	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, Balraj Singh	NDS 142, 1 (2017)	15-Apr-2017

 $Q(\beta^{-}) = -3960 \ 40; \ S(n) = 9282 \ 20; \ S(p) = 3050 \ 21; \ Q(\alpha) = 4330 \ 30 \ 2017Wa10$

S(2n)=16700 30, S(2p)=8610 30 (2017Wa10).

¹⁸⁹Au produced and identified by 1960Po07 and 1960Al20 in proton and deuteron irradiations of ¹⁸⁹Pt and ¹⁸⁹Hg targets, followed by half-life measurements. Previous assignment of a 42-min activity to ¹⁸⁹Au by 1955Sm42 may have belonged to ¹⁹⁰Au. Later studies of decay of ¹⁸⁹Au: 1973Ja16, 1970Fi16, 1970Jo02, 1967Na02, 1965Ki06.

The level scheme for high-spin structures in 1992Ve05 and 1992Bo23 differ in the ordering of several cascades, and J^{π} assignments. Experimental details are not available in either of the two references. The evaluators have adopted the level scheme from 1992Ve05. The level scheme proposed by 1992Bo23 (and 1993Pe17) is in general agreement with that from 1992Ve05, with the exception of a few transitions placed in a different ordering of the γ cascades. The level schemes proposed in ¹⁹¹Ir(α ,6n γ) (1979Go15) and ¹⁸¹Ta(¹²C,4n γ) (1975De20) differ significantly above ≈ 2.5 MeV excitation, mainly due to either different ordering of the γ cascades or missing transition(s) in a cascade. Observation of a γ ray in 1975De20 and 1979Go15 similar in energy to that in 1992Ve05 is taken here as an evidence of population of a particular level in that study.

189Au Levels

Additional information 1.

Cross Reference (XREF) Flags

			A 189	⁹ Hg ε decay (7.6 min) D 176 Yb(19 F,6n γ)						
			B 189	⁹ Hg ε decay (8.6 min) E ¹⁸¹ Ta(¹² C, 4n γ)						
			C 174	⁴ Yb(¹⁹ F,4n γ) F ¹⁹¹ Ir(α ,6n γ)						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments						
0.0	1/2+	28.7 min 4	AB	$%ε+%β^+=100; %α<3×10^{-5}$ μ=+0.494 <i>14</i> (1989Wa11,1987Wa06,2014StZZ) RMS charge radius <r<sup>2>^{1/2}=5.4084 fm 52 (2013An02 evaluation). μ: laser resonance ionization mass spectroscopy (1989Wa11,1987Wa06). %α: ionization chamber measurement (1963Ka17). No α decay observed. J^π: spin from atomic beam (1976Ek01). Systematics of ¹⁹¹Au-¹⁹⁹Au predict 1/2⁺, 3/2⁺ ground-state doublet. T_{1/2}: weighted average of 28.3 min 5 (1970Fi16), 28.6 min <i>10</i> (1970Jo02), 29.7 min 8 (1967Na02), and 28.7 min 4 (1966Fo13). Other values: 30 min (1960Po07,1960Al20), 42 min 5 (1955Sm42). Activity identified by 1955Sm42 may have belonged to ¹⁹⁰Au</r<sup>						
9.94 11	3/2+	30 ns 4	AB	J ^{π} : M1+E2 from 5/2 ⁺ (248.6), γ to 1/2 ⁺ . Systematics of ¹⁹¹ Au- ¹⁹⁹ Au predict 1/2 ⁺ , 3/2 ⁺ ground-state doublet. T _{1/2} : from 1975Be17.						
203.74 12	3/2+#		AB	,						
247.25 ^{&} 16	11/2 ^{-#}	4.59 min <i>11</i>	ABCDEF	 %ε+%β⁺≈100; %IT=? μ=+6.19 2 (1989Wa11,1987Wa06,2014StZZ) μ: laser resonance ionization mass spectroscopy (1989Wa11,1987Wa06). Other value: 6.17 15 (1986Va35,1985Va07, nuclear orientation, NMR). %IT: on the basis of decay curves, 1970Fi16 suggest a possible ÎT branch. RUL for a possible 237γ leads to %IT<5.5. J^π: spin from atomic beam (1976Ek01), parity from E2 γ from 7/2⁻. T_{1/2}: weighted average of 4.55 min 10 (1970Fi16), 4.7 min 1 (1967He06, 1967Au17) and 4.0 min 3 (1966Ep13) 						
248.56 11	5/2+ #		AB							

¹⁸⁹Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
307.76 13	$5/2^{+}$		AB	J^{π} : M1+E2 to 3/2 ⁺ (9.9), E1 from 7/2 ⁻ (484.0).
$325 12^{a} 16$	$9/2^{-a}$	190 ns 15	ABCDEE	%IT=100
525.12 10	272	190 115 12	IID CD LI	$T_{1/2}$: from $\gamma(t)$ in ¹⁸⁹ Hg ε decay (1975Be17).
484 02 16	7/2-#	0.15 ns 5	AR F	$T_{1/2}$, from $\gamma(t)$ in ¹⁸⁹ Hg s decay (1975Be17).
401.53.17	5/2-@	0.10 ms 3		$T_{1/2}$. from $\gamma(t)$ in The endedy (1975Be17).
512 35 15	5/2 7/2 ⁺	0.50 fils 5	ABL	$I_{1/2}^{\pi}$. F2 to $3/2^+$ (203 7): F2 from $11/2^+$ (1112 5)
602.90 16	$1/2^+$ $3/2^+$		A	J^{π} : M1+E2 to 3/2 ⁺ (203.7), H2 from 11/2 ⁻ (1112.5).
646.17 ^{<i>a</i>} 17	13/2-		BCDEF	J^{π} : E2 γ to 9/2 ⁻ , band member.
647.20 13	7/2+		AB	J^{π} : M1 to 5/2 ⁺ (248.6), E2 from 11/2 ⁺ .
681.90 ^{&} 19	15/2-		BCDEF	J^{π} : E2 γ to 11/2 ⁻ , band member.
712.70 18	$11/2^{-}$		BCDEF	J^{π} : M1+E2 to 9/2 ⁻ , strong ε feeding from ^{189m} Hg ($J^{\pi}=13/2^+$).
760.67 18	9/2+		В	J^{π} : E2 to 5/2 ⁺ (248.56), M1 from 11/2 ⁺ .
770.68 18	7/2-		AB	J^{π} : M1+E2 to 9/2 ⁻ , M1+E2 to 5/2 ⁻ .
801.95 18	$1/2^+, 3/2^+$		Α	J^{π} : M1+E2 to 3/2 ⁺ (203.7); M1+E2 to 1/2 ⁺ ; γ to 5/2 ⁺ (248.6), strong
				ε feeding from ^{189g} Hg ($J^{\pi}=3/2^{-}$).
811.88 22	$(5/2,3/2,1/2)^+$		AB	J^{π} : M1 to 3/2 ⁺ ; γ s to 5/2 ⁺ (307.8) and 1/2 ⁺ .
812.67 18	13/2-		BCDEF	J^{π} : M1+E2 to 11/2 ⁻ (247.2), strong ε feeding from ¹⁸⁹¹¹ Hg (J^{π} =13/2 ⁺).
814.30 25	$1/2^{-}$		A	J^{π} : E2 to 5/2 ⁻ , strong ε feeding from ^{169g} Hg with $J^{\pi}=3/2^{-}$.
847.89 19	9/2		B	J'' : E2 to $5/2^+$ (248.6), E2 from $13/2^+$ (1534.8).
802.04 18	9/2 +		AB	J [*] : M1 to $11/2$, M1+E2 to $1/2$ (484.0). I^{π} : E2(+M1) to $3/2^+$ (203.7)
880 45 23	$9/2^{-}$		R	$J = E2(+M1)$ to $3/2^{-}$ (203.7). $I^{\pi} = M1 + F2$ to $11/2^{-}$ M1 + F2 to $7/2^{-}$ (484.0)
887 24 24	$(3/2 5/2)^{-}$		Δ	I^{π} : M1+F2 to 5/2 ⁻ strong s feeding from ^{189g} Hg parent with $I^{\pi}=3/2^{-1}$
911.01 20	$7/2^{-}$		AB	J^{π} : M1+E2 to 5/2 ⁻ , M1 to 9/2 ⁻ (325.1).
961.22 19	$(5/2,3/2)^+$		В	J^{π} : M1+E2 γ to 5/2 ⁺ (248.6); M1+E2 γ to 3/2 ⁺ .
977.8 10			Α	
1058.73 14	3/2-		Α	J^{π} : E2 to 7/2 ⁻ (484.0), E1 to 3/2 ⁺ (203.7), E1 to 1/2 ⁺ .
1097.03 21	$13/2^{-}$		BCD	J ^{π} : E2 to 9/2 ⁻ (325.1), strong ε feeding from ^{189m} Hg, J ^{π} =13/2 ⁺ .
1098.1 <i>3</i>	0		Α	
1104.80 22	3/2-@		Α	
1105.35 ^{<i>a</i>} 30	17/2-		BCD F	J^{π} : E2 γ to 13/2 ⁻ , band member.
1106.56 23	$(5/2,3/2)^+$		В	J ^{π} : M1+E2 to 3/2 ⁺ (203.74), ε feeding from ^{189g} Hg, J ^{π} =3/2 ⁻ .
1107.4 11	11/0+		A	17 - 161 + 0.02 + = 0.11 + 0.12
1112.48 20	$\frac{11}{2}$		В	J [*] : M1 to $9/2^+$; strong ε feeding from ^{100m} Hg ($J^{\pi}=13/2^+$).
1110.05 21	$\frac{1}{2}, \frac{3}{2}$ $\frac{11}{2}$		A BC	J : M1 to $7/2$ (770.07), M1 to $3/2$. I^{π} : M1+F2 to $9/2^{-}$ (325.1) M1+F2 to $13/2^{-}$ (646.2)
1133 52 22	$9/2^{-}$		R	I^{π} : M1+E2 to 7/2 ⁻ (525.1), M1+E2 to 15/2 ⁻ (0+0.2).
1133.6 6	272		A	$5 \cdot 1011122 + 100012 + 100012 + (10100).$
1145.70 22	$13/2^{-}, 15/2^{-}$		BC	J^{π} : M1+E2 to 13/2 ⁻ (646.2); strong ε feeding from ^{189m} Hg, $J^{\pi}=13/2^+$;
	1 / 1			11/2 not likely from population in heavy-ion (19 F,4n γ) reaction.
1156.0 <i>3</i>	$(5/2,7/2)^{-}$		Α	J ^{π} : M1 to 7/2 ⁻ (770.7), M1+E2 to (3/2,5/2) ⁻ (887.2); possible γ to 3/2 ⁺
				makes 7/2 less likely.
1165.0 10			Α	
1165.7 6	11/2-		A	M_{1} , M_{1} , E_{2} , E_{2} , M_{2} , M_{1} , E_{2} , E_{2} , M_{2} , M
1103 55 23	11/2		B	J ^{**} : M1+E2 to $13/2$ (812.7), M1+E2 to $9/2$ (802.0). I^{π} : M1+E2 to $7/2^{-}$ (011.0)
1247 1 3	$(9/2 7/2)^+$		B	J^{π} : M1+F2 to 9/2 ⁺ (760.7), γ to 5/2 ⁺ (307.8)
1254.24 19	5/2-,7/2-		A	J^{π} : M1 to 7/2 ⁻ (484.0), E2 to 3/2-(1058.7).
1260.7 10			A	
1273.14 25	$11/2^{-}$		В	J^{π} : M1+E2 to 9/2 ⁻ (862.0), M1 to 13/2 ⁻ (646.2).
1286.3 11			Α	
1295.5 <i>3</i>	$11/2^{-}$		В	J ^{π} : M1+E2 to 9/2 ⁻ (862.0), populated in ε decay of ^{189m} Hg, J ^{π} =13/2 ⁺ .
1298.87 16	$11/2^+$		В	J ^{π} : E2 to 647.2 (J≤7/2 ⁺), strong ε feeding from ^{189m} Hg (J ^{π} =13/2 ⁺).
1312.96 25	13/2-		В	J ^{π} : M1+E2 to 11/2 ⁻ , strong feeding ε from ^{189m} Hg, J ^{π} =13/2 ⁺ .

¹⁸⁹Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1346.5 5		Α	
1352.6 3	(15/2,13/2,11/2)-	BCDE	XREF: E(?). J^{π} : M1+E2 to 13/2 ⁻ (812.7), E2 to 11/2 ⁻ (247.2).
1358.8 5		Α	
1365.3 5		В	
1368.1 <i>3</i>	$(17/2, 13/2, 15/2)^{-}$	В	J^{π} : (M1) to 15/2 ⁻ (681.9).
1371.3 11		A	
1376.2 11	-	В	J^{π} : M1+E2 γ to 13/2 ⁻ .
1383.25 20	13/2+	BCD	J^{π} : E1 to 13/2 ⁻ (646.2), E1 to 11/2 ⁻ (1130.1), strong ε feeding from ¹⁸⁹¹¹ Hg, J^{π} =13/2 ⁺ .
1412.2 ^{&} 4	19/2-	BCDEF	J^{π} : $\Delta J=2$, γ to $15/2^{-}$, band member.
1419.80 22	$(13/2, 11/2)^+$	В	J^{π} : E2 to 9/2 ⁺ (760.7), observed in ^{189m} Hg ε decay, $J^{\pi}=13/2^+$.
1431.9 4		A	J^{π} : in 1996Wo04, this level is shown in their Figure 15 with other low lying negative parity levels. However no spin parity was explicitly assigned to this level.
1456.2 10	+	В	J^{π} : M1 γ to 647.2, 7/2 ⁺ level.
1459.97 20	$11/2^{+}$	В	J^{π} : E1 to 9/2 ⁻ (325.1), E1 to 13/2 ⁻ (646.2).
1463.9 5	-	В	J^{π} : M1 γ to 712.7, 11/2 ⁻ level.
14/6.1 4	12/2-	A	$M_{\rm e}$ M1 \sim mass to 15/2 ⁻ and 11/2 ⁻ (1100 ()
1481.0 4	$\frac{13}{2}$	В	J [*] : M1 γ rays to 15/2 and 11/2 (1188.6).
1403.4 3	(7/2) $(7/2)^{-1}$	D R	J. M1+E2 γ to 700.7, 9/2 , M1+E2 to $(3/2,3/2)$. I^{π} : M1+E2 γ to 325.1, $0/2^{-1}$ level: (E2) γ to 712.7, $11/2^{-1}$ level
15167 11	(//2,11/2)	B	$J = M1 + E2 \gamma$ to $S12.7, S12^{-1}$ level
1523.4 4	(_)	B	J^{π} : in Figure 10 of 1996Wo04, the association of the decay of this level with the 11/2 ⁻
			isometric level, indirectly fed via the 841 keV γ leads the authors to assign a negative parity.
1523.9 11	+	В	J^{π} : M1+E2 γ to the 847.9, 9/2 ⁺ level.
1525.0 4	-	В	J ^{π} : M1 γ to 1093.0, 13/2 ⁻ level; M1(+E2) γ to 712.7, 11/2 ⁻ level.
1534.79 19	13/2+	В	J^{π} : E1 to 11/2 ⁻ (247.2), (E1) to 15/2 ⁻ (681.9), strong ε feeding from ^{189m} Hg (J=13/2 ⁺).
1559.1 4	-	В	J^{π} : E2(+M1) γ to 1130.1, 11/2 ⁻ level.
1559.83 22	-	В	J^{π} : M1 γ to 712.7, 11/2 ⁻ level.
1580.3 6	-	В	J^{π} : M1 γ to 1097.0, 13/2 ⁻ level.
1595.4 <i>11</i> 1597.2 <i>11</i>		B B	
1601.19 20	$13/2^+, 15/2^+$	BCD	J^{π} : E1 to 13/2 ⁻ (812.7), γ to 15/2 ⁻ (681.9), populated by ^{189m} Hg ε decay.
1654.2 3	13/2-,15/2-	В	J ^{π} : M1+E2 to 13/2 ⁻ (812.7), E2 to 15/2 ⁻ (681.9), populated by ^{189m} Hg ε decay.
1662.4 ^{<i>a</i>} 4	21/2-	CD F	J^{π} : $\Delta J=(2)$, (E2) γ to $17/2^{-}$, band member.
1688.1 6		D	
1/30.6 4	12/2+ 15/2+	B	π , M1, E2 to $12/2^{+}$ (1282.2) or to $15/2^{-}$ (681.0)
1739.4 4	13/2, 15/2	BCD	J^{**} : M1+E2 to 15/2* (1585.2), γ to 15/2 (081.9).
1755 0 11		A	
1756.7 4	-	B	J^{π} : M1 γ to 681.9, 15/2 ⁻ level.
1760.2 4		В	
1764.3 4		В	
1767.0 11		Α	
1774.5 6		В	
1788.3 8	(*)	В	J^{π} : (E2) γ to 1112.5, 11/2 ⁺ level.
1800.6 5	$(15/2^+)$	В	J ^{π} : (E1) to 17/2 ⁻ (1105.3), observed in ^{189m} Hg ε decay.
1808.4 4	_	A	I_{π} M1(+E2) (01.0) 15/2= 11
1822.2 4	$(13/2^+, 15/2^+)$	р В	J ^{**} : IVI1($\pm E2$) γ (0.081.9, 13/2 level. I ^{π} : are to 13/2 ⁻ (646.2, 812.7) 15/2 ⁻ (681.0) and 12/2 ⁺ (1282.2)
1851 0 11	(13/2, 13/2)	ط A	j . γ 5 to $15/2$ (040.2, 012.7), $15/2$ (001.9) allo $15/2$ (1305.2).
1862.9 8	-	Â	J^{π} : M1 γ to 911.0, 7/2 ⁻ level.
1863.4 3		A	
1877.1 5	-	В	J^{π} : M1+E2 γ to 812.7, 13/2 ⁻ level.

