¹⁸⁸Ta β^- decay **2009A130**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	F. G. Kondev, S. Juutinen, D. J. Hartley	NDS 150, 1 (2018)	1-Feb-2018	

Parent: ¹⁸⁸Ta: E=0; $J^{\pi}=(1^{-})$; $T_{1/2}=19.6$ s 20; $Q(\beta^{-})=5056$ 55; $\%\beta^{-}$ decay=100.0

Parent: ¹⁸⁸Ta: E=99 33; J^{π} =(7⁻); T_{1/2}=19.6 s 20; Q(β^{-})=5056 55; % β^{-} decay≤100.0

2009Al30: Projectile fragmentation of ²⁰⁸Pb beam at 1 GeV/nucleon with a ⁹Be target at GSI facility. Fragment Recoil Separator (FRS) used to identify ¹⁸