.77	$3/2^+$									
1766.4 3	14.5 15	2074.05	-	307.77	5/2+									
1786.0 5	4.6 10	2093.62	-	307.77	5/2+									
1787.5 5	2.5 10	2036.1		248.59	5/2+									
1793.8 4	3.0 10	2101.8	(_)	307.77	5/2+									
1802 1	2.0 10	2109.8		307.77	5/2+									
1818.3 5	2.5 10	2066.48	3/2-,5/2-	248.59	5/2+									
1826.6 4	2.4 8	2030.88		203.77	3/2+									
1818.3 <i>5</i> 1826.6 <i>4</i>	2.5 10 2.5 10 2.4 8	2066.48 2030.88	3/2-,5/2-	248.59 203.77	5/2+ 3/2+									

9

¹⁸⁹₇₉Au₁₁₀-9

¹⁸⁹₇₉Au₁₁₀-9

From ENSDF

					189 Hg ε deca	y (7.6 min)	1996W	1996Wo04 (continued)				
				γ ⁽¹⁸⁹ Au) (continued)								
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π		
1845.3 5	2.0 6	2093.62	-	248.59 5/2*	2034.2 3	16.2 16	2034.2	_	0.0	$1/2^{+}$		
1862.7 <i>3</i>	4.4 10	2066.48	$3/2^{-}, 5/2^{-}$	203.77 3/2+	2091.3 4	4.8 10	2101.46		9.93	$3/2^{+}$		
1895.9 5	3.5 12	2099.7		203.77 3/2	2093.2 4	4.6 10	2092.8	-	0.0	$1/2^{+}$		
1908.8 4	2.0 7	2157.4		248.59 5/2	2101.3 3	4.2 10	2101.46		0.0	$1/2^{+}$		
2006 1	1.8 9	2209.8		203.77 3/2+	x2181.6 4	2.6 8						
2021.5 3	15.3 15	2031.0		9.93 3/2	2249.1 4	2.1 7	2258.7		9.93	$3/2^{+}$		
2030.3 4	4.6 10	2031.0		0.0 1/2	+							

[†] From 1996Wo04, except as noted.

[‡] Values are from table 3 of 1996Wo04 except for $E\gamma$ =900.4, 918.8, 936.6, 952, 958.6, 977.7, 1007.7, 1015.3, 1034.6, 1058.5, which are taken from more precise values quoted in authors' table 4, and in Sept. 5, 2003 communication with J. Wood, as noted by S. -C. Wu in 2003-NDS.

[#] From Adopted Gammas, where the multipolarity and mixing ratios are based mainly on the conversion electron measurements in 1996Wo04.

^{*a*} Estimated from 189m Hg ε decay.

& From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁸⁹₇₉Au₁₁₀

Decay Scheme (continued)

¹⁸⁹₇₉Au₁₁₀

Decay Scheme (continued)

¹⁸⁹₇₉Au₁₁₀

¹⁸⁹₇₉Au₁₁₀

Decay Scheme (continued)

¹⁸⁹₇₉Au₁₁₀