¹⁸⁹Au Levels (continued)

E(level) [†]	J ^{π‡}	XREF	Comments
1879.0 3		A	
1905.2.11		B	
1913.5.5		A	
1935.02.20	+	B	I^{π} : E1 γ to 812.7, 13/2 ⁻ level
1939 02 20	+	B	π^{-} M + E2 χ to 1459 9 11/2 ⁺ level
1960 1 4		A	
1970 8 4		A	
2030 87 22		A	
2031.04.25		A	
2034.2.3		A	
2034 7 4		Δ	
2036.1.6		A	
2045.8.4	+	R	I^{π} : M1+F2 γ to 1298 9 11/2 ⁺
2043.0 4		<u>م</u>	J . WITEL 7 to 1250.5, 11/2 .
2062.6.5	$(21/2^{+})$	CDFF	I^{π} . A I-1 dipole of to $10/2^{-1}$
2066 2 11	(21/2)		$J : \Delta J = 1, \text{ upper } y = 0.17/2$.
2000.2 11	3/2- 5/2-	Δ	I^{π} M1 at to 1058 7 $3/2^{-1}$ at to $5/2^{+1}$
2000.47 10	- ,5/2	Δ	π^{-1} M1 or to 1058 73. $2/2^{-1}$ level
2074.05.20	_	Δ	π . MI F (0.1056), π , π (0.1156) π (5/2.7/2) - level
2014.7 3	_	A A	π . Mi z to 1150.0, $\pi = (5/2, 7/2)^{-1}$ level.
2092.8 5	_	Δ	J = MT + (0.1150.0, J = (3/2.1/2) - (0.01)
2093.01 22		R	$J : WI \neq 0 III0.0, J = 1/2, 5/2 IUU.$
2009.7.6		<u>م</u>	
2101 47 18		Δ	
2101.7 3	()	Δ	I^{π} (M1) γ to $5/2^{-}$ level
2109.8 10	()	A	5. (M1) / 60 5/2 - fevel.
2109.010		R	
2145.04		B	
215464	-	A	I^{π} . M1(+F2) γ to 1254.2 5/2 ⁻ level
2155 3 5		A	
2157.4.5		A	
2163 3 6	+	R	I^{π} : M1 α to 1383.2 13/2 ⁺ level
2165 21 24	+	B	$[\pi \cdot M] + E_2 \times to 1534 \ge 13/2^+$ level
2169 19 21	$(^{+})$	B	$I^{\pi}: (M1+E2) \propto to 1534.8 \ 13/2^+$ level
2169.6.3	+	B	T^{π} : (11+E2) γ to [41] 8. T^{π} =(13/2) 11/2) ⁺ [eve]
2176.2.8	+	B	π^{-} E2(+M1) γ to 1459 97 11(2 ⁺) evel
2176.8 4		B	
2178.0 11		B	
2200.9.11		B	
2205 3 & 5	23/2-	C F	I^{π} , $\Lambda I_{-}(2)$ to $10/2^{-}$ band member
2203.3 5	23/2		$J \cdot \Delta J = (2)$ to $19/2$, ball member.
2209.8 10	+	R	$I^{\pi} \cdot M_1(\pm E_2) \approx 10.1450.0 \cdot 11/2^{\pm}$ level
2211.01 24		B	$J : WI(+L2) \neq (0.1439.9, 11/2 - 10001.$
2239.9 11	(+)	D	I^{π} : M1(+E2) of to 1112.5 11/2 ⁺ level
2240.94 20	$(25/2^+)$	CDFF	J = M(+DZ) + M(-DZ)
2250.7 5	(25/2)	CDLI	f = f = f = f = 1 is a more in 189 ku, and 191 ku, which would require 188 to be E2, rather than
			M1 (2) from other studies
2251.0.5		р	M1+E2, Holli other studies.
2251.9 5		D	
2255.1 11	(-)	B	I_{+}^{π} (E1) at to 1020.0 π -(+) local
2257.10 21	(+)	D	$J = \{1, 1\} \neq \{0, 1, 2\}, 0, n = (+)$ level. $T^{\pi} = M_1 + E_2 = (+ 1/4) \otimes T^{\pi} = (1/2/2) 1/2\rangle^{+}$ level
2231.33 20	C)	۵	J. $V11 \pm L2 \neq U = 1 \pm 17.0, J = (13/2, 11/2) = U = U = 1$
2250.75		R	
2264.81.22	+	R	I^{π} : M1+F2 γ to 1601.2 13/2 ⁺ 15/2 ⁺ level
2268 0 11		B	$3 \cdot 101 + 122 + 10 \cdot 1001.2, 13/2, 13/2 \cdot 10001.$
2268.97 23		B	
		-	

¹⁸⁹Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
2269.7 4			В	
2271.0 4	+		В	J^{π} : M1 γ to 1419.8, $J^{\pi} = (13/2, 11/2)^+$ level.
2272.16 19	+		В	J^{π} : M1(+E2) γ to 1139.0, π =+ level.
2273.1 7			В	
2274.1 3			В	
2274.6 5	+		В	
2275.6 3	+		В	J^{*} : E2(+M1) γ to 1419.8, $J^{*} = (13/2, 11/2)^{+}$ level.
2276.59 20	т		В	J ^{<i>a</i>} : M1(+E2) γ to 1459.9, 11/2 ⁺ level.
2281.00 24			В	
2201.9 0 2203.0 1			D D	
2293.9 4 2294 00 22	+		D R	J^{π} · M1(+F2) γ to 1139 () π =+ level
2295.7 6			B	-10001
$2299.5^{a}5$	$25/2^{-}$		C F	J^{π} : $\Lambda J = (2)$ to $(21/2^{-})$, band member.
2311.3 3	-1 -		В	
2316.0 3			В	
2317.1 3	+		В	J^{π} : M1+E2 γ to 1534.8, 13/2 ⁺ level.
2317.5 3	+		В	J^{π} : M1 γ to 1935.0, π =+ level.
2319.4 7			DE	XREF: E(?).
2325.0 11			B	
2330.9 11	(+)		В	π_{-} M1 + E2 at to 1601.2 π_{-} 12/0+ 15/0+ 11
2335.1 3 2335.7 11	(\cdot)		В В	J: $W11+D2 \gamma$ to 1001.2 , $J''=15/2^{+}, 15/2^{+}$ level.
2335.7 11			B	
2338.6 11			B	
2339.7 4			B	
2349.2 11			В	
2370.3 5			В	
2384.7 4			В	
2400.9 6	$(25/2^+)$		CDEF	J^{π} : $\Delta J=0$, (M1) to 2250.7, (25/2 ⁺) level.
2405.9 11			В	
2417.14			В	
2417.9 11			В В	
2430.4 4	$(23/2^{-})$		ם רחדים	\mathbf{XRFE} · $\mathbf{F}(2)$
2731.03	(23/2)		CDEF	J^{π} : $\Lambda J=(2) \gamma$ to 1412.2, 19/2 ⁻ level.
2483.7 11			В	
2492.1 5			В	
2515.8 6	$(27/2^+)$		CDEF	J^{π} : $\Delta J=1$, M1(+E2) γ to (25/2 ⁺).
2542.7 7			CE	XREF: E(?).
2554.2 ^{&} 5	$(27/2^{-})$		CDEF	XREF: E(?).
				J^{π} : (E2) γ to 2205.3, 23/2 ⁻ level.
2554.2+x ^b	(31/2 ⁻)	9.3 ns 5	CDEF	 Additional information 2. The 9-ns isomer is populated in all the high-spin studies but its energy is differently interpreted. T_{1/2}: γ(t) method (1975De20) in ¹⁸¹Ta(¹²C,4nγ). Others: 9 ns 2 (1997Pe26) in ¹⁸¹Ta(¹²C,4nγ); 11 ns 4 in ¹⁹¹Ir(α,6nγ) (1979Go15).
2554.8 ^h 8	(31/2+)	242 ns 10	CDEF	%IT=100 μ =6.5 5 (1997Pe26,2014StZZ) E(level): 2515.7+y, y=38.8 keV (2001MaZN, 39 in 1997Pe26). However, y=200 keV from 1075De20
				J^{π} : (E2) γ to (27/2 ⁺). $T_{1/2}$: from γ(t) in ¹⁸¹ Ta(¹² C,4nγ) (1997Pe26). Other: 440 ns 50 from ¹⁸¹ Ta(¹² C,4nγ) (1975De20) based on γ(t) for a 199.6-keV transition which is not confirmed in other studies.
				μ : time dependent perturbed angular distribution (1997Pe26); g factor=0.42 3.
				Continued on next page (footnotes at end of table)

¹⁸⁹Au Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
2608.9 6		В	
2862.8+x ^c 3	$(33/2^{-})$	CDEF	J^{π} : $\Delta J=1 \gamma$ to $(31/2^{-})$, band member.
2928.8? 10		C	E(level): level treated as questionable by the evaluators since 374γ is not reported in other high-spin studies.
2968.7 ^j 7	$(29/2^{-})$	CD	
2988.8+x ^b 3	$(35/2^{-})$	CDEF	
3003.9 ^a 7	29/2-	CD	J^{π} : γ to $25/2^{-}$; band member.
3062.3 ^h 9	$(35/2^+)$	CDEF	
3160.5+x ^e 5	$(37/2^{-})$	CD	
3222.1 ^j 8	$(31/2^{-})$	CDE	XREF: E(?).
3359.2+x ^c 4	$(37/2^{-})$	CDEF	
3377.4 ^J 8	$(33/2^{-})$	D	
3559.6+x ^b 4	$(39/2^{-})$	C F	
3562.9 9	$(37/2^+)$	CD	
3709.7 ^J 9		CD	
3838.2+x ^e 5	$(39/2^{-})$	CD	
3845.6 ⁿ 9	$(39/2^+)$	CDEF	
3921.4 ^J 9	$(37/2^{-})$	D	
3965.0+x 5	$(39/2^{-})$	CD	
3980.2 II $4102.7 \pm x^{\circ}$ 5	$(41/2^{-})$	U CD	
$4102.7 \pm x^{b}$ 5	(41/2)	CD CD	
$4233.3 + x^{\circ} 3$ 4290.7 + x 6	(43/2) $(41/2^{-})$	CD CD	
$4305.6 + x^{d}.6$	$(11/2^{-})$ $(43/2^{-})$	D	
4325.7 10	$(41/2^+)$	CD	
4352.5 ⁱ 10	$(41/2^+)$	D	
4480.1 ^h 10	$(43/2^+)$	CD	
4527.0+x ^e 6	$(43/2^{-})$	CD	
4639.0 ⁱ 10	$(43/2^+)$	D	
4674.4+x ^e 6	$(45/2^{-})$	CD	
4694.7+x ^c 7	$(45/2^{-})$	D	
4698.7 <mark>h</mark> 11	$(47/2^+)$	CDE	
4796.5+x 7		C	
48/9.7 10	(15/2-)	CD	
4903.5+x ^o 7	(47/2)	CD	
4910.2 11		ע	
5103.1^{i} 10	$(47/2^+)$	CD	
5103.1 + 10 $5124.6 + x^{d}.8$	$(17/2^{-})$	D D	
5166.5 11	(+7/2)	D	
5174.5 12	$(49/2^+)$	CD	
5263.3+x ^e 8	$(49/2^{-})$	D	
5315.6 ^h 12	$(51/2^+)$	CD	
5368.1+x ^c 7	$(49/2^{-})$	CD	XREF: C(?).
5428.5+x 8	$(47/2^{-})$	CD	
5634 9 <mark>8</mark> 13	$(53/2^{+})$	C CD	
5665.5 13	(33/2)	C	
5707.4+x ^b 8	$(51/2^{-})$	- CD	
$5734.2 + x^e$ 10	$(53/2^{-})$	D	
5861.2 13	/	D	

189Au Levels (continued)

E(level) [†]	J ^π ‡	XREF	Comments
5923.8 12	$(55/2^+)$	D	
5964.1+x ^d 9	$(51/2^{-})$	D	
6096.7+x ^c 8	$(53/2^{-})$	D	
6179.8 <i>14</i>		CD	XREF: C(?).
6202.3 13		D	
6234.8 <mark>8</mark> 14	$(57/2^+)$	D	
6305.5+x ^b 9	$(55/2^{-})$	D	
6305.6+x 10		CD	
6316.1+x ^e 11	$(57/2^{-})$	D	
6359.5 ^f 13	(57/2)	D	
6379.4 <i>13</i>		D	
6394.9+x 10		D	
6881.2 ^{<i>f</i>} 14	(61/2)	D	
7092.1 ⁸ 15	$(61/2^+)$	CD	
7284.7 14	$(61/2^{-})$	D	
7601.0 ^f 14	(65/2)	D	
7849.4 15	(65/2)	D	
7956.2 ⁸ 15	$(65/2^+)$	CD	
8182.3 15		D	
8261.8 15		D	
8433.9 ^{<i>f</i>} 15	(69/2)	D	
8680.6 <mark>8</mark> 16	$(69/2^+)$	D	
8804.3 16		D	
9141.0 <i>17</i>		D	
9314.1 ^{<i>f</i>} 16	(73/2)	D	
9580.9 <mark>8</mark> 17	$(73/2^+)$	D	

[†] From least-squares fit to $E\gamma$ values with assumed 0.5 keV uncertainty for $E\gamma$ value when not stated.

[‡] For high-spin (J>17/2 or so) levels, assignments are essentially as proposed in the most extensive (yet not reported in adequate detail) by 1992Ve05 in ¹⁷⁶Yb(¹⁹F,6n γ) study, corroborated by similar but limited studies by 1992Bo23 (also 1993Pe17), 1979Go15 and 1975De20. Except for levels in a well-defined band built on π h_{11/2} orbital, all other J^{π} assignments are considered as tentative since detailed angular distribution or correlation data are available for only a few transitions, and no polarization or internal conversion data are available.

[#] The 248.56 state M1+E2 decays to the 203.74 state, and then M1+E2 to the ground state (J=1/2⁺) imply J(248.56) $\leq 5/2^+$; E1 transition from the 484.02 state to the 248.56 state implies J(248.56) $\leq 7/2^-$; On the other hand, an E2 transition from the 484.02 level to the 247.23 state, with J=11/2 determined from atomic beam (1976Ek01), uniquely determines the assignments as J(247.23)=11/2⁻, therefore, J(484.02)=7/2⁻; J(248.56)=5/2⁺; J(203.74)=3/2⁺.

^(a) The 1104.78 state has strong ε feeding from ^{189g}Hg (J=3/2⁺). It cascades via 491.51 and 325.11 to the 247.23 state (J=11/2⁻) with M1+E2, E2, and M1+E2 transitions. This implies J(1104.78) \ge 3/2⁻. Therefore, J(1104.78)=3/2⁻; J(491.51)=5/2⁻; J(325.11)=9/2⁻.

- ^{*a*} Band(B): $\pi h_{9/2}$ band.
- ^b Band(C): $\pi h_{11/2} \otimes \nu i_{13/2}^2, \alpha = -1/2.$
- ^c Band(c): $\pi h_{11/2} \otimes \nu i_{13/2}^2, \alpha = +1/2.$
- ^d Band(D): γ cascade based on (43/2⁻).
- ^e Band(E): γ cascade based on (37/2⁻).
- f Band(F): Band based on (57/2).
- ^g Band(G): Band based on $(53/2^+)$.

[&] Band(A): $\pi h_{11/2}$ band.

¹⁸⁹Au Levels (continued)

^{*h*} Band(H): γ cascade based on $(31/2^+)$. ^{*i*} Band(I): γ cascade based on $(41/2^+)$. ^{*j*} Band(J): γ cascade based on $(29/2^-)$.

	Adopted Levels, Gammas (continued)												
γ ⁽¹⁸⁹ Au)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments					
9.94	3/2+	9.9 2	100	0.0 1/2+	[M1]		278 18	α(M)=214 14; α(N)=53 4; α(O)=9.8 7; α(P)=0.66 5					
								B(M1)(W.u.)=0.0027 5 E_{γ} : observed as M-conversion line in singles and ce- γ coin by 1975Be17.					
								Mult.: from the systematics of analogous transitions in heavier odd-A Au isotopes, a 15-20% E2 admixture in this transition is expected.					
203.74	3/2+	203.9 2	100	$0.0 1/2^+$	M1+E2	0.63 +14-15	0.79 6	$\alpha(K) = 0.61 7; \alpha(L) = 0.1345 22; \alpha(M) = 0.0322 8$					
248.56	5/2+	44.7 2		203.74 3/2+	M1+E2	0.15 2	18.2 13	$ \begin{array}{l} \alpha(N) = 0.00799 \ 18; \ \alpha(O) = 0.001418 \ 22; \ \alpha(P) = 7.2 \times 10^{-6} \ 8 \\ \alpha(L) = 13.9 \ 10; \ \alpha(M) = 3.3 \ 3; \ \alpha(N) = 0.82 \ 7; \ \alpha(O) = 0.146 \ 10; \\ \alpha(P) = 0.00742 \ 15 \end{array} $					
		23872	8 00	9.94 3/2+	$M1\pm F2$	233	0 274 18	δ : average value from the two decays. $\alpha(K) = 0.173 \ I7: \ \alpha(I) = 0.0759 \ I2: \ \alpha(M) = 0.0190 \ 3$					
		250.7 2	<i>))</i> 0	J.J+ 3/2	1411 122	2.5 5	0.274 10	$\alpha(\text{N})=0.00470 \ 7; \ \alpha(\text{O})=0.000790 \ 13; \ \alpha(\text{P})=1.92\times10^{-5} \ 21$					
		248.7 2	100 8	$0.0 1/2^+$	E2		0.182	α (K)=0.0987 14; α (L)=0.0629 9; α (M)=0.01601 23					
307.76	$5/2^{+}$	59.2.2		248.56 5/2+				$\alpha(N)=0.00395\ 6;\ \alpha(O)=0.000653\ 10;\ \alpha(P)=1.031\times10^{-5}\ 15$					
		104 1		203.74 3/2+									
		297.9 2	100 7	9.94 3/2+	M1(+E2)	<0.8	0.29 5	$\alpha(K)=0.245; \alpha(L)=0.0433; \alpha(M)=0.01016$					
								$\alpha(N)=0.00252$ 15; $\alpha(O)=0.00046$ 4; $\alpha(P)=2.8\times10^{-5}$ 6 δ : from ε decay (7.6 min).					
325.12	9/2-	77.9 2	100	247.25 11/2-	M1+E2	0.3 2	3.7 15	$\alpha(L)=2.8 \ 11; \ \alpha(M)=0.68 \ 29$					
								α (N)=0.168 69; α (O)=0.029 11; α (P)=0.00138 16					
								$B(M1)(W.u.)=4.8\times10^{-5}$ 1/; $B(E2)(W.u.)=0.3 + 4-3$					
								$(1996W_004)$ and ¹⁸⁹ Hg ε decay (7.6 m+8.6 m) (1975Be17).					
								δ : From ε decay (8.6 min).					
484.02	7/2-	176.3 2	20 4	307.76 5/2+	E1		0.0988	$\alpha(K)=0.0807 \ 12; \ \alpha(L)=0.01393 \ 20; \ \alpha(M)=0.00323 \ 5$					
								$\alpha(N)=0.000795 \ I2; \ \alpha(O)=0.0001398 \ 20; \ \alpha(P)=7.19\times10^{-6} \ I1$ P(E1)(Wy) -2.0×10 ⁻⁵ + 15 7					
		235 1	32 5	248.56 5/2+	E1		0.0484 9	$\alpha(K)=0.0398 7; \alpha(L)=0.00664 12; \alpha(M)=0.00154 3$					
				·				$\alpha(N)=0.000379\ 7;\ \alpha(O)=6.73\times10^{-5}\ 12;\ \alpha(P)=3.68\times10^{-6}\ 7$					
		006 1	100 11	0.47.05 11/0-	52		0.016.5	$B(E1)(W.u.)=2.1\times10^{-5}+11-5$					
		236 1	100 11	247.25 11/2	E2		0.216 5	$\alpha(\mathbf{K})=0.1125\ 20;\ \alpha(\mathbf{L})=0.0777\ 18;\ \alpha(\mathbf{M})=0.0198\ 5$					
								B(E2)(W.u.)=43 + 22 - 10					
491.53	5/2-	166.5 2	100	325.12 9/2-	E2		0.714	$\alpha(K)=0.264$ 4; $\alpha(L)=0.338$ 5; $\alpha(M)=0.0872$ 13					
								$\alpha(N)=0.0215 4; \alpha(O)=0.00348 6; \alpha(P)=2.70\times10^{-5} 4$ B(F2)(Wu)=133 14					
512.35	7/2+	264.0 2	43 4	248.56 5/2+	M1+E2	0.4 +2-3	0.43 5	$\alpha(K)=0.354; \alpha(L)=0.062121; \alpha(M)=0.01454$					
				·				α (N)=0.00362 <i>10</i> ; α (O)=0.000658 <i>24</i> ; α (P)=4.1×10 ⁻⁵ <i>5</i> δ : From ε decay (7.6 min).					

 $^{189}_{79}\mathrm{Au}_{110}$ -9

I

	Adopted Levels, Gammas (continued)													
						γ ⁽¹⁸⁹ Au) (con	tinued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments						
512.35	7/2+	308 1	92	203.74 3/2+	E2		0.0947 16	$\alpha(K)=0.0582 \ 10; \ \alpha(L)=0.0275 \ 6; \ \alpha(M)=0.00693 \ 13$						
		502.3 2	100 8	9.94 3/2+	E2		0.0255	$\alpha(N)=0.00171 \ 4; \ \alpha(O)=0.000286 \ 6; \ \alpha(P)=6.23\times10^{-6} \ 10 \ \alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00521 \ 8; \ \alpha(M)=0.001273 \ 18 \ \alpha(L)=0.00215 \ 5; \ \alpha(O)=5.45\times10^{-5} \ 8; \ \alpha(D)=2.07\times10^{-6} \ 2$						
602.90	1/2+,3/2+	399 1	29 10	203.74 3/2+	M1+E2	1.0 +5-4	0.100 26	$\alpha(N)=0.00313, \alpha(D)=0.45\times10^{-5}, \alpha(T)=2.07\times10^{-5}$ $\alpha(K)=0.079, 23; \alpha(L)=0.0159, 24; \alpha(M)=0.0038, 5$ $\alpha(N)=0.00202, 42; \alpha(D)=0.0123, \alpha(D)=0.20140^{-6}, 28$						
		603.0 2	100 14	0.0 1/2+	M1		0.0518	$\alpha(N) = 0.00095 \ 15; \ \alpha(O) = 0.00017 \ 5; \ \alpha(P) = 9.2 \times 10^{-2} \ 28$ $\alpha(K) = 0.0428 \ 6; \ \alpha(L) = 0.00692 \ 10; \ \alpha(M) = 0.001600 \ 23$						
646.17	13/2-	321.2 2	100	325.12 9/2-	E2		0.0837	$\alpha(N)=0.000398\ 6;\ \alpha(O)=7.34\times10^{-5}\ 11;\ \alpha(P)=5.01\times10^{-5}\ 7$ $\alpha(K)=0.0525\ 8;\ \alpha(L)=0.0236\ 4;\ \alpha(M)=0.00592\ 9$						
647.20	7/2+	135 1		512.35 7/2+	M1+E2	0.7 +4-5	2.6 5	$\begin{aligned} \alpha(N) &= 0.001462 \ 21; \ \alpha(O) &= 0.000245 \ 4; \ \alpha(P) &= 5.65 \times 10^{-6} \ 8 \\ \alpha(K) &= 1.83 \ 62; \ \alpha(L) &= 0.57 \ 13; \ \alpha(M) &= 0.139 \ 37 \\ \alpha(N) &= 0.0344 \ 89; \ \alpha(O) &= 0.0059 \ 13; \ \alpha(P) &= 2.18 \times 10^{-4} \ 76 \end{aligned}$						
		339.7 <i>3</i>	6.5 10	307.76 5/2+	E2(+M1)	>1.3	0.102 <i>31</i>	δ: From ε decay (7.6 min). $\alpha(K)=0.074\ 28; \ \alpha(L)=0.0216\ 25; \ \alpha(M)=0.0053\ 5$ $\alpha(N)=0.00131\ 13; \ \alpha(O)=0.00023\ 3; \ \alpha(P)=8.3\times10^{-6}\ 34$						
		398.9 <i>3</i>	100 ^a 25	248.56 5/2+	M1		0.1539	δ: from ε decay (8.6 min). α (K)=0.1269 18; α (L)=0.0208 3; α (M)=0.00481 7 α (N)=0.001198 17; α (O)=0.000221 4; α (P)=1.498×10 ⁻⁵ 22						
		443 4 3	13 <mark>4</mark> 5	203 74 3/2+				Mult.: from ε decay (8.6 min).						
		637.2 1	27^{a} 3	9.94 3/2+	E2		0.01469	$\alpha(\mathbf{K})=0.01127 \ 16; \ \alpha(\mathbf{L})=0.00261 \ 4; \ \alpha(\mathbf{M})=0.000629 \ 9$						
681.90	15/2-	434.6 2	100	247.25 11/2-	E2		0.0367	$\alpha(N) = 0.0001339 22, \alpha(O) = 2.14 \times 10^{-4} 4, \alpha(P) = 1.252 \times 10^{-1} 18$ $\alpha(K) = 0.0258 4; \alpha(L) = 0.00824 12; \alpha(M) = 0.00203 3$						
712.70	11/2-	387.7 2	100	325.12 9/2-	M1+E2	2.0 +14-6	0.073 17	$\alpha(N)=0.0005027; \alpha(O)=8.61\times10^{-1}13; \alpha(P)=2.84\times10^{-2}4$ $\alpha(K)=0.05415; \alpha(L)=0.014115; \alpha(M)=0.00343$						
760.67	9/2+	113 <i>I</i>	1.5 4	647.20 7/2+	M1+E2	1.2 3	4.0 4	$\alpha(N)=0.00085 \ 8; \ \alpha(O)=0.000148 \ 16; \ \alpha(P)=6.2\times10^{\circ} \ 18 \ \alpha(K)=2.06 \ 52; \ \alpha(L)=1.43 \ 19; \ \alpha(M)=0.36 \ 5$						
		453 1	6.4 18	307.76 5/2+	E2		0.0330	$\alpha(N)=0.090$ 13; $\alpha(O)=0.0148$ 19; $\alpha(P)=2.48\times10^{-4}$ 63 $\alpha(K)=0.0235$ 4; $\alpha(L)=0.00720$ 12; $\alpha(M)=0.00177$ 3						
		512 <i>I</i>	100 18	248.56 5/2+	E2		0.0244	$\alpha(N)=0.000438\ 7;\ \alpha(O)=7.53\times10^{-5}\ 12;\ \alpha(P)=2.59\times10^{-6}\ 4$ $\alpha(K)=0.0179\ 3;\ \alpha(L)=0.00492\ 8;\ \alpha(M)=0.001199\ 19$						
770.68	7/2-	279.3 2	99 8	491.53 5/2-	M1+E2	0.9 2	0.28 4	$ \alpha(N)=0.000297 5; \ \alpha(O)=5.14\times10^{-5} 8; \ \alpha(P)=1.99\times10^{-6} 3 \alpha(K)=0.22 3; \ \alpha(L)=0.0482 19; \ \alpha(M)=0.0115 4 $						
								$\alpha(N)=0.00287 \ 9; \ \alpha(O)=0.000508 \ 22; \ \alpha(P)=2.5\times10^{-3} \ 4 \delta$: From ε decay (8.6 min).						
		445.6 2	100 8	325.12 9/2-	M1+E2	0.8 3	0.083 16	$\alpha(K)=0.067 \ 14; \ \alpha(L)=0.0124 \ 15; \ \alpha(M)=0.0029 \ 4 \\ \alpha(N)=0.00072 \ 9; \ \alpha(O)=0.000131 \ 17; \ \alpha(P)=7.8\times10^{-6} \ 17 \\ \delta: \ From \ \varepsilon \ decay \ (7.6 \ min)$						
801.95	1/2+,3/2+	553 1	21 10	248.56 5/2+										
		598.4 <i>3</i>	100 17	203.74 3/2+	M1+E2	≈1.0	≈0.0349	$\alpha(K) \approx 0.0282; \ \alpha(L) \approx 0.00509; \ \alpha(M) \approx 0.001192$ $\alpha(N) \approx 0.00296; \ \alpha(O) \approx 5.37 \times 10^{-5}; \ \alpha(P) \approx 3.27 \times 10^{-6}$						
		791.7 <i>3</i>	29 8	9.94 3/2+										

 $^{189}_{79}\mathrm{Au}_{110}$ -10

$\gamma(^{189}$ Au) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α^{\ddagger}	Comments
801.95	1/2+,3/2+	802.1 3	92 17	0.0	1/2+	M1(+E2)	<0.8	0.022 4	$\alpha(K)=0.018 \ 3; \ \alpha(L)=0.0029 \ 4; \ \alpha(M)=0.00068 \ 9$ $\alpha(N)=0.000169 \ 21; \ \alpha(O)=3.1\times10^{-5} \ 4; \ \alpha(P)=2.1\times10^{-6} \ 4$
811.88	(5/2,3/2,1/2)+	504 <i>1</i> 608.5 <i>5</i>	86 25 100 <i>35</i>	307.76 5 203.74 3	5/2+ 3/2+	E2(+M1)	>2	0.020 4	$\alpha(K)=0.015 \ 3; \ \alpha(L)=0.0033 \ 4; \ \alpha(M)=0.00080 \ 9$
		802.4 4	73 19	9.94 3	3/2+	M1		0.0248	$\begin{array}{l} \alpha(N)=0.000199\ 22;\ \alpha(O)=3.5\times10^{-6}\ 4;\ \alpha(P)=1.7\times10^{-6}\ 4\\ \alpha(K)=0.0205\ 3;\ \alpha(L)=0.00329\ 5;\ \alpha(M)=0.000759\ 11\\ \alpha(N)=0.000189\ 3;\ \alpha(O)=3.48\times10^{-5}\ 5;\ \alpha(P)=2.38\times10^{-6}\ 4 \end{array}$
812.67	13/2-	811.5 <i>3</i> 565.4 <i>2</i>	96 ^{&} 32 100	0.0 247.25	1/2 ⁺ 11/2 ⁻	M1+E2	0.6 +4-3	0.050 10	$\alpha(K)=0.041$ 9; $\alpha(L)=0.0070$ 11; $\alpha(M)=0.00163$ 24
814.30	1/2-	322.9 3	100	491.53 5	5/2-	E2		0.0825	$\alpha(N)=0.00041 \ 6; \ \alpha(O)=7.4\times10^{-5} \ 12; \ \alpha(P)=4.8\times10^{-6} \ 11 \ \alpha(K)=0.0519 \ 8; \ \alpha(L)=0.0231 \ 4; \ \alpha(M)=0.00580 \ 9 \ \alpha(N)=0.001433 \ 21; \ \alpha(O)=0.000241 \ 4; \ \alpha(P)=5.58\times10^{-6} \ 8$
847.89	9/2+	200.7 2	45 ^{<i>a</i>} 5	647.20	7/2+	M1+E2	1.1 +3-2	0.66 8	$\alpha(X)=0.00145523; \alpha(X)=0.0002414; \alpha(X)=0.0015710$ $\alpha(X)=0.0088523; \alpha(X)=0.001523; \alpha(P)=54\times10^{-5}10$
		335.5 4	24 ^{<i>a</i>} 7	512.35	7/2+	M1		0.245	a(K)=0.2023; a(L)=0.03325; a(M)=0.0076911 a(K)=0.001923; a(L)=0.03325; a(M)=0.0076911
		540.0 5	100 ^a 18	307.76	5/2+	E2		0.0215	$\alpha(K)=0.001525$, $\alpha(C)=0.0005555$, $\alpha(T)=2.57\times10^{-4}$ $\alpha(K)=0.0159623$; $\alpha(L)=0.004196$; $\alpha(M)=0.00101915$ $\alpha(N)=0.0002524$; $\alpha(O)=4.39\times10^{-5}$ 7: $\alpha(P)=1.77\times10^{-6}$ 3
		600 1	36 ^a 9	248.56 5	5/2+	E2		0.01682	$\alpha(K) = 0.01277 \ 19; \ \alpha(L) = 0.00309 \ 5; \ \alpha(M) = 0.000746 \ 11 \ \alpha(N) = 0.000185 \ 3; \ \alpha(O) = 3.24 \times 10^{-5} \ 5; \ \alpha(P) = 1.418 \times 10^{-6} \ 21$
862.04	9/2-	378.3 2	100 10	484.02	7/2-	M1(+E2)	<0.5	0.165 <i>13</i>	$\alpha(K) = 0.00132 \ i, \alpha(C) = 0.0229 \ i2; \alpha(M) = 0.00532 \ 25 \ \alpha(N) = 0.00132 \ i; \alpha(O) = 0.000242 \ i3; \alpha(P) = 1.59 \times 10^{-5} \ i4 \ i5 \ From a decay (7.6 min)$
		614.8 2	75 6	247.25	11/2-	M1		0.0492	α(K)=0.0407 6; α(L)=0.00658 10; α(M)=0.001520 22 α(N)=0.000379 6; α(O)=6.97×10 ⁻⁵ 10; α(P)=4.76×10 ⁻⁶ 7
879.64	+	571 <i>I</i>	22 <mark>&</mark> 11	307.76 5	5/2+				
000 15	0/2-	675.9 2	100° 18	203.74 3	$3/2^+$	E2(+M1)		0.0401.9	$\alpha(W) = 0.0222$ 5. $\alpha(U) = 0.01102$ 20. $\alpha(M) = 0.00206$ 5
000.45	9/2	309 1	00 19	491.33	5/2	E2		0.0491 0	$\alpha(\mathbf{N})=0.003333, \alpha(\mathbf{L})=0.0119320, \alpha(\mathbf{M})=0.002903$ $\alpha(\mathbf{N})=0.00073313; \alpha(\mathbf{O})=0.000124521; \alpha(\mathbf{P})=3.64\times10^{-6}6$
		395.8 <i>3</i>	49 ^a 6	484.02	7/2-	M1(+E2)	<0.4	0.150 8	$\alpha(K)=0.123\ 7;\ \alpha(L)=0.0205\ 8;\ \alpha(M)=0.00477\ 17$ $\alpha(N)=0.00119\ 4;\ \alpha(O)=0.000218\ 8;\ \alpha(P)=1\ 45\times10^{-5}\ 9$
		555.7 3	100 ^{<i>a</i>} 10	325.12	9/2-	M1+E2	0.5 +3-4	0.055 9	$\alpha(K) = 0.045 \ 8; \ \alpha(L) = 0.0076 \ 9; \ \alpha(M) = 0.00177 \ 21 \ \alpha(N) = 0.00044 \ 5; \ \alpha(O) = 8 \ 1 \times 10^{-5} \ 10; \ \alpha(P) = 5 \ 3 \times 10^{-6} \ 9$
		634 1	59 ^a 9	247.25	11/2-	(M1+E2)	1.0 2	0.030 4	
887.24	(3/2,5/2) ⁻	395.7 2	100	491.53 5	5/2-	M1+E2	1.1 +4-3	0.097 18	$\alpha(K)=0.076 \ 16; \ \alpha(L)=0.0158 \ 16; \ \alpha(M)=0.0038 \ 4 \\ \alpha(N)=0.00093 \ 9; \ \alpha(O)=0.000166 \ 18; \ \alpha(P)=8.8\times10^{-6} \ 19$
911.01	7/2-	419.5 2	100 9	491.53	5/2-	M1+E2	0.8 +5-4	0.098 24	$\alpha(K)=0.079\ 21;\ \alpha(L)=0.0147\ 23;\ \alpha(M)=0.0035\ 5$ $\alpha(N)=0.00086\ 13;\ \alpha(O)=0.000155\ 25;\ \alpha(P)=9.2\times10^{-6}\ 26$ $\delta:\ From c decay (8.6 min)$
		585.9 2	41 6	325.12	9/2-	M1		0.0558	$\alpha(K)=0.0461\ 7;\ \alpha(L)=0.00747\ 11;\ \alpha(M)=0.001726\ 25$ $\alpha(N)=0.000430\ 6;\ \alpha(O)=7.91\times10^{-5}\ 12;\ \alpha(P)=5.40\times10^{-6}\ 8$

11

	Adopted Levels, Gammas (continued)												
γ ⁽¹⁸⁹ Au) (continued)													
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments				
961.22	(5/2,3/2)+	653.3 <i>3</i>	23 ^{<i>a</i>} 5	307.76	5/2+	M1+E2	1.7 +25-7	0.0211 69	$\alpha(K)=0.0169\ 59;\ \alpha(L)=0.0033\ 8;\ \alpha(M)=0.00077\ 18$				
		713.0 5	69 ^a 15	248.56	5/2+	E2		0.01150	$\alpha(N)=0.00019 \ 5; \ \alpha(O)=3.4\times10^{-5} \ 9; \ \alpha(P)=1.93\times10^{-6} \ 70$ $\alpha(K)=0.00896 \ 13; \ \alpha(L)=0.00194 \ 3; \ \alpha(M)=0.000463 \ 7$ $\alpha(N)=0.0001147 \ 17; \ \alpha(O)=2.03\times10^{-5} \ 3;$ $\alpha(P)=0.05\times10^{-7} \ 14$				
		757.5 2	100 ^{<i>a</i>} 11	203.74	3/2+	M1+E2	2.6 +12-6	0.0125 14	$\alpha(\mathbf{F}) = 9.93 \times 10^{-14}$ $\alpha(\mathbf{K}) = 0.0100 \ I2; \ \alpha(\mathbf{L}) = 0.00194 \ I6; \ \alpha(\mathbf{M}) = 0.00046 \ 4$ $\alpha(\mathbf{N}) = 0.000114 \ 9; \ \alpha(\mathbf{O}) = 2.03 \times 10^{-5} \ I7;$				
		952 1	12 ^{<i>a</i>} 6	9.94	3/2+	(E2)		0.00634	$\alpha(P)=1.12\times10^{-5} I4$ $\alpha(K)=0.00509 \ 8; \ \alpha(L)=0.000953 \ I4; \ \alpha(M)=0.000224 \ 4$ $\alpha(N)=5.57\times10^{-5} \ 8; \ \alpha(O)=1.000\times10^{-5} \ I5; $ $\alpha(P)=5.62\times10^{-7} \ 8$				
977.8		670 <i>1</i>	100	307.76	5/2+								
1058.73	3/2-	456 1	7.9 24	602.90	$1/2^+, 3/2^+$								
		574.8 <i>3</i>	100 2 14	484.02	7/2-	E2		0.0186	α (K)=0.01397 20; α (L)=0.00349 5; α (M)=0.000845 12 α (N)=0.000209 3; α (O)=3.66×10 ⁻⁵ 6; α (P)=1.552×10 ⁻⁶ 22				
		751.1 <i>3</i>	7.9 ^{&} 24	307.76	$5/2^{+}$								
		809.6 3	12 ^{&} 3	248.56	5/2+								
		855.5 4	17 ^{&} 3	203.74	3/2+	E1		0.00295	$\begin{aligned} &\alpha(\text{K}) = 0.00247 \ 4; \ \alpha(\text{L}) = 0.000369 \ 6; \ \alpha(\text{M}) = 8.45 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 2.09 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.82 \times 10^{-6} \ 6; \\ &\alpha(\text{P}) = 2.51 \times 10^{-7} \ 4 \end{aligned}$				
		1048 1	4.8 <mark>&</mark> 17	9.94	$3/2^{+}$								
		1058.5 <i>3</i>	33 ^{&} 3	0.0	1/2+	E1		0.00199	α (K)=0.001673 24; α (L)=0.000247 4; α (M)=5.65×10 ⁻⁵ 8				
									α (N)=1.400×10 ⁻⁵ 20; α (O)=2.56×10 ⁻⁶ 4; α (P)=1.714×10 ⁻⁷ 24				
1097.03	13/2-	384.4 <i>3</i>	100 ^{<i>a</i>} 8	712.70	11/2-	M1+E2	0.7 3	0.131 23	$\alpha(K)=0.105 \ 21; \ \alpha(L)=0.0195 \ 21; \ \alpha(M)=0.0046 \ 5 \ \alpha(N)=0.00114 \ 11; \ \alpha(O)=0.000206 \ 22; \ \alpha(P)=1.23\times10^{-5} \ 25$				
		451 <i>1</i>	15 ^a 5	646.17	13/2-	M1(+E2)	<0.5	0.103 8	α (K)=0.085 7; α (L)=0.0142 8; α (M)=0.00329 18 α (N)=0.00082 5; α (O)=0.000150 9; α (P)=1.00×10 ⁻⁵ 9				
		771.9 3	31 ^{<i>a</i>} 3	325.12	9/2-	E2		0.00972	$\alpha(K)=0.00765 \ 11; \ \alpha(L)=0.001580 \ 23; \ \alpha(M)=0.000376 \ 6$ $\alpha(N)=9.32\times10^{-5} \ 13; \ \alpha(O)=1.657\times10^{-5} \ 24; $ $\alpha(P)=8.48\times10^{-7} \ 12$				
1098.1		894.9 5	41 ^{&} 15	203.74	3/2+								
		1087.9 <i>3</i>	100 ^{&} 24	9.94	3/2+								
1104.80	3/2-	217 1	22 ^{&} 6	887.24	(3/2,5/2) ⁻	M1(+E2)	<1.3	0.64 17	α (K)=0.50 <i>17</i> ; α (L)=0.1102 <i>23</i> ; α (M)=0.0264 <i>10</i> α (N)=0.00655 <i>22</i> ; α (O)=0.00116 <i>3</i> ; α (P)=5.9×10 ⁻⁵ <i>21</i>				
		290 1	31 ^{&} 12	814.30	1/2-	M1		0.364 7	α (K)=0.300 5; α (L)=0.0495 9; α (M)=0.01147 20 α (N)=0.00286 5; α (O)=0.000526 9; α (P)=3.56×10 ⁻⁵ 6				

From ENSDF

 $^{189}_{79}\mathrm{Au}_{110}\text{--}12$

 $^{189}_{79}\mathrm{Au}_{110}$ -12

L

Adopted Levels, Gammas (continued)									
					d)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α^{\ddagger}	Comments
1104.80	3/2-	613.2 2	100 ^{&} 19	491.53	5/2-	M1(+E2)	<0.8	0.043 7	$\alpha(K)=0.035\ 6;\ \alpha(L)=0.0059\ 8;\ \alpha(M)=0.00137\ 17$ $\alpha(N)=0.00034\ 4;\ \alpha(O)=6\ 2\times10^{-5}\ 8;\ \alpha(P)=4\ 1\times10^{-6}\ 7$
1105.35	17/2-	459.3 <i>3</i>	100	646.17	13/2-	E2		0.0319	$\alpha(K) = 0.0228 \ 4; \ \alpha(L) = 0.00690 \ 10; \ \alpha(M) = 0.001694 \ 24$ $\alpha(N) = 0.000419 \ 6; \ \alpha(O) = 7.21 \times 10^{-5} \ 11; \ \alpha(P) = 2.52 \times 10^{-6} \ 4$
1106.56	$(5/2,3/2)^+$	799 1	73 ^a 20	307.76	$5/2^{+}$				
	(-1)-1)	857.7 3	100 ^{<i>a</i>} 20	248.56	5/2+	M1+E2	1.4 +23-6	0.0122 36	α (K)=0.0100 <i>31</i> ; α (L)=0.0017 <i>5</i> ; α (M)=0.00041 <i>10</i> α (N)=0.000101 <i>24</i> ; α (O)=1.8×10 ⁻⁵ <i>5</i> ; α (P)=1.13×10 ⁻⁶ <i>36</i>
		903.1 <i>3</i>	80 ^a 20	203.74	3/2+	M1(+E2)	<2.6	0.0134 50	$\alpha(K)=0.0110 \ 42; \ \alpha(L)=0.00184 \ 59; \ \alpha(M)=4.3\times10^{-4} \ 14 \\ \alpha(N)=1.06\times10^{-4} \ 34; \ \alpha(O)=1.94\times10^{-5} \ 63; \ \alpha(P)=1.26\times10^{-6} \\ 50 $
1107.4		595 <i>1</i>	100	512.35	7/2+				
1112.48	11/2+	351.9 2	41 ^{<i>a</i>} 4	760.67	9/2+	M1		0.215	α (K)=0.178 3; α (L)=0.0292 5; α (M)=0.00676 10 α (N)=0.001683 24; α (O)=0.000310 5; α (P)=2.10×10 ⁻⁵ 3
		600 1	100 ^a 13	512.35	7/2+	E2		0.01682	$\alpha(K)=0.01277 \ 19; \ \alpha(L)=0.00309 \ 5; \ \alpha(M)=0.000746 \ 11 \ \alpha(N)=0.000185 \ 3; \ \alpha(O)=3.24\times10^{-5} \ 5; \ \alpha(P)=1.418\times10^{-6} \ 21$
1116.05	7/2-,5/2-	229 1	55 ^{&} 22	887.24	(3/2,5/2) ⁻	M1+E2	0.8 3	0.52 9	$\alpha(K)=0.40 \ 9; \ \alpha(L)=0.0923 \ 24; \ \alpha(M)=0.0222 \ 5 \ \alpha(N)=0.00551 \ 12; \ \alpha(O)=0.00097 \ 3; \ \alpha(P)=4.7\times10^{-5} \ 11$
		345.2 <i>3</i>	100 ^{&} 18	770.68	7/2-	M1		0.227	$\alpha(K) = 0.187 \ 3; \ \alpha(L) = 0.0307 \ 5; \ \alpha(M) = 0.00712 \ 11 \ \alpha(N) = 0.00177 \ 3; \ \alpha(Q) = 0.000326 \ 5; \ \alpha(P) = 2.21 \times 10^{-5} \ 4$
		624.6 2	80 ^{&} 30	491.53	5/2-	M1		0.0473	$\alpha(K) = 0.0391 6; \ \alpha(L) = 0.00631 9; \ \alpha(M) = 0.001458 21$ $\alpha(K) = 0.00262 5; \ \alpha(D) = 6.60 \times 10^{-5} 10; \ \alpha(D) = 4.57 \times 10^{-6} 7$
1130.10	11/2-	249 1	48 ^{<i>a</i>} 9	880.45	9/2-	M1+E2	1.4 +8-4	0.31 7	$\alpha(N)=0.00030553; \alpha(O)=0.09\times10^{-10}; \alpha(P)=4.37\times10^{-7}$ $\alpha(K)=0.219\ 60; \alpha(L)=0.067\ 3; \alpha(M)=0.0165\ 5$ $\alpha(N)=0.00407\ 11; \alpha(O)=0.00070\ 3; \alpha(P)=2\ 51\times10^{-5}\ 74$
		360 1	47 <mark>a</mark> 9	770.68	7/2-	E2		0.0606 10	$\alpha(N)=0.00407711, \alpha(O)=0.000705, \alpha(T)=2.51\times10^{-7}7$ $\alpha(K)=0.04007; \alpha(L)=0.01563; \alpha(M)=0.003907$ $\alpha(N)=0.00096317; \alpha(O)=0.0001633; \alpha(P)=4.34\times10^{-6}7$
		417.6 <i>3</i>	15 ^a 2	712.70	11/2-	M1		0.1362	$\alpha(K)=0.000005 I'$, $\alpha(C)=0.000105 J$, $\alpha(I)=4.54X10^{-7}$ $\alpha(K)=0.1123 I6$; $\alpha(L)=0.0184 J$; $\alpha(M)=0.00425 G$ $\alpha(N)=0.001059 J5$; $\alpha(O)=0.000195 J$; $\alpha(P)=1.325\times10^{-5} J9$
		484.0 2	100 ^a 10	646.17	13/2-	M1		0.0921	$\begin{aligned} \alpha(N) = 0.00705 \ II; \ \alpha(L) = 0.01238 \ I8; \ \alpha(M) = 0.00286 \ 4 \\ \alpha(N) = 0.000713 \ I0; \ \alpha(O) = 0.0001313 \ I9; \ \alpha(P) = 8.94 \times 10^{-6} \\ I3 \end{aligned}$
		805.0 <i>3</i>	17 ^a 6	325.12	9/2-	E2(+M1)	>0.8	0.0137 48	$\alpha(\text{K})=0.0111 \ 41; \ \alpha(\text{L})=0.00198 \ 56; \ \alpha(\text{M})=4.6\times10^{-4} \ 13 \ \alpha(\text{N})=1.15\times10^{-4} \ 32; \ \alpha(\text{O})=2.09\times10^{-5} \ 60; \ \alpha(\text{P})=1.26\times10^{-6} \ 40 \ 10^{-6} \ 10^{$
		882.4 <i>3</i>	11 ^a 3	247.25	11/2-	M1		0.0194	$\alpha(K) = 0.01609 \ 23; \ \alpha(L) = 0.00257 \ 4; \ \alpha(M) = 0.000593 \ 9$
1133.52	9/2-	363.0 2	100 ^a 10	770.68	7/2-	M1+E2	2.5 +16-6	0.078 12	$\alpha(N)=0.000147721; \alpha(O)=2.72\times10^{-6}4; \alpha(P)=1.87\times10^{-6}3$ $\alpha(K)=0.05611; \alpha(L)=0.016810; \alpha(M)=0.0041221$ $\alpha(N)=0.001026; \alpha(O)=0.00017611; \alpha(D)=6.23(10^{-6}12)$
		420.7 4	27 ^a 12	712.70	11/2-	M1(+E2)	<1.7	0.099 35	$\alpha(N)=0.00102$ 6; $\alpha(O)=0.000176$ 11; $\alpha(P)=0.3\times10^{-6}$ 13 $\alpha(K)=0.080$ 31; $\alpha(L)=0.015$ 4; $\alpha(M)=0.0035$ 7 $\alpha(N)=0.00086$ 18; $\alpha(O)=0.00016$ 4; $\alpha(P)=9.3\times10^{-6}$ 37

 $^{189}_{79}\mathrm{Au}_{110}$ -13

L

	Adopted Levels, Gammas (continued)													
	γ ⁽¹⁸⁹ Au) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments					
1133.52	9/2-	641.7 3	31 ^{<i>a</i>} 5	491.53	5/2-	E2		0.01447	$\begin{aligned} &\alpha(\text{K}) = 0.01110 \ 16; \ \alpha(\text{L}) = 0.00256 \ 4; \ \alpha(\text{M}) = 0.000617 \ 9 \\ &\alpha(\text{N}) = 0.0001528 \ 22; \ \alpha(\text{O}) = 2.69 \times 10^{-5} \ 4; \\ &\alpha(\text{P}) = 1.234 \times 10^{-6} \ 18 \end{aligned}$					
1133.6 1145.70	13/2-,15/2-	825.8 <i>5</i> 433.0 <i>3</i>	$\frac{100}{23^a} 4$	307.76 712.70	5/2+ 11/2 ⁻	M1+E2	1.8 +43-7	0.057 19	α (K)=0.044 <i>17</i> ; α (L)=0.0103 <i>19</i> ; α (M)=0.0025 <i>4</i> α (N)=0.00062 <i>10</i> ; α (O)=0.000108 <i>20</i> ; α (P)=5.0×10 ⁻⁶ <i>20</i>					
		499.6 2	100 ^{<i>a</i>} 8	646.17	13/2-	M1+E2	0.9 4	0.058 15	$\alpha(\text{N})=0.047 \ 13; \ \alpha(\text{L})=0.0087 \ 16; \ \alpha(\text{M})=0.0020 \ 4$ $\alpha(\text{N})=0.00051 \ 9; \ \alpha(\text{O})=9.1\times10^{-5} \ 17; \ \alpha(\text{P})=5.5\times10^{-6}$ 16					
		898.1 4	5.8 ^a 13	247.25	11/2-	E2(+M1)	>0.8	0.0106 35	$\alpha(K)=0.0086 \ 30; \ \alpha(L)=0.00151 \ 42; \ \alpha(M)=3.52\times10^{-4}$					
									α (N)=8.7×10 ⁻⁵ 24; α (O)=1.59×10 ⁻⁵ 45; α (P)=9.8×10 ⁻⁷ 36					
1156.0	(5/2,7/2)-	268.8 <i>3</i>	97 ^{&} 19	887.24	(3/2,5/2)-	M1+E2	1.7 +12-8	0.221 91	$\alpha(K)=0.155\ 85;\ \alpha(L)=0.050\ 5;\ \alpha(M)=0.0124\ 8$ $\alpha(N)=0.00306\ 19;\ \alpha(O)=0.00052\ 5;\ \alpha(P)=1.8\times10^{-5}\ 11$					
		385 1	65 ^{&} 14	770.68	7/2-	M1		0.169 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1395 \ 22; \ \alpha(\mathbf{L}) = 0.0229 \ 4; \ \alpha(\mathbf{M}) = 0.00529 \ 9 \\ &\alpha(\mathbf{N}) = 0.001319 \ 21; \ \alpha(\mathbf{O}) = 0.000243 \ 4; \\ &\alpha(\mathbf{P}) = 1.65 \times 10^{-5} \ 3 \end{aligned}$					
		664 1	100 ^{&} 20	491.53	5/2-	M1+E2	≈0.4	≈0.0366	$\alpha(K) \approx 0.0302; \ \alpha(L) \approx 0.00496; \ \alpha(M) \approx 0.001148$ $\alpha(N) \approx 0.000286; \ \alpha(O) \approx 5.25 \times 10^{-5}; \ \alpha(P) \approx 3.52 \times 10^{-6}$					
1165.0 1165.7		848 ^b 1 952 ^c 1 1165 1 917 1 5	$41^{b\&}$ 14 $27^{\&}$ 9 100 100	307.76 203.74 0.0 248.56	5/2 ⁺ 3/2 ⁺ 1/2 ⁺ 5/2 ⁺	[E1]			a(1)-0.000200, a(0)-0.20710 , a(1)-0.02710					
1188.60	11/2-	326.4 3	$32^{a} 4$	862.04	9/2-	M1+E2	1.3 +14-6	0.148 56	α (K)=0.113 50; α (L)=0.027 4; α (M)=0.0066 9 α (N)=0.00163 21; α (O)=0.00029 5; α (P)=1.30×10 ⁻⁵ 61					
		376.1 4	13 ^{<i>a</i>} 3	812.67	13/2-	M1(+E2)	<1.3	0.140 40	$\alpha(K)=0.113 \ 36; \ \alpha(L)=0.021 \ 4; \ \alpha(M)=0.0049 \ 8$ $\alpha(N)=0.00122 \ 19; \ \alpha(O)=0.00022 \ 4; \ \alpha(P)=1.33\times10^{-5}$ 43					
		704 1	$18^{a} 2$	484.02	7/2-	M1 . E2	10.51	0.0102.10						
		941.4 2	100 ⁴ 10	247.25	11/2	M1+E2	1.3 +5-4	0.0102 19	$\alpha(\mathbf{K})=0.0083 \ I6; \ \alpha(\mathbf{L})=0.00142 \ 22; \ \alpha(\mathbf{M})=0.00033 \ 5 \\ \alpha(\mathbf{N})=8.2\times10^{-5} \ I3; \ \alpha(\mathbf{O})=1.50\times10^{-5} \ 24; \\ \alpha(\mathbf{P})=9.5\times10^{-7} \ I9$					
1193.55	-	282.6 3	54 ^{<i>a</i>} 7	911.01	7/2-	M1+E2	1.1 +14-6	0.244 94	$\alpha(K)=0.185\ 87;\ \alpha(L)=0.045\ 6;\ \alpha(M)=0.0109\ 10$ $\alpha(N)=0.00269\ 25;\ \alpha(Q)=0.00047\ 6;\ \alpha(R)=2.1\times10^{-5}\ 11$					
		868.4 2	100 ^a 11	325.12	9/2-	(E2)		0.00762	$\alpha(K) = 0.00205 \ 2.5, \ \alpha(G) = 0.00047 \ 0, \ \alpha(F) = 2.1 \times 10^{-5} \ 17$ $\alpha(K) = 0.00608 \ 9; \ \alpha(L) = 0.001183 \ 17; \ \alpha(M) = 0.000280$ 4 $\alpha(K) = 6.94 \times 10^{-5} \ 10; \ \alpha(O) = 1.241 \times 10^{-5} \ 18;$ $\alpha(P) = 6.72 \times 10^{-7} \ 10$					

 $^{189}_{79}\mathrm{Au}_{110}$ -14

$\gamma(^{189}Au)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments
1247.1	(9/2,7/2)+	486.3 <i>3</i>	100 ^{<i>a</i>} 27	760.67	9/2+	M1+E2	0.8 +6-5	0.066 20	$\alpha(K)=0.054\ 17;\ \alpha(L)=0.0097\ 20;\ \alpha(M)=0.0023\ 5$ $\alpha(N)=0.00057\ 11;\ \alpha(Q)=0.000103\ 22;\ \alpha(P)=6.2\times10^{-6}\ 21$
		600 1	43 ^a 13	647.20	$7/2^{+}$				
		735 1	83 ^a 27	512.35	$7/2^+$				
		939.8 6	27 ^a 10	307.76	$5/2^{+}$				
1254.24	5/2-,7/2-	195.6 4	10 ^{&} 4	1058.73	3/2-	E2		0.404 7	α (K)=0.179 3; α (L)=0.169 3; α (M)=0.0434 8 α (N)=0.01070 18; α (O)=0.00175 3; α (P)=1.83×10 ⁻⁵ 3
		770.2 2	100 ^{&} 15	484.02	7/2-	M1		0.0275	α (K)=0.0228 4; α (L)=0.00365 6; α (M)=0.000844 12 α (N)=0.000210 3; α (O)=3.87×10 ⁻⁵ 6; α (P)=2.65×10 ⁻⁶ 4
		946.3 <i>3</i>	19 ^{&} 7	307.76	$5/2^{+}$				
1260.7		1057 1	100 <mark>&</mark>	203.74	$3/2^{+}$				
1273.14	$11/2^{-}$	393 [°] 1	40 ^{<i>a</i>} 20	880.45	$9/2^{-}$				
		411.4 3	100 ^{<i>a</i>} 12	862.04	9/2-	M1+E2	0.6 3	0.115 19	$\alpha(K)=0.094 \ 16; \ \alpha(L)=0.0167 \ 17; \ \alpha(M)=0.0039 \ 4 \\ \alpha(N)=0.00097 \ 10; \ \alpha(O)=0.000177 \ 19; \ \alpha(P)=1.10\times10^{-5} \ 20$
		459 1	48 ^{<i>a</i>} 24	812.67	13/2-	M1(+E2)	<6	0.070 36	$\alpha(K) = 0.056 \ 32; \ \alpha(L) = 0.0107 \ 36; \ \alpha(M) = 0.00252 \ 78 \ \alpha(N) = 6 \ 3 \times 10^{-4} \ 20; \ \alpha(Q) = 1 \ 13 \times 10^{-4} \ 39; \ \alpha(P) = 6 \ 5 \times 10^{-6} \ 38$
		626.7 <i>3</i>	40 ^{<i>a</i>} 12	646.17	13/2-	M1		0.0469	$\alpha(K) = 0.0387 6; \alpha(L) = 0.00626 9; \alpha(M) = 0.001446 21$ $\alpha(K) = 0.00360 5; \alpha(Q) = 6.63 \times 10^{-5} 10; \alpha(P) = 4.53 \times 10^{-6} 7$
		1026.2 5	72 ^a 12	247.25	11/2-	M1+E2	1.2 +20-6	0.0086 26	$\alpha(K) = 0.0071 \ 22; \ \alpha(L) = 0.00119 \ 31; \ \alpha(M) = 2.76 \times 10^{-4} \ 70 \\ \alpha(K) = 6.9 \times 10^{-5} \ 18; \ \alpha(O) = 1.25 \times 10^{-5} \ 33; \ \alpha(P) = 8.1 \times 10^{-7} \ 26$
1286.3		472 1	100	814.30	$1/2^{-}$				
1295.5	11/2-	433.5 <i>3</i>	100 ^a 16	862.04	9/2-	M1+E2	0.8 +6-5	0.090 27	$\alpha(K)=0.072\ 24;\ \alpha(L)=0.013\ 3;\ \alpha(M)=0.0031\ 6$ $\alpha(N)=0.00078\ 14;\ \alpha(O)=0.00014\ 3;\ \alpha(P)=8.4\times10^{-6}\ 29$
		483 1	23 ^a 7	812.67	$13/2^{-}$				
		612 <i>1</i>	18 ^a 5	681.90	$15/2^{-}$				
		811 <i>1</i>	23 ^a 9	484.02	$7/2^{-}$				
		1048.4 <i>3</i>	46 ^a 14	247.25	11/2-	M1+E2	1.1 +16-6	0.0085 26	α (K)=0.0070 22; α (L)=0.00117 31; α (M)=2.70×10 ⁻⁴ 70 α (N)=6.7×10 ⁻⁵ 18: α (O)=1.23×10 ⁻⁵ 33: α (P)=8.0×10 ⁻⁷ 26
1298.87	11/2+	186.6 <i>3</i>	8 ^{<i>a</i>} 2	1112.48	$11/2^+$	E2		0.476	$\alpha(K) = 0.201 \ 3; \ \alpha(L) = 0.206 \ 4; \ \alpha(M) = 0.0531 \ 9$ $\alpha(K) = 0.1309 \ 21; \ \alpha(Q) = 0.0213 \ 4; \ \alpha(P) = 2.05 \times 10^{-5} \ 3$
		538.2 2	100 ^a 10	760.67	9/2+	M1		0.0697	$\alpha(K) = 0.0575 \ 8; \ \alpha(L) = 0.00934 \ 14; \ \alpha(M) = 0.00216 \ 3$ $\alpha(K) = 0.0575 \ 8; \ \alpha(L) = 0.00934 \ 14; \ \alpha(M) = 0.00216 \ 3$
		651.6 2	92 ^a 9	647.20	7/2+	E2		0.01398	$\alpha(N)=0.00053888; \alpha(O)=9.90\times10^{-1}14; \alpha(P)=6.75\times10^{-1}10$ $\alpha(K)=0.0107615; \alpha(L)=0.002464; \alpha(M)=0.0005919$
									$\alpha(N)=0.0001465\ 21;\ \alpha(O)=2.58\times10^{-3}\ 4;\ \alpha(P)=1.196\times10^{-6}\ 17$
		786.6 2	32 ^{<i>a</i>} 3	512.35	7/2+	E2		0.00934	$\alpha(K)=0.00737 \ 11; \ \alpha(L)=0.001507 \ 22; \ \alpha(M)=0.000358 \ 5 \ \alpha(N)=8.88\times10^{-5} \ 13; \ \alpha(O)=1.581\times10^{-5} \ 23; \ \alpha(P)=8.17\times10^{-7} \ 12$
1312.96	13/2-	432.3 4	27 ^{<i>a</i>} 8	880.45	9/2-	E2		0.0372	$\alpha(K)=0.0261 \ 4; \ \alpha(L)=0.00838 \ 12; \ \alpha(M)=0.00207 \ 3 \\ \alpha(N)=0.000511 \ 8; \ \alpha(O)=8.76 \times 10^{-5} \ 13; \ \alpha(P)=2.87 \times 10^{-6} \ 4$

15

L

	Adopted Levels, Gammas (continued)												
						$\gamma(^{189}\text{Au})$ (a	continued)						
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments				
1312.96	13/2-	600.1 5	100 ^{<i>a</i>} 23	712.70	11/2-	M1+E2	1.3 +11-5	0.0301 85	α (K)=0.0241 73; α (L)=0.0045 10; α (M)=0.00107				
		667.0 <i>3</i>	18 ^a 4	646.17	13/2-	M1(+E2)	<0.9	0.034 6	21 $\alpha(N)=0.00027 \ 6; \ \alpha(O)=4.8 \times 10^{-5} \ 10;$ $\alpha(P)=2.78 \times 10^{-6} \ 87$ $\alpha(K)=0.028 \ 5; \ \alpha(L)=0.0046 \ 7; \ \alpha(M)=0.00108 \ 16$ $\alpha(N)=0.00027 \ 4; \ \alpha(O)=4.9 \times 10^{-5} \ 8;$ $\alpha(P)=3.2 \times 10^{-6} \ 6$				
1346.5		987.8 <i>4</i>	8 ^a 2	325.12	$9/2^{-}$ $3/2^{+}$								
1352.6	(15/2,13/2,11/2)-	540.0 5	$100^{a} 20$	812.67	13/2-	M1+E2	1.2 +7-4	0.041 10	$\alpha(K)=0.0328 \ 83; \ \alpha(L)=0.0063 \ 11; \ \alpha(M)=0.00148$ $\alpha(N)=0.00037 \ 6; \ \alpha(Q)=6.6\times10^{-5} \ 11;$				
			a						$\alpha(P)=3.79\times10^{-6}99$				
		670 <i>1</i>	19 ^{<i>a</i>} 7	681.90	15/2-	M1		0.0394	α (K)=0.0326 5; α (L)=0.00525 8; α (M)=0.001213 18				
									$\alpha(N)=0.000302 5; \alpha(O)=5.57\times10^{-5} 8;$ $\alpha(P)=3.80\times10^{-6} 6$ E _v : doublet.				
		1105.4 <i>3</i>	27 ^{<i>a</i>} 4	247.25	11/2-	E2		0.00473	$\alpha(K)=0.00384 \ 6; \ \alpha(L)=0.000681 \ 10; \ \alpha(M)=0.0001591 \ 23$				
1358.8 1365.3		1155.1 <i>4</i> 683.4 ^c <i>4</i>	100 100	203.74 681.90	$3/2^+$ 15/2 ⁻				$\alpha(N)=3.95\times10^{-5} \ 6; \ \alpha(O)=7.14\times10^{-6} \ 10; \\ \alpha(P)=4.23\times10^{-7} \ 6; \ \alpha(IPF)=2.06\times10^{-7} \ 4$				
1368.1	(17/2,13/2,15/2)-	686.2 2	100	681.90	15/2-	(M1)		0.0370	$\alpha(K)=0.0306\ 5;\ \alpha(L)=0.00493\ 7;\ \alpha(M)=0.001140$				
1371 3		557 1	100	814 30	1/2-				$\alpha(N)=0.000284 \ 4; \ \alpha(O)=5.23\times10^{-5} \ 8; \ \alpha(P)=3.57\times10^{-6} \ 5$				
1376.2	_	730 1	100	646.17	13/2-	M1+E2	≈1.7	≈0.01624	$\alpha(K) \approx 0.01307; \ \alpha(L) \approx 0.00243; \ \alpha(M) \approx 0.000572$ $\alpha(N) \approx 0.0001422; \ \alpha(O) \approx 2.56 \times 10^{-5};$ $\alpha(P) \approx 1.488 \times 10^{-6}$				
1383.25	13/2+	253.2 2	39 ^{<i>a</i>} 4	1130.10	11/2-	E1		0.0404	$\alpha(K)=0.0332\ 5;\ \alpha(L)=0.00550\ 8;\ \alpha(M)=0.001273\ 18\ \alpha(N)=0.000314\ 5;\ \alpha(O)=5.59\times10^{-5}\ 8;$				
		670 <i>I</i>	2.6 ^{<i>a</i>} 12	712.70	11/2-	[E1]		0.00471	$\alpha(P)=3.10\times10^{-6} 5$ $\alpha(K)=0.00394 6; \alpha(L)=0.000599 9;$ $\alpha(M)=0.0001374 20$ $\alpha(N)=3.40\times10^{-5} 5; \alpha(O)=6.19\times10^{-6} 9;$				
		737.0 2	100 ^a 9	646.17	13/2-	E1		0.00391	$\alpha(P)=3.97\times10^{-7} 6$ $\alpha(K)=0.00327 5; \alpha(L)=0.000494 7;$				

From ENSDF

					Ado	pted Levels	s, Gammas (co	ntinued)	
						<u>γ(¹⁸⁹A</u>	u) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments
1412.2 1419.80	19/2 ⁻ (13/2,11/2) ⁺	730.3 <i>3</i> 659.0 2	100 100	681.90 760.67	15/2 ⁻ 9/2 ⁺	Q E2		0.01364	$\begin{aligned} \alpha(M) = 0.0001133 \ 16 \\ \alpha(N) = 2.81 \times 10^{-5} \ 4; \ \alpha(O) = 5.11 \times 10^{-6} \ 8; \\ \alpha(P) = 3.31 \times 10^{-7} \ 5 \\ E_{\gamma}, Mult.: \ from \ ^{191} Ir(\alpha, 6n\gamma). \\ \alpha(K) = 0.01051 \ 15; \ \alpha(L) = 0.00239 \ 4; \\ \alpha(M) = 0.000573 \ 8 \end{aligned}$
1431.9		544.7 <i>3</i>	100	887.24	(3/2,5/2)-				$\alpha(N) = 0.0001420 \ 20; \ \alpha(O) = 2.50 \times 10^{-5} \ 4; \ \alpha(P) = 1.168 \times 10^{-6} \ 17$
1456.2	+	809 1	100	647.20	(3/2,3/2) 7/2 ⁺	M1		0.0243	$\alpha(K)=0.0201 \ 3; \ \alpha(L)=0.00322 \ 5; \ \alpha(M)=0.000743$
1450.07	11/2+	912 7	22 <mark>9</mark> 6	646 17	12/2-	E1		0.00224	$\alpha(N)=0.000185 \ 3; \ \alpha(O)=3.41\times10^{-5} \ 5; \ \alpha(P)=2.34\times10^{-6} \ 4 \ \alpha(P)=0.00271 \ 4; \ \alpha(D)=0.000408 \ 6;$
1439.97	11/2	815 1	25** 0	040.17	13/2	EI		0.00324	$\alpha(\mathbf{K}) = 0.002714, \alpha(\mathbf{L}) = 0.0004080, \alpha(\mathbf{M}) = 9.33 \times 10^{-5} 14$ $\alpha(\mathbf{N}) = 2.31 \times 10^{-5} 4; \alpha(\mathbf{O}) = 4.22 \times 10^{-6} 6; \alpha(\mathbf{P}) = 2.76 \times 10^{-7} 4$
		1134.8 2	100 ^a 10	325.12	9/2-	E1		1.76×10 ⁻³	$\alpha(K) = 0.001479 \ 21; \ \alpha(L) = 0.000218 \ 3; \alpha(M) = 4.97 \times 10^{-5} \ 7 \alpha(N) = 1.233 \times 10^{-5} \ 18; \ \alpha(O) = 2.26 \times 10^{-6} \ 4; \alpha(P) = 1.517 \times 10^{-7} \ 22; \ \alpha(IPF) = 3.15 \times 10^{-6} \ 5$
1463.9	_	1213 <i>1</i> 751.4 5	22 ^a 7 76 ^a 41	247.25 712.70	11/2 ⁻ 11/2 ⁻	M1		0.0293	$\alpha(K)=0.0243 \ 4; \ \alpha(L)=0.00390 \ 6; \ \alpha(M)=0.000900$
									$\alpha(N)=0.000224 \ 4; \ \alpha(O)=4.13\times10^{-3} \ 6; \\ \alpha(P)=2.83\times10^{-6} \ 4$
		817 <i>1</i>	100 ^{<i>a</i>} 29	646.17	13/2-				
1476.1		1272.1 5	100° 28	203.74	3/2+				
1481.6	13/2-	1466.3 <i>4</i> 293.0 3	97^{4}_{28} 28	9.94	$3/2^+$ 11/2 ⁻	M1		0 354	$\alpha(\mathbf{K}) = 0.291.5; \alpha(\mathbf{L}) = 0.0481.7; \alpha(\mathbf{M}) = 0.01115.16$
1401.0	15/2	295.05	+0 /	1100.00	11/2	1111		0.334	$\alpha(\mathbf{N})=0.00278 \ 4; \ \alpha(\mathbf{O})=0.000511 \ 8;$ $\alpha(\mathbf{D})=2.46\times10^{-5} \ 5$
		800 1	100 ^a 14	681.90	15/2-	M1		0.0250	$\alpha(P)=3.46\times10^{-2} 5$ $\alpha(K)=0.0207 3; \alpha(L)=0.00331 5; \alpha(M)=0.000764$ 11
1483.4	(7/2)+	522.2 2	100 ^a 11	961.22	(5/2,3/2)+	M1+E2	2.2 +11-5	0.032 5	$\begin{aligned} &\alpha(\mathbf{N}) = 0.000190 \ 3; \ \alpha(\mathbf{O}) = 3.51 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 2.40 \times 10^{-6} \ 4 \\ &\alpha(\mathbf{K}) = 0.025 \ 4; \ \alpha(\mathbf{L}) = 0.0056 \ 5; \ \alpha(\mathbf{M}) = 0.00134 \ 11 \\ &\alpha(\mathbf{N}) = 0.00033 \ 3; \ \alpha(\mathbf{O}) = 5.9 \times 10^{-5} \ 6; \end{aligned}$
		722 1	44 ^a 7	760.67	9/2+	M1+E2	1.1 +5-4	0.021 5	α (P)=2.8×10 ⁻⁶ 5 α (K)=0.017 4; α (L)=0.0030 6; α (M)=0.00070 12

					$\frac{\gamma}{\gamma}$	(¹⁸⁹ Au) (continu	ied)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{@}$	α^{\ddagger}	Comments
								$\alpha(N)=0.00017 \ 3; \ \alpha(O)=3.1\times10^{-5} \ 6; \ \alpha(P)=1.9\times10^{-6} \ 5$
1488.9	(7/2,11/2)-	578 <i>1</i> 776.0 <i>3</i>	39 ^a 14 71 ^a 14	911.01 7/2 ⁻ 712.70 11/2 ⁻	(E2)		0.00961	α (K)=0.00757 <i>11</i> ; α (L)=0.001559 22; α (M)=0.000371 <i>6</i> α (N)=9.20×10 ⁻⁵ <i>13</i> ; α (O)=1.635×10 ⁻⁵ 23;
		1164.3 5	100 11	325.12 9/2-	M1+E2	1.4 +14-6	0.0061 15	$\alpha(P)=8.40\times10^{-7} \ 12$ $\alpha(K)=0.0050 \ 13; \ \alpha(L)=0.00083 \ 18; \ \alpha(M)=0.00019 \ 4$ $\alpha(N)=4.8\times10^{-5} \ 11; \ \alpha(O)=8.7\times10^{-6} \ 19; \ \alpha(P)=5.7\times10^{-7} \ 15; \ \alpha(PE)=2.1\times10^{-6} \ 3$
1516.7	-	704 1	100	812.67 13/2-	M1+E2	2.0 +11-5	0.0164 25	$\alpha(\text{IFP})=2.1\times10^{-5}$ $\alpha(\text{K})=0.0131\ 21;\ \alpha(\text{L})=0.0025\ 3;\ \alpha(\text{M})=0.00060\ 7$ $\alpha(\text{N})=0.000148\ 16;\ \alpha(\text{O})=2.7\times10^{-5}\ 3;\ \alpha(\text{P})=1.5\times10^{-6}\ 3$
1523.4	(_)	841 <i>I</i>	100 ^{<i>a</i>} 17	681.90 15/2-				
1523.9	+	1276.2 <i>3</i> 676 <i>1</i>	61 ^{<i>a</i>} 13 100	247.25 11/2 ⁻ 847.89 9/2 ⁺	M1+E2	1.6 +9-5	0.020 5	$\alpha(K)=0.016$ 4; $\alpha(L)=0.0030$ 5; $\alpha(M)=0.00072$ 12 $\alpha(L)=0.00018$ 2; $\alpha(Q)=3.2\times10^{-5}$ 6; $\alpha(R)=1.8\times10^{-6}$ 5
1525.0	-	429 1	100 ^{<i>a</i>} 27	1097.03 13/2-	M1		0.1268 20	$\alpha(K)=0.1046 \ I6; \ \alpha(L)=0.0171 \ 3; \ \alpha(M)=0.00396 \ 6$
		812.1 4	50 ^a 14	712.70 11/2-	M1(+E2)	<0.7	0.022 3	α (N)=0.000985 <i>16</i> ; α (O)=0.000181 <i>3</i> ; α (P)=1.232×10 ⁻⁵ <i>19</i> α (K)=0.0178 <i>22</i> ; α (L)=0.0029 <i>3</i> ; α (M)=0.00067 <i>7</i> α (D)=0.000166 <i>L</i> 7; α (O)=2.1×10 ⁻⁵ <i>4</i> ; α (D)=2.1×10 ⁻⁶ <i>2</i>
1534.79	$13/2^{+}$	151.4 2	24 ^{<i>a</i>} 2	1383.25 13/2+	M1(+E2)	< 0.4	2.14 9	$\alpha(\text{N})=0.000100 \ 17$; $\alpha(\text{O})=5.1\times10^{-4}$; $\alpha(\text{P})=2.1\times10^{-5}$ $\alpha(\text{K})=1.72 \ 11$; $\alpha(\text{L})=0.319 \ 15$; $\alpha(\text{M})=0.075 \ 5$
		404.5 3	17 ^a 6	1130.10 11/2-	E1		0.01358	α (N)=0.0187 <i>11</i> ; α (O)=0.00338 <i>15</i> ; α (P)=0.000206 <i>14</i> α (K)=0.01126 <i>16</i> ; α (L)=0.00179 <i>3</i> ; α (M)=0.000411 <i>6</i> α (N)=0.0001018 <i>15</i> ; α (O)=1.83×10 ⁻⁵ <i>3</i> ; α (P)=1.100×10 ⁻⁶
		686 <i>1</i>	31 ^{<i>a</i>} 10	847.89 9/2+	[E2]		0.01250	16 $\alpha(K)=0.00969 \ 14; \ \alpha(L)=0.00214 \ 4; \ \alpha(M)=0.000513 \ 8$ $\alpha(N)=0.0001272 \ 19; \ \alpha(O)=2.25\times10^{-5} \ 4; \ \alpha(P)=1.076\times10^{-6}$ 16
		722 1	11 ^a 4	812.67 13/2-				10
		821.9 <i>3</i>	47 ^a 5	712.70 11/2-	E1		0.00318	α (K)=0.00266 4; α (L)=0.000399 6; α (M)=9.13×10 ⁻⁵ 13 α (N)=2.26×10 ⁻⁵ 4; α (O)=4.13×10 ⁻⁶ 6; α (P)=2.70×10 ⁻⁷ 4
		853 1	13 ^{<i>a</i>} 4	681.90 15/2-	(E1)		0.00296	$\alpha(K) = 0.00248 \ 4; \ \alpha(L) = 0.000371 \ 6; \ \alpha(M) = 8.49 \times 10^{-5} \ 12 \ \alpha(N) = 2.11 \times 10^{-5} \ 3; \ \alpha(Q) = 3.84 \times 10^{-6} \ 6; \ \alpha(P) = 2.52 \times 10^{-7} \ 4$
		888.5 <i>3</i>	33 ^a 4	646.17 13/2-	(E1)		0.00275	$\alpha(K)=0.00230 \ 4; \ \alpha(L)=0.000343 \ 5; \ \alpha(M)=7.85\times10^{-5} \ 11 \\ \alpha(N)=1.95\times10^{-5} \ 3; \ \alpha(O)=3.56\times10^{-6} \ 5; \ \alpha(P)=2.34\times10^{-7} \ 4$

From ENSDF

L

					Adopted 1	Levels, Gamn	nas (cont	inued)		
					<u> </u>	(¹⁸⁹ Au) (cont	inued)			
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#}$	E_f	${ m J}_f^\pi$	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments	
1534.79	13/2+	1287.7 2	100 ^{<i>a</i>} 10	247.25 1	1/2-	E1		1.46×10 ⁻³	$\alpha(K)=0.001186\ 17;\ \alpha(L)=0.0001734\ 25;$ $\alpha(M)=3.96\times10^{-5}\ 6$ $\alpha(N)=9.82\times10^{-6}\ 14;\ \alpha(O)=1.80\times10^{-6}\ 3;$	
1559.1	-	429 1	100 ^a 20	1130.10 1	1/2-	E2		0.0379	$\begin{array}{l} \alpha(\mathbf{P}) = 1.220 \times 10^{-7} \ 17; \ \alpha(\mathrm{IPF}) = 5.01 \times 10^{-5} \ 7\\ \alpha(\mathbf{K}) = 0.0266 \ 4; \ \alpha(\mathbf{L}) = 0.00860 \ 14; \\ \alpha(\mathbf{M}) = 0.00212 \ 4\\ \alpha(\mathbf{N}) = 0.000525 \ 9; \ \alpha(\mathbf{O}) = 8.98 \times 10^{-5} \ 15; \\ \alpha(\mathbf{P}) = 2.92 \times 10^{-6} \ 5 \end{array}$	
		912.9 3	30 ^a 10	646.17 1	3/2-	M1(+E2)	<0.24	0.0175 4	$\alpha(K) = 0.0145 \ 4; \ \alpha(L) = 0.00232 \ 5; \\ \alpha(M) = 0.000535 \ 11 \\ \alpha(N) = 0.000133 \ 3; \ \alpha(O) = 2.46 \times 10^{-5} \ 6;$	
1559.83	-	847.2 3	50 ^a 15	712.70 1	1/2-	M1		0.0216	$\alpha(P)=1.68\times10^{-6} 4$ $\alpha(K)=0.0178 3; \ \alpha(L)=0.00286 4;$ $\alpha(M)=0.000659 10$ $\alpha(N)=0.0001641 23; \ \alpha(O)=3.02\times10^{-5} 5;$ $\alpha(P)=2.07\times10^{-6} 3$	
		1234.3 3	100 ^a 15	325.12 9	$\frac{1}{2^{-}}$				$a(1) - 2.01 \times 10^{-5}$	
1580.3	-	1312.9 <i>3</i> 483 <i>1</i>	90^{a} 15 100^{a} 40	247.25 1 1097.03 1	1/2 3/2 ⁻	M1		0.0926	α (K)=0.0764 <i>12</i> ; α (L)=0.01245 <i>19</i> ; α (M)=0.00288 <i>5</i> α (N)=0.000717 <i>11</i> ; α (O)=0.0001320 <i>20</i> ; α (D)=8.00×10 ⁻⁶ <i>14</i>	
1595.4 1597.2		934.2 6 1083 <i>1</i> 951 <i>1</i>	79 ^a 17 100 100	646.17 1 512.35 7 646.17 1	3/2 ⁻ //2 ⁺ 3/2 ⁻				<i>u</i> (r)=0.99×10 14	
1601.19	13/2+,15/2+	218.1 2	100 ^{<i>a</i>} 10	1383.25 1	3/2+	E2(+M1)	>1.1	0.40 12	α (K)=0.25 <i>12</i> ; α (L)=0.1076 <i>16</i> ; α (M)=0.0269	
									$\alpha(N)=0.00666 \ 15; \ \alpha(O)=0.001121 \ 20; \ \alpha(P)=2.9\times10^{-5} \ 15$	
		455 <i>1</i> 788.5 <i>2</i>	$13^{a} 5$ $40^{a} 7$	1145.70 1 812.67 1	3/2 ⁻ ,15/2 ⁻ 3/2 ⁻	E1		0.00344	α (K)=0.00288 4; α (L)=0.000433 6; α (M)=9.90×10 ⁻⁵ 14 α (N)=2.46×10 ⁻⁵ 4; α (O)=4.48×10 ⁻⁶ 7; α (P)=2 92×10 ⁻⁷ 4	
		919.0 <i>4</i> 954.9 <i>3</i>	11 ^a 3 36 ^a 4	681.90 1 646.17 1	5/2 ⁻ 3/2 ⁻	E1		0.00240	$\alpha(K) = 0.00201 \ 3; \ \alpha(L) = 0.000299 \ 5; \alpha(M) = 6.85 \times 10^{-5} \ 10 \alpha(N) = 1.698 \times 10^{-5} \ 24; \ \alpha(O) = 3.10 \times 10^{-6} \ 5; \alpha(D) = 2.06 \times 10^{-7} \ 3$	
1654.2	13/2-,15/2-	286 <i>1</i> 841 <i>1</i>	15 ^a 6 39 ^a 12	1368.1 (812.67 1	17/2,13/2,15/2) ⁻ 3/2 ⁻	E2		0.00814	$\alpha(K) = 0.00647 \ 10; \ \alpha(L) = 0.001278 \ 19;$	

 $^{189}_{79}\mathrm{Au}_{110}$ -19

l

					Adopted Le	evels, Gamr	nas (continu	ed)	
					$\underline{\gamma}(1)$	¹⁸⁹ Au) (con	tinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^π	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments
1654.2	13/2-,15/2-	972.1 3	100 ^a 9	681.90	15/2-	M1+E2	0.7 5	0.012 3	$ \begin{array}{c} \alpha(M)=0.000303 \ 5 \\ \alpha(N)=7.51\times10^{-5} \ 11; \ \alpha(O)=1.341\times10^{-5} \ 20; \\ \alpha(P)=7.16\times10^{-7} \ 11 \\ \alpha(K)=0.0101 \ 23; \ \alpha(L)=0.0016 \ 4; \ \alpha(M)=0.00038 \ 8 \\ \alpha(N)=9.5\times10^{-5} \ 18; \ \alpha(O)=1.7\times10^{-5} \ 4; \\ \alpha(P)=1.2\times10^{-6} \ 3 \end{array} $
1662.4 1688.1 1730.6	21/2-	1407.2 <i>3</i> 557.0 <i>3</i> 582.7 1049 <i>I</i> 1483 3 <i>4</i>	$42^{a} 9$ 100 $41^{a} 14$ 100 ^a 23	247.25 1105.35 1105.35 681.90	11/2 ⁻ 17/2 ⁻ 17/2 ⁻ 15/2 ⁻	(E2)			E_{γ} ,Mult.: from $\gamma(\theta)$ in (α,6n γ).
1739.4	13/2+,15/2+	356 <i>1</i>	100^{-25} 100^{a} 15	1383.25	13/2+	M1+E2	0.9 +6-4	0.143 37	$\alpha(K)=0.113 \ 33; \ \alpha(L)=0.023 \ 3; \ \alpha(M)=0.0054 \ 7$ $\alpha(N)=0.00135 \ 16; \ \alpha(O)=0.00024 \ 4;$ $\alpha(P)=1.32\times10^{-5} \ 40$
		926.8 <i>3</i>	25 ^a 8	812.67	13/2-	[E1]		0.00254	$\alpha(K) = 0.00213 \ 3; \ \alpha(L) = 0.000317 \ 5; \alpha(M) = 7.24 \times 10^{-5} \ 11 \alpha(N) = 1.80 \times 10^{-5} \ 3; \ \alpha(O) = 3.28 \times 10^{-6} \ 5; \alpha(P) = 2.17 \times 10^{-7} \ 3$
		1057.0 <i>10</i> 1093 <i>1</i>	15 ^{<i>a</i>} 6 48 ^{<i>a</i>} 12	681.90 646.17	15/2 ⁻ 13/2 ⁻	[E1]		0.00188	$\alpha(K)=0.001580 \ 23; \ \alpha(L)=0.000233 \ 4; \\ \alpha(M)=5.32\times10^{-5} \ 8 \\ \alpha(N)=1.320\times10^{-5} \ 19; \ \alpha(O)=2.42\times10^{-6} \ 4; \\ \alpha(P)=1.620\times10^{-7} \ 2.3 $
1745.6 1755.0 1756.7	-	393 <i>I</i> 844 <i>I</i> 1074.8 <i>3</i>	100 100 100	1352.6 911.01 681.90	(15/2,13/2,11/2) ⁻ 7/2 ⁻ 15/2 ⁻	M1		0.01177	$\alpha(\mathbf{K}) = 0.00976 \ 14; \ \alpha(\mathbf{L}) = 0.001549 \ 22; \alpha(\mathbf{M}) = 0.000357 \ 5 \alpha(\mathbf{N}) = 8.90 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 1.640 \times 10^{-5} \ 23; \alpha(\mathbf{P}) = 1.129 \times 10^{-6} \ 16$
1760.2 1764.3 1767.0 1774.5		999.5 <i>3</i> 1003.6 <i>3</i> 1283 ^c <i>1</i> 1013.8 <i>5</i>	100 100 100 100	760.67 760.67 484.02 760.67	9/2 ⁺ 9/2 ⁺ 7/2 ⁻ 9/2 ⁺				u(1)-1.12)×10 10
1788.3	(*)	676 1	100	1112.48	11/2+	(E2)		0.01290	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00998 \ 15; \ \alpha(\mathbf{L}) = 0.00223 \ 4; \\ &\alpha(\mathbf{M}) = 0.000534 \ 8 \\ &\alpha(\mathbf{N}) = 0.0001324 \ 20; \ \alpha(\mathbf{O}) = 2.34 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.109 \times 10^{-6} \ 16 \end{aligned}$
1800.6	(15/2*)	417 1 695.3 5	85" 15 100 ^{<i>a</i>} 12	1383.25 1105.35	13/2* 17/2 ⁻	(E1)		0.00438	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00366 \ 6; \ \alpha(\mathbf{L}) = 0.000556 \ 8; \\ &\alpha(\mathbf{M}) = 0.0001274 \ 18 \\ &\alpha(\mathbf{N}) = 3.16 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 5.75 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{P}) = 3.70 \times 10^{-7} \ 6 \end{aligned}$

 $^{189}_{79}\mathrm{Au}_{110}$ -20

					Auopt	eu Leveis, G	annias (C	ontinueu)			
						$\gamma(^{189}\text{Au})$ ((continued))			
E _i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments		
1808.4 1822.2	_	1559.8 <i>3</i> 1140.3 <i>3</i>	100 100 ^{<i>a</i>}	248.56 681.90	5/2 ⁺ 15/2 ⁻	M1(+E2)	<1.6	0.0081 21	α (K)=0.0067 <i>18</i> ; α (L)=0.0011 <i>3</i> ; α (M)=0.00025 <i>6</i> α (N)=6.2×10 ⁻⁵ <i>15</i> ; α (O)=1.1×10 ⁻⁵ <i>3</i> ; α (P)=7.7×10 ⁻⁷ <i>21</i> ; α (IPF)=1.13×10 ⁻⁶ <i>19</i>		
1835.1	(13/2+,15/2+)	451 <i>I</i> 1022.6 <i>3</i> 1153 <i>I</i> 1188.9 <i>5</i> 1367 <i>I</i>	80 ^{<i>a</i>} 29 17 ^{<i>a</i>} 9 29 ^{<i>a</i>} 9 100 ^{<i>a</i>} 11	1383.25 812.67 681.90 646.17 484.02	13/2 ⁺ 13/2 ⁻ 15/2 ⁻ 13/2 ⁻ 7/2 ⁻						
1862.9	_	952 1	100 ^{&} 11	911.01	7/2-	M1		0.01601	α (K)=0.01326 <i>19</i> ; α (L)=0.00211 <i>3</i> ; α (M)=0.000488 <i>7</i> α (N)=0.0001215 <i>18</i> ; α (O)=2.24×10 ⁻⁵ <i>4</i> ; α (P)=1.538×10 ⁻⁶ <i>22</i>		
1863.4 1877.1	_	1555 <i>1</i> 1379.4 2 1064.4 <i>4</i>	47 ^{&} 15 100 100	307.76 484.02 812.67	5/2 ⁺ 7/2 ⁻ 13/2 ⁻	M1+E2	≈0.7				
1879.0 1905.2		1571.3 <i>5</i> 1675.2 <i>3</i> 1259 <i>1</i>	70 ^{&} 19 100 ^{&} 23 100	307.76 203.74 646.17	5/2+ 3/2+ 13/2 ⁻						
1913.5 1935.02	+	1664.9 <i>4</i> 400 <i>1</i> 1122.2 <i>2</i> 1253.3 <i>2</i>	$ \begin{array}{c} 100 \\ 35^{a} 5 \\ 100^{a} 10 \\ 69^{a} 8 \end{array} $	248.56 1534.79 812.67 681.90	5/2 ⁺ 13/2 ⁺ 13/2 ⁻ 15/2 ⁻	E1					
1939.02	+	1289 <i>1</i> 1687.8 <i>3</i> 479.1 <i>3</i>	$27^{a} 4$ $22^{a} 3$ $19^{a} 4$	646.17 247.25 1459.97	13/2 ⁻ 11/2 ⁻ 11/2 ⁺	M1+E2	0.6 2	0.077 9	$\alpha(K)=0.063 \ 8; \ \alpha(L)=0.0110 \ 9; \ \alpha(M)=0.00255 \ 19 \ \alpha(N)=0.00064 \ 5; \ \alpha(D)=0.000116 \ 10; \ \alpha(P)=7 \ 4\times10^{-6} \ 6$		
		1126.4 <i>3</i> 1257.3 <i>3</i> 1292.7 <i>3</i> 1691.7 <i>3</i>	$ 19^{a} 4 \\ 15^{a} 2 \\ 15^{a} 3 \\ 100^{a} 8 $	812.67 681.90 646.17 247.25	13/2 ⁻ 15/2 ⁻ 13/2 ⁻ 11/2 ⁻	(E1)			<i>u</i> (1)-0.0000+3, <i>u</i> (0)-0.00011010, <i>u</i> (1)-7.4410		
1960.1 1970.8		1476.1 <i>3</i> 1487 <i>1</i> 1663 0 <i>4</i>	$100 \\ 44^{\&} 26 \\ 100^{\&} 23$	484.02 484.02 307.76	7/2 ⁻ 7/2 ⁻ 5/2 ⁺						
2030.87		926 <i>1</i> 933.4 ^{<i>c</i>} 4	$33^{\&} 11$ $38^{\&} 8$ $24^{\&} 10$	1104.80 1098.1	3/2 ⁻ 3/2 ⁻						
		1428.1 2 1826.6 <i>4</i>	$100^{\&} 19$ $38^{\&} 13$	602.90 203.74	$3/2^{+}$ $3/2^{+}$						
2031.04		2021.5 3	100 ^{&} 10	9.94	3/2+						

$\gamma(^{189}Au)$ (continued)

E_i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$E_f \qquad J_f^{\pi}$	Mult.@	$\delta^{@}$	α^{\ddagger}	Comments
2031.04		2030.3 4	30 ^{&} 7	0.0 1/2+				
2034.2		2034.2 <i>3</i>	100	$0.0 1/2^+$				
2034.7		1221 <i>I</i>	100 ^{&} 35	814.30 1/2-				
A (A (A)		1431.7 3	100 35	602.90 1/2+,3/2	+			
2036.1	+	1/8/.5 5	100 100 ^a 11	$248.56 \ 5/2^+$ 1208 87 11/2 ⁺	M1 + E2	12 6 1	0.018 /	$\alpha(K) = 0.015 4; \alpha(L) = 0.0026 5; \alpha(M) = 0.00062 11$
2045.8		740.9 5	100 11	1290.07 11/2	MIT+L2	1.2 +0-4	0.010 4	$\alpha(N) = 0.0015 \ 3, \ \alpha(D) = 2.8 \times 10^{-5} \ 5, \ \alpha(P) = 1.7 \times 10^{-6} \ 4$
		1364 <i>1</i>	59 ^a 15	681.90 15/2-				
2061.5		1570 <i>1</i>	100	491.53 5/2-				
2062.6	$(21/2^+)$	650.3 3	100	1412.2 19/2-	_ D			E_{γ} ,Mult.: from (α ,6n γ).
2000.2	3/2- 5/2-	100772	100^{100}	1058733/2	M1		0.01386	$\alpha(K) = 0.01148$ 16: $\alpha(I) = 0.00183$ 3: $\alpha(M) = 0.000421$ 6
2000.47	5/2 ,5/2	1007.7 2	100 11	1036.75 5/2	111		0.01580	$\alpha(N)=0.001143 \ 15, \ \alpha(D)=0.00133 \ 5, \ \alpha(M)=0.000421 \ 5$ $\alpha(N)=0.0001049 \ 15; \ \alpha(O)=1.93\times10^{-5} \ 3; \ \alpha(P)=1.330\times10^{-6} \ 19$
		1463.5 3	41 ^a 9	602.90 1/2+,3/2	+			
		1818.3 5	23° 9	248.56 5/2+				
2074.05	_	1862.7 3	40° 9	203.74 3/2*				
2074.05		969.0 3	28° /	1104.80 3/2	2.61		0.010(0	
		1015.3 3	63~ /	1058.73 3/2	MI		0.01360	$\alpha(\mathbf{K})=0.01127$ 76; $\alpha(\mathbf{L})=0.00179$ 3; $\alpha(\mathbf{M})=0.000413$ 6 $\alpha(\mathbf{N})=0.0001029$ 15; $\alpha(\mathbf{O})=1.90\times10^{-5}$ 3; $\alpha(\mathbf{P})=1.305\times10^{-6}$ 19
		1259.9 <i>3</i>	31 ^{&} 7	814.30 1/2-				
		1471 <i>1</i>	19 ^{&} 10	602.90 1/2+,3/2	+			
		1766.4 <i>3</i>	100 ^{&} 10	307.76 5/2+				
2074.7	-	918.8 <i>3</i>	98 ^{&} 11	1156.0 (5/2,7/2)	- M1+E2	0.8 +8-6	0.0133 38	α (K)=0.0110 32; α (L)=0.0018 5; α (M)=0.00042 11 α (N)=0.00010 3; α (O)=1.92×10 ⁻⁵ 49; α (P)=1.26×10 ⁻⁶ 38
		958.6 <i>3</i>	100 ^{&} 11	1116.05 7/2-,5/2	- M1		0.01573	α (K)=0.01303 <i>19</i> ; α (L)=0.00208 <i>3</i> ; α (M)=0.000479 <i>7</i> α (N)=0.0001193 <i>17</i> ; α (O)=2.20×10 ⁻⁵ <i>3</i> ; α (P)=1.511×10 ⁻⁶ 22
2092.8	_	936.6 <i>3</i>	100 ^{&} 11	1156.0 (5/2,7/2)	- M1		0.01669	$\alpha(K)=0.01382\ 20;\ \alpha(L)=0.00220\ 3;\ \alpha(M)=0.000509\ 8$ $\alpha(N)=0\ 0001267\ 18;\ \alpha(O)=2\ 33\times10^{-5}\ 4;\ \alpha(P)=1\ 604\times10^{-6}\ 23$
		1278 <i>I</i>	41 ^{&} 11	814.30 1/2-				
		2093.2 4	61 ^{&} 13	$0.0 1/2^+$				
2093.61	-	977.7 3	45 ^{&} 4	1116.05 7/2-,5/2	- M1		0.01496	α (K)=0.01240 <i>18</i> ; α (L)=0.00197 <i>3</i> ; α (M)=0.000455 <i>7</i> α (N)=0.0001134 <i>16</i> : α (O)=2.09×10 ⁻⁵ <i>3</i> : α (P)=1.437×10 ⁻⁶ <i>21</i>
		1034.6 <i>3</i>	100 ^{&} 11	1058.73 3/2-	M1		0.01296	$\alpha(\mathbf{K}) = 0.01074 \ I5; \ \alpha(\mathbf{L}) = 0.001708 \ 24; \ \alpha(\mathbf{M}) = 0.000394 \ 6$ $\alpha(\mathbf{N}) = 9.81 \times 10^{-5} \ I4; \ \alpha(\mathbf{O}) = 1.81 \times 10^{-5} \ 3; \ \alpha(\mathbf{P}) = 1.244 \times 10^{-6} \ I8$
		1786.0.5	61 ^{&} 13	307.76 5/2+				
		1845.3.5	27 ^{&} 8	248.56 5/2+				
2094.0		1447.8 3	100	646.17 13/2-				
2099.7		1895.9 <i>5</i>	100	203.74 3/2+				

22

L

					(continued)				
						$\gamma(^{18}$	³⁹ Au) (continue	ed)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments
2101.47		995.5 ^C 4	36 <mark>&</mark> 18	1107.4					
		1221 ^b 1	36 ^b 16	879.64	+				
		1299.5 6	33 ^{&} 18	801.95	$1/2^+.3/2^+$				
		1331.0.3	47 ^{&} 15	770.68	7/2-				
		1454 4 3	100 & 22	647.20	7/2+				
		2091 3 4	87 ^{&} 18	9.94	3/2+				
		2101.3.3	$76^{\&}$ 18	0.0	$\frac{3}{2}$				
2101.7	(-)	848 ^b 1	100 ^{b&} 33	1254.24	5/2 ⁻ ,7/2 ⁻	(M1)		0.0215	α (K)=0.0178 3; α (L)=0.00285 4; α (M)=0.000657 10 α (N)=0.0001637 24; α (O)=3.02×10 ⁻⁵ 5; α (P)=2.07×10 ⁻⁶
			~ <i>8</i> 7 ~ -						3
		1589.4 <i>4</i>	90 ^{°°} 27	512.35	7/2+				
2100.0		1793.8 4	100 ^{∞} 33	307.76	5/2+				
2109.8		1802 1	100	307.76	5/2 -				
2113.0		925.2 5	$100^{a} 20$	812.67	$\frac{11/2}{13/2^{-}}$				
2145.0		1039 /	14^{a} 7	1105.35	$17/2^{-1}$				
21.010		1498.9 3	100 ^{<i>a</i>} 14	646.17	$13/2^{-}$				
2154.6	-	900.4 <i>3</i>	100	1254.24	5/2-,7/2-	M1(+E2)			
2155.3		1096.6 4	100	1058.73	3/2-				
2157.4	+	1908.8 4	100	248.56	$5/2^+$	271		0.02((
2163.3	I	/80.1 5	100	1383.25	13/21	MI		0.0266	$\alpha(K)=0.0220 4; \ \alpha(L)=0.00353 5; \ \alpha(M)=0.000816 12$ $\alpha(N)=0.000203 3; \ \alpha(O)=3.74\times10^{-5} 6; \ \alpha(P)=2.56\times10^{-6} 4$
2165.21	+	630.3 2	100 ^a 11	1534.79	13/2+	M1+E2	1.2 +4-3	0.028 5	α (K)=0.022 4; α (L)=0.0041 5; α (M)=0.00097 12 α (N)=0.00024 3; α (O)=4.3×10 ⁻⁵ 6; α (P)=2.6×10 ⁻⁶ 5
		1352.8 <i>3</i>	18 ^a 7	812.67	13/2-				
		1519 <i>1</i>	18 ^a 7	646.17	13/2-				
2169.19	$(^{+})$	634 1	37 ^{<i>a</i>} 5	1534.79	$13/2^+$	(M1+E2)	1.0 2	0.030 4	
		709.1 4	104 3	1459.97	11/2+	E2(+M1)	>1.2	0.0162 46	$ \begin{array}{l} \alpha(\text{K}) = 0.0130 \ 40; \ \alpha(\text{L}) = 0.0025 \ 6; \ \alpha(\text{M}) = 0.00059 \ 12 \\ \alpha(\text{N}) = 0.00015 \ 3; \ \alpha(\text{O}) = 2.6 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 1.47 \times 10^{-6} \ 47 \end{array} $
		1356.4 3	8 ^{<i>u</i>} 3	812.67	13/2-				
		1487.4 4	$12^{a} 4$	681.90	15/2				
		1525 1	21^{-3} 3	040.17	$\frac{13}{2}$ $\frac{11}{2}$				
2169.6	+	749.7 3	100^{a} 11	1419.80	$(13/2,11/2)^+$	M1+E2	0.6 3	0.024 4	$\alpha(K)=0.020 \ 3; \ \alpha(L)=0.0033 \ 4; \ \alpha(M)=0.00077 \ 10 \ \alpha(N)=0.000192 \ 23; \ \alpha(Q)=3 \ 5\times 10^{-5} \ 5; \ \alpha(P)=2 \ 3\times 10^{-6} \ 4$
		981.2 4	33 ^a 11	1188.60	$11/2^{-}$				a(1), 0.0001220, a(0), 0.001000, a(1)=2.0010000000000000000000000000000000000
		1409 [°] 1	22 ^{<i>a</i>} 11	760.67	9/2+				
2176.2	+	437 1	67 ^a 44	1739.4	13/2+,15/2+				
		716 <i>1</i>	100 ^{<i>a</i>} 44	1459.97	$11/2^+$	E2		0.01139	α (K)=0.00889 13; α (L)=0.00191 3; α (M)=0.000457 7

From ENSDF

 $^{189}_{79}\mathrm{Au}_{110}$ -23

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments
									$\alpha(N)=0.0001134\ 17;\ \alpha(O)=2.01\times10^{-5}\ 3;$
2176.8		1364 /	18 ^a 6	812.67	13/2-				$\alpha(P)=9.87\times10^{-7}$ 14
		1495 <i>1</i>	15 ^a 4	681.90	15/2-				
2178.0		1929.5 3	100 ^{<i>u</i>} 10	247.25	11/2 ⁻ +				
2200.9		1519 1	100	681.90	15/2-				
2205.3	$23/2^{-}$	793.2 <i>3</i>	100	1412.2	19/2-	(Q)			E_{γ} ,Mult.: from (α ,6n γ).
2209.8	+	2006 1	100 76 4 20	203.74	3/2+	$M1(\pm E2)$	~))	0.0215.70	$\alpha(K) = 0.0176.69$, $\alpha(L) = 0.00200.02$; $\alpha(M) = 6.0\times10^{-4}.21$
2211.01		751.0 5	10" 29	1439.97	11/2	MII(+E2)	<2.2	0.0213 79	$\alpha(\mathbf{N})=0.0170\ 0.6,\ \alpha(\mathbf{L})=0.00299\ 92,\ \alpha(\mathbf{M})=0.9\times10^{-2}1$ $\alpha(\mathbf{N})=1.73\times10^{-4}\ 52;\ \alpha(\mathbf{O})=3.16\times10^{-5}\ 98;$ $\alpha(\mathbf{P})=2\ 0.3\times10^{-6}\ 81$
		1398.5 <i>3</i>	65 ^a 18	812.67	13/2-				u(1)-2.05×10 01
		1528.9 4	65 <mark>a</mark> 18	681.90	15/2-				
2220.0		1963.7 3	100 ^{<i>a</i>} 12	247.25	$11/2^{-}$				
2239.9	(+)	1128.7.3	24^{a} 7	1488.9	(7/2,11/2) $11/2^+$	M1(+E2)	< 0.9	0.0091 14	$\alpha(K) = 0.0075 \ 11: \ \alpha(L) = 0.00121 \ 17: \ \alpha(M) = 0.00028 \ 4$
		112017 0	,	1112110				0.0007117	$\alpha(N) = 6.9 \times 10^{-5} \ 10; \ \alpha(O) = 1.28 \times 10^{-5} \ 18; \ \alpha(P) = 8.6 \times 10^{-7}$ 14: $\alpha(IPF) = 8.0 \times 10^{-7} \ 8$
		1379.0 2	86 ^a 24	862.04	9/2-				
		1594.8 3	100 ^{<i>a</i>} 10	646.17	13/2-				
		1915.8 3	60^{a} 7	325.12	9/2 ⁻				
2250.7	$(25/2^+)$	1993.2.3	100	247.23	$(21/2^+)$	[E2]		0.464	E_{α} : from ¹⁹¹ Ir(α 6n γ).
	(20/2)	10010 0	100	200210	(==)	[22]		0.101	Mult.: $\Delta J=1 \gamma$ from $\gamma(\theta)$, and M1(+E2), $\delta < 1.1$ from $\alpha(\exp)$ in (¹² C,4n γ), but ΔJ^{π} requires E2.
2251.9		1605.7 4	100	646.17	13/2-				
2255.1	(-)	1125° <i>I</i>	$100 \\ 279 10$	1130.10	11/2-	(E1)		0.0862.15	$\alpha(K) = 0.0528.0; \ \alpha(L) = 0.0245.5; \ \alpha(M) = 0.00615.12$
2237.10	()	510 1	27* 10	1939.02		(E1)		0.0602 15	$\alpha(\mathbf{N}) = 0.00152 \ 3^{\circ} \alpha(\mathbf{\Omega}) = 0.00245 \ 5^{\circ} \alpha(\mathbf{M}) = 0.00015 \ 12$ $\alpha(\mathbf{N}) = 0.00152 \ 3^{\circ} \alpha(\mathbf{\Omega}) = 0.000254 \ 5^{\circ} \alpha(\mathbf{P}) = 5.78 \times 10^{-6} \ 10$
		697.3 4	20 ^a 4	1559.83	-				u(1) = 0.00152, u(0) = 0.00025 + 5, u(1) = 0.00015 + 10
		1395.4 <i>3</i>	12 ^a 4	862.04	9/2-				
		1610 1	$6^{a} 2$	647.20	7/2+				
		1/44./ 5	$16^{a} 4$ $100^{a} 10$	512.35 325.12	9/2-				
		2009.9 3	74^a 7	247.25	$\frac{9/2}{11/2^{-}}$				
2257.53	(*)	837.8 3	73 ^a 13	1419.80	(13/2,11/2)+	M1+E2	1.1 +9-5	0.0145 40	α (K)=0.0119 34; α (L)=0.0020 5; α (M)=0.00047 11 α (N)=0.00012 3; α (O)=2.1×10 ⁻⁵ 5; α (P)=1.36×10 ⁻⁶ 40
		958.7 <i>3</i>	57 ^a 10	1298.87	11/2+	M1(+E2)	<1.1	0.013 3	$\alpha(K) = 0.0108 \ 22; \ \alpha(L) = 0.0018 \ 4; \ \alpha(M) = 0.00041 \ 7$ $\alpha(N) = 0.000102 \ 18; \ \alpha(O) = 1.9 \times 10^{-5} \ 4; \ \alpha(P) = 1.2 \times 10^{-6} \ 3$
		1145 <i>1</i>	80 ^a 17	1112.48	$11/2^{+}$	M1(+E2)	<1.0	0.0086 14	$\alpha(K)=0.0071$ 12; $\alpha(L)=0.00115$ 18; $\alpha(M)=0.00026$ 4

 $^{189}_{79}\mathrm{Au}_{110}$ -24

I

 $^{189}_{79}\mathrm{Au}_{110}$ -24

From ENSDF

						$\gamma(^{13}$	⁸⁹ Au) (continue	d)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} #	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments				
									$\alpha(N)=6.6\times10^{-5} \ 10; \ \alpha(O)=1.21\times10^{-5} \ 19; \ \alpha(P)=8.2\times10^{-7}$ 15: $\alpha(IPF)=1.39\times10^{-6} \ 17$				
2257.53	(*)	1444.9 <i>3</i> 1496.8 <i>3</i> 1544 7 3	$73^{a} 10$ $100^{a} 33$ $60^{a} 10$	812.67 760.67 712 70	13/2 ⁻ 9/2 ⁺ 11/2 ⁻								
2258 7		1004.2.3	$100^{\circ} 26$	1254 24	$5/2^{-}$ $7/2^{-}$								
2250.7		1200 1	$65^{\&} 23$	1058 73	3/2 ,7/2								
		2240 1 4	$68^{\circ} 23$	0.04	3/2+								
2264.0		951 <i>I</i>	100	1312.96	$\frac{3}{2}$								
2264.81	+	326 1	35 ^a 8	1939.02	+	M1+E2	1.2 +16-6	0.156 61	$\alpha(K)=0.1195; \alpha(L)=0.0285; \alpha(M)=0.00679$				
		663.6 2	84 ^{<i>a</i>} 8	1601.19	13/2+,15/2+	M1+E2	0.5 +3-4	0.035 6	α (N)=0.00167 23; α (O)=0.00029 5; α (P)=1.38×10 ⁻⁵ 67 α (K)=0.029 5; α (L)=0.0048 6; α (M)=0.00111 13 α (N)=0.00028 4; α (O)=5.1×10 ⁻⁵ 7; α (P)=3.4×10 ⁻⁶ 6				
2268.0 2268.97 2269.7		1159.7 5 1167.8 3 1451.9 3 1618.9 4 808 <i>I</i> 1421.4 ^c 3 1943.8 2 2021.8 3 1557.0 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1105.35 1097.03 812.67 646.17 1459.97 847.89 325.12 247.25 712.70	17/2 ⁻ 13/2 ⁻ 13/2 ⁻ 13/2 ⁻ 11/2 ⁺ 9/2 ⁺ 9/2 ⁻ 11/2 ⁻ 11/2 ⁻	(E1)							
2271.0	+	851.2 4	79 ^{<i>a</i>} 21	1419.80	(13/2,11/2)+	M1		0.0213	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.01763 \ 25; \ \alpha(\mathrm{L}) = 0.00282 \ 4; \ \alpha(\mathrm{M}) = 0.000651 \ 10 \\ \alpha(\mathrm{N}) = 0.0001621 \ 23; \ \alpha(\mathrm{O}) = 2.99 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 2.05 \times 10^{-6} \\ 3 \end{array} $				
		1945.9 <i>4</i>	100 ^{<i>a</i>} 14	325.12	9/2-								
2272.16 2273.1 2274.1 2274.6 2275.6	+	333.3 4 484 1 1083 1 1511.5 3 1559.6 2 1626.0 2 2024.7 2 853 1 1460.6 8 1161.0 4 1513.7 3 1592.7 4 716 1	$\begin{array}{c} 9.7^{a} \ 23 \\ 7^{a} \ 3 \\ 3.3^{a} \ 17 \\ 13.3^{a} \ 13 \\ 11.3^{a} \ 23 \\ 29^{a} \ 5 \\ 100^{a} \ 10 \\ 83^{a} \ 17 \\ 100^{a} \ 33 \\ 100^{a} \ 29 \\ 88^{a} \ 29 \\ 100 \\ 100^{a} \ 36 \end{array}$	1939.02 1788.3 1188.60 760.67 712.70 646.17 247.25 1419.80 812.67 1112.48 760.67 681.90 1559.83	+ (⁺) 11/2 ⁻ 9/2 ⁺ 11/2 ⁻ 13/2 ⁻ 11/2 ⁻ (13/2,11/2) ⁺ 13/2 ⁻ 11/2 ⁺ 9/2 ⁺ 15/2 ⁻ -	M1(+E2)	<1.1	0.20 5	$\alpha(K)=0.162 \ 44; \ \alpha(L)=0.030 \ 4; \ \alpha(M)=0.0071 \ 8$ $\alpha(N)=0.00177 \ 19; \ \alpha(O)=0.00032 \ 4; \ \alpha(P)=1.91\times10^{-5} \ 53$				

 $^{189}_{79}\mathrm{Au}_{110}$ -25

 $^{189}_{79}\mathrm{Au}_{110}$ -25

From ENSDF

Adopted Levels, Gammas (continued)													
						$\gamma(^{189}$	Au) (cont	inued)					
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α^{\ddagger}	Comments				
2275.6	+	855.6 3	79 ^a 21	1419.80	(13/2,11/2)+	E2(+M1)	>0.7	0.0123 45	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0100 \ 38; \ \alpha(\mathrm{L}) = 0.00175 \ 53; \ \alpha(\mathrm{M}) = 4.1 \times 10^{-4} \ 12 \\ \alpha(\mathrm{N}) = 1.02 \times 10^{-4} \ 30; \ \alpha(\mathrm{O}) = 1.84 \times 10^{-5} \ 56; \ \alpha(\mathrm{P}) = 1.14 \times 10^{-6} \\ 45 \end{array} $				
2276.59	+	2029.0 5 816.5 3	86 ^a 21 38 ^a 11	247.25 1459.97	11/2 ⁻ 11/2 ⁺	M1(+E2)	<1.5	0.0185 53	$\alpha(K)=0.0152\ 45;\ \alpha(L)=0.0025\ 7;\ \alpha(M)=0.00059\ 14$				
		977.9 <i>3</i>	60 ^{<i>a</i>} 6	1298.87	11/2+	M1(+E2)	<1.0	0.0127 23	$\alpha(N)=0.00015 4; \alpha(O)=2.7\times10^{-5} 7; \alpha(P)=1.75\times10^{-5} 53$ $\alpha(K)=0.0105 19; \alpha(L)=0.0017 3; \alpha(M)=0.00039 7$ $\alpha(N)=9.8\times10^{-5} 16; \alpha(O)=1.8\times10^{-5} 3; \alpha(P)=1.21\times10^{-6} 23$				
		1428.8 <i>3</i> 1630.5 <i>3</i>	34 ^{<i>a</i>} 11 100 ^{<i>a</i>} 13	847.89 646.17	9/2 ⁺ 13/2 ⁻								
2281.00		1951.2 <i>3</i> 1568.4 <i>5</i> 1599.4 <i>8</i>	$32^{a} 4$ 9.5 ^a 14 10.5 ^a 19	325.12 712.70 681.90	9/2 ⁻ 11/2 ⁻ 15/2 ⁻								
2281.9		2033.7 2 1093 <i>1</i> 1636 <i>1</i>	$100^{a} 27$ $73^{a} 36$ $100^{a} 27$	247.25 1188.60 646.17	$11/2^{-}$ $11/2^{-}$ $13/2^{-}$								
2293.9	+	981 <i>1</i> 1431.8 <i>3</i>	$100^{a} 40$ $100^{a} 50$	1312.96 862.04	13/2 ⁻ 9/2 ⁻		.1.2	0.162.46					
2294.99	·	356 <i>I</i> 360 <i>I</i>	34 ^a 9 37 ^a 9	1939.02	+	M1(+E2)	<1.3	0.163 40	$\alpha(K)=0.131\ 42;\ \alpha(L)=0.024\ 4;\ \alpha(M)=0.0058\ 8$ $\alpha(N)=0.00143\ 20;\ \alpha(O)=0.00026\ 5;\ \alpha(P)=1.54\times10^{-5}\ 50$ $\alpha(K)=0.132\ 35;\ \alpha(L)=0.024\ 4;\ \alpha(M)=0.0057\ 7$				
		1198.0 2	33 ^a 4	1097.03	13/2-				α (N)=0.00141 17; α (O)=0.00026 4; α (P)=1.55×10 ⁻⁵ 43				
		1482.0 <i>4</i> 1613 <i>1</i> 1648 9 3	$26^{a} 5$ $8^{a} 4$ $100^{a} 9$	812.67 681.90 646.17	13/2 ⁻ 15/2 ⁻ 13/2 ⁻								
2295.7 2299.5	25/2-	1583.0 5 637.1 3	100 100 100	712.70 1662.4	$13/2^{-1}$ $11/2^{-1}$ $21/2^{-1}$	(Q)			E_{γ} ,Mult.: from (α ,6n γ).				
2311.3 2316.0		1986.3 <i>3</i> 2063.8 <i>5</i> 1503 6 <i>4</i>	100^{a} 11 22^{a} 6 57^{a} 17	325.12 247.25 812.67	9/2 ⁻ 11/2 ⁻ 13/2 ⁻								
2317.1	+	1634.0 <i>3</i> 716 <i>1</i>	$100^{a} 13$ $26^{a} 14$	681.90 1601.19	$15/2^{-}$ $15/2^{-}$ $13/2^{+}, 15/2^{+}$								
		782.2 3	48 ^{<i>a</i>} 5	1534.79	13/2+	M1+E2	0.7 4	0.021 5	α (K)=0.017 4; α (L)=0.0029 5; α (M)=0.00066 11 α (N)=0.00017 3; α (O)=3.0×10 ⁻⁵ 6; α (P)=2.0×10 ⁻⁶ 5				
2317.5	+	382.5 <i>3</i>	27^{a} 4	646.17 1935.02	1 <i>3</i> / <i>2</i> +	M1		0.1722	α (K)=0.1419 20; α (L)=0.0233 4; α (M)=0.00539 8 α (N)=0.001342 19; α (O)=0.000247 4; α (P)=1.677×10 ⁻⁵ 24				
		1171.8 <i>2</i> 1212 <i>1</i>	100 ^a 10 18 ^a 6	1145.70 1105.35	13/2 ⁻ ,15/2 ⁻ 17/2 ⁻	(E1)			<pre></pre>				

From ENSDF

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult.@	$\delta^{@}$	α^{\ddagger}	Comments
2319.4		256.8	100	2062.6	$(21/2^+)$				
2325.0		386 1	100	1939.02	+				
2330.9	(+)	1649 I 401 I	$100 \\ 60^{a} 14$	1025.02	15/2				
2355.1	()	734 1	42^{a} 22	1933.02	13/2+ 15/2+	M1+E2	0.8 + 9 - 6	0.0232.72	$\alpha(K) = 0.0190.61; \alpha(L) = 0.00323.83; \alpha(M) = 0.00075.19$
		7511	72 22	1001.17	13/2 ,13/2	1011 112	0.0 19 0		$\alpha(N)=0.000195; \alpha(D)=3.41\times10^{-5}89; \alpha(P)=2.20\times10^{-6}73$
		800 1	100 ^{<i>a</i>} 17	1534.79	13/2+	[E2]		0.00902	$\alpha(K) = 0.00713 \ II; \ \alpha(L) = 0.001445 \ 2I; \ \alpha(M) = 0.000343 \ 5$ $\alpha(K) = 8.51 \times 10^{-5} \ I3; \ \alpha(O) = 1.516 \times 10^{-5} \ 22; $ $\alpha(P) = 7.90 \times 10^{-7} \ I2$
		1222.7 4	28 ^a 8	1112.48	$11/2^{+}$				
		1238.0 <i>3</i>	33 ^a 8	1097.03	13/2-				
2335.7		1523 <i>I</i>	100	812.67	$13/2^{-}$				
2336.1		777 1	100	1559.1	-				
2330.0		1657.8.3	100	681.90	$\frac{11/2}{15/2^{-}}$				
2349.2		1037.0 J 1703 I	100	646.17	$13/2^{-1}$				
2370.3		1264.9 4	100	1105.35	$17/2^{-}$				
2384.7		1703 <i>1</i>	90 ^a 30	681.90	$15/2^{-}$				
		2137.4 3	100 ^{<i>a</i>} 20	247.25	11/2-				
2400.9	(25/2+)	150.1 <i>3</i>	100	2250.7	(25/2+)	(M1)		2.26	$\alpha(K)=1.85 \ 3; \ \alpha(L)=0.310 \ 5; \ \alpha(M)=0.0719 \ 10$ $\alpha(N)=0.0179 \ 3; \ \alpha(O)=0.00329 \ 5; \ \alpha(P)=0.000222 \ 4$ E_{γ} ,Mult.: from (α ,6n γ).
2405.9		1724 <i>1</i>	100	681.90	$15/2^{-}$				
2417.1		1771.1 4	100 ^{<i>a</i>} 17	646.17	13/2-				
2417.0		2169.6 5	50 ^u 17	247.25	$11/2^{-15/2-15}$				
2417.9 2436.4		1/30 1	100	1105 35	15/2 $17/2^{-}$				
2451.0	$(23/2^{-})$	1038.8.3	100	1412.2	$19/2^{-}$	(\mathbf{O})			E. Mult : from 191 Ir(α 6n γ)
2483.7	(23/2)	1671 <i>I</i>	100	812.67	$13/2^{-}$				
2492.1		1845.9 4	100	646.17	13/2-				
2515.8	$(27/2^+)$	265.1 3	100	2250.7	$(25/2^+)$	M1(+E2)	<1.0	0.32 17	E_{γ} : from ¹⁹¹ Ir(α ,6n γ).
									Mult., δ : M1(+E2), δ <1.0 from (¹² C,4n γ).
2542.7		292	100	2250.7	$(25/2^+)$				E_{γ} : from (¹² C,4n γ).
2554.2	(27/2 ⁻)	104 ^c		2451.0	(23/2 ⁻)				E_{γ} : from (¹⁹ F,4n γ). Other: 103.5 for an unplaced γ in (¹² C,4n γ). Not reported in the other two high-spin studies.
									I _{γ} : 260 10 for 103.5-keV unplaced γ in (¹² C,4n γ).
		153.2 3	90 9	2400.9	$(25/2^+)$	(E1)		0.1409 21	$\alpha(K)=0.1146 \ 17; \ \alpha(L)=0.0202 \ 3; \ \alpha(M)=0.00468 \ 7 \\ \alpha(N)=0.001151 \ 18; \ \alpha(O)=0.000201 \ 3; \ \alpha(P)=1.002\times10^{-5} \\ 15 $
									I _{γ} : from (¹² C,4n γ). E _{γ} ,Mult.: from (α ,6n γ).

 $^{189}_{79}\mathrm{Au}_{110}$ -27

L

From ENSDF

 $^{189}_{79}\mathrm{Au}_{110}$ -27

$\gamma(^{189}Au)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. @	α^{\ddagger}	Comments
2554.2	$(27/2^{-})$	349.0 3	100 10	2205.3	23/2-	(E2)	0.0661	$\alpha(K)=0.0430\ 6$; $\alpha(L)=0.01744\ 25$; $\alpha(M)=0.00436\ 7$
	(=-,=_)				/-	()		$\alpha(N) = 0.001077 \ 16. \ \alpha(O) = 0.000182 \ 3. \ \alpha(P) = 4.66 \times 10^{-6} \ 7.00000000000000000000000000000000000$
								$L : \text{from } ({}^{12}C 4n_2)$
								r_{γ} . Hold (C, $r_{1\gamma}$). E Mult : from (α (n_{γ})
2554 2±v	$(31/2^{-})$	v		2554.2	$(27/2^{-})$			E_{γ} , where $(\alpha, 0)$
2554.8	$(31/2^+)$	3883	100	2515.8	$(27/2^+)$	(F2)	135 18	$\alpha(\mathbf{I}) = 327 \ 14^{\circ} \ \alpha(\mathbf{M}) = 84 \ 4^{\circ} \ \alpha(\mathbf{N}) = 20 \ 7 \ 9^{\circ} \ \alpha(\mathbf{O}) = 3 \ 28 \ 14^{\circ} \ \alpha(\mathbf{P}) = 0 \ 0.0288 \ 12$
2334.0	(31/2)	50.0 5	100	2313.6	(21/2)	(L2)	433 10	u(L) = 527 14, $u(M) = 64$ 4, $u(M) = 20.7$ 9, $u(O) = 5.26$ 14, $u(1) = 0.00266$ 12 B(E2)(W ₁₁) = 0.05 13
								D(D2)(W.u.) = 0.55 TS $E_{\rm M}$ Multiplication $174 {\rm yr}/(19 {\rm E} 4 {\rm m})$ detects (1007D-26 2001M-7N)
2608.0		1706 2 5	100	912 (7	12/2-			E_{γ} , Mult.: from 10° F, $4n\gamma$) dataset (1997Pe26, 2001MaZN).
2008.9	(22/2-)	1790.2 3	100	812.07	15/2	D		$\mathbf{F} = \mathbf{M} \mathbf{f} + \mathbf{f} = \frac{191}{2} \mathbf{f} + \mathbf{f} +$
2862.8+x	(33/2)	308.6 3	100	2554.2+x	(31/2)	D		E_{γ} ,Mult.: from ^{1/1} Ir(α ,6n γ).
2928.8?	(00 (0-)	3/4		2554.8	$(31/2^{+})$			
2968.7	$(29/2^{-})$	669.2		2299.5	$25/2^{-}$	_		
2988.8+x	$(35/2^{-})$	125.6 3		2862.8+x	$(33/2^{-})$	D		E_{γ} , Mult.: from (α , 6n γ).
		435.2		2554.2+x	$(31/2^{-})$			E_{γ} : from (¹⁹ F,6n γ).
3003.9	29/2-	704.4		2299.5	$25/2^{-}$			
3062.3	$(35/2^+)$	507.5 <i>3</i>	100	2554.8	$(31/2^+)$	(Q)		E_{γ} ,Mult.: from (α ,6n γ) where this γ is placed from a 3023.1+x level.
3160.5+x	$(37/2^{-})$	297.7		2862.8+x	$(33/2^{-})$			
3222.1	$(31/2^{-})$	253.3		2968.7	$(29/2^{-})$			
3359.2+x	$(37/2^{-})$	370.3 <i>3</i>		2988.8+x	$(35/2^{-})$	D		E_{γ} ,Mult.: from (α ,6n γ) where this γ is placed from a 3233.0 level.
		496.4		2862.8+x	$(33/2^{-})$			
3377.4	$(33/2^{-})$	155.2		3222.1	$(31/2^{-})$			
		408.9		2968.7	$(29/2^{-})$			
3559.6+x	$(39/2^{-})$	200.2 3		3359.2+x	$(37/2^{-})$			E_{γ} : from (α ,6n γ) where this γ is shown from a 3433.2 level.
		571.2		2988.8+x	$(35/2^{-})$			
3562.9	$(37/2^+)$	500.4		3062.3	$(35/2^+)$			
3709.7		332.1		3377.4	$(33/2^{-})$			
3838.2+x	$(39/2^{-})$	677.8		3160.5+x	$(37/2^{-})$			
		848.8		2988.8+x	$(35/2^{-})$			
3845.6	$(39/2^+)$	283.0		3562.9	$(37/2^+)$			
		783.4 <i>3</i>		3062.3	$(35/2^+)$	Q		E_{γ} ,Mult.: from (α ,6n γ) where this γ is shown from a 3806.6+x level.
3921.4	$(37/2^{-})$	211.5		3709.7		-		
		544.1		3377.4	$(33/2^{-})$			
3965.0+x	$(39/2^{-})$	606.3		3359.2+x	$(37/2^{-})$			
		975.8		2988.8+x	$(35/2^{-})$			
3980.2		417.3		3562.9	$(37/2^+)$			
4102.7+x	$(41/2^{-})$	542.9		3559.6+x	$(39/2^{-})$			
		743.6		3359.2+x	$(37/2^{-})$			
4253.5+x	$(43/2^{-})$	150.7		4102.7+x	$(41/2^{-})$			
		288.6		3965.0+x	$(39/2^{-})$			
		693.9		3559.6+x	$(39/2^{-})$			
4290.7+x	$(41/2^{-})$	325.9		3965.0+x	$(39/2^{-})$			
4305.6+x	$(43/2^{-})$	746.3		3562.9	$(37/2^+)$			

28

$^{189}_{79}\mathrm{Au}_{110}$ -28

From ENSDF

L

γ (¹⁸⁹Au) (continued)

E _i (leve) J_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [@]	Comments
4325.7	$(41/2^+)$	762.8		3562.9	$(37/2^+)$		
4352.5	$(41/2^+)$	507.3		3845.6	$(39/2^+)$		
		789.2		3562.9	$(37/2^+)$		
4480.1	$(43/2^+)$	154.2		4325.7	$(41/2^+)$		
	,	634.5		3845.6	$(39/2^+)$		
4527.0+	-x (43/2 ⁻)	236.1		4290.7+x	$(41/2^{-})$		
		688.1		3838.2+x	$(39/2^{-})$		
4639.0	$(43/2^+)$	286.6		4352.5	$(41/2^+)$		
		313.3		4325.7	$(41/2^+)$		
4674.4+	$x (45/2^{-})$	147.5		4527.0+x	(43/2 ⁻)		
		369.0		4305.6+x	$(43/2^{-})$		
4694.7+	-x (45/2 ⁻)	441.4		4253.5+x	$(43/2^{-})$		
4698.7	(47/2 ⁺)	218.6	100	4480.1	(43/2 ⁺)	(Q)	Mult.,I _{γ} : from (¹² C,4n γ), assuming 217.8 γ in that reaction is the same as 218.6 γ from (¹⁹ F,6n γ) and 219 or 218 in (¹⁹ F,4n γ).
4796.5+	·X	543		4253.5+x	$(43/2^{-})$		
4879.7		240.6		4639.0	$(43/2^+)$		
		399.5		4480.1	$(43/2^+)$		
4903.5+	-x (47/2 ⁻)	649.8		4253.5+x	$(43/2^{-})$		
4916.2		277.3		4639.0	$(43/2^+)$		
5085.0		386.3		4698.7	$(47/2^+)$		
5103.1	$(47/2^+)$	187.0		4916.2			
		223.3		4879.7	(10.00+)		
5104.6	(47/0-)	464.1		4639.0	$(43/2^{+})$		
5124.64	$-x (4^{2}/2^{-})$	819.0		4305.6+x	$(43/2^{-})$		
5166.5	(40/0+)	286.8		48/9./	(17/0+)		
51/4.5	$(49/2^+)$	4/5./		4698.7	$(4/2^{+})$		
5263.34	(49/2)	388.9		46/4.4+x	(45/2)		
5515.0	$(51/2^{+})$	141.0 617.1		31/4.3	$(49/2^+)$		
5269 1	$v = (40/2^{-})$	017.1		4098.7	$(47/2^{-})$		
5506.14	·x (49/2)	404.7 673.6		$4903.3 \pm x$ $4604.7 \pm x$	(47/2)		
5428 54	$(47/2^{-})$	754 1		$4674.4 \pm x$	$(45/2^{-})$		
5602.5	x (+//2)	428		5174.5	$(49/2^+)$		
5634.9	$(53/2^+)$	319.3		5315.6	$(51/2^+)$		
5665.5	(33/2)	491		5174.5	$(49/2^+)$		
5707.4+	$x (51/2^{-})$	803.8		4903.5 + x	$(47/2^{-})$		
5734.2+	$x (53/2^{-})$	470.9		5263.3+x	$(49/2^{-})$		
5861.2	(30,-)	686.7		5174.5	$(49/2^+)$		
5923.8	$(55/2^+)$	608.2		5315.6	$(51/2^+)$		
	(838.7		5085.0	x- 1)		
5964.1+	x (51/2 ⁻)	839.4		5124.6+x	(47/2 ⁻)		
6096.7+	x (53/2 ⁻)	389.1		5707.4+x	(51/2-)		
	/	728.8		5368.1+x	(49/2-)		
1					/		

29

$^{189}_{79}\mathrm{Au}_{110}$ -29

From ENSDF

L

$\gamma(^{189}\text{Au})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
6179.8		544.9	5634.9	$(53/2^+)$	7601.0	(65/2)	315.9	7284.7	$(61/2^{-})$
6202.3		886.7	5315.6	$(51/2^+)$			720.2	6881.2	(61/2)
6234.8	$(57/2^+)$	599.9	5634.9	$(53/2^+)$	7849.4	(65/2)	968.2	6881.2	(61/2)
6305.5+x	$(55/2^{-})$	598.0	5707.4+x	$(51/2^{-})$	7956.2	$(65/2^+)$	864.1	7092.1	$(61/2^+)$
6305.6+x		877.1	5428.5+x	$(47/2^{-})$	8182.3		1090.2	7092.1	$(61/2^+)$
6316.1+x	$(57/2^{-})$	581.9	5734.2+x	$(53/2^{-})$	8261.8		1169.7	7092.1	$(61/2^+)$
6359.5	(57/2)	435.7	5923.8	$(55/2^+)$	8433.9	(69/2)	832.9	7601.0	(65/2)
6379.4		1063.8	5315.6	$(51/2^+)$	8680.6	$(69/2^+)$	724.4	7956.2	$(65/2^+)$
6394.9+x		966.4	5428.5+x	$(47/2^{-})$	8804.3		848.1	7956.2	$(65/2^+)$
6881.2	(61/2)	522.1	6359.5	(57/2)	9141.0		460.4	8680.6	$(69/2^+)$
7092.1	$(61/2^+)$	857.3	6234.8	$(57/2^+)$	9314.1	(73/2)	880.2	8433.9	(69/2)
7284.7	$(61/2^{-})$	924.9	6359.5	(57/2)	9580.9	$(73/2^+)$	900.3	8680.6	$(69/2^+)$

[†] From ¹⁸⁹Hg ε decay for gamma rays from low-spin (J \leq 15/2) levels. Gammas from high-spin (J>15/2 or so) levels, values are from ¹⁷⁶Yb(¹⁹F,6n γ), unless otherwise stated.

[‡] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.

[#] From ¹⁸⁹Hg ε decay for gamma rays from low-spin (J≤15/2) levels. For gamma rays from high-spin (J>15/2 or so) levels, values are from ¹⁹¹Ir(α ,6n γ) and/or from ¹⁸¹Ta(¹²C,4n γ). Intensities from ¹⁷⁶Yb(¹⁹F,6n γ) and ¹⁷⁴Yb(¹⁹F,4n γ) are not available. [@] From ¹⁸⁹Hg ε decay (7.6 m) and ¹⁸⁹Hg ε decay (8.6 m), except as noted. For gammas from high-spin (J>15/2 or so) levels, assignments are from $\gamma(\theta)$ data in ¹⁹¹Ir(α ,6n γ) and/or in ¹⁸¹Ta(¹²C,4n γ). No such assignments are available from ¹⁷⁶Yb(¹⁹F,6n γ) and ¹⁷⁴Yb(¹⁹F,4n γ).

[&] From ¹⁸⁹Hg ε decay (7.6 m).

30

^{*a*} From ¹⁸⁹Hg ε decay (8.6 m).

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁹₇₉Au₁₁₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \sim \gamma$ Decay (Uncertain)

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

9 **Au**110

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

--- κ γ Decay (Uncertain)

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁸⁹₇₉Au₁₁₀

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{189}_{79}\mathrm{Au}_{110}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Coincidence Coincidence (Uncertain)

Legend

•

 γ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁸⁹₇₉Au₁₁₀

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁸⁹₇₉Au₁₁₀

 $^{189}_{79}\rm{Au}_{110}$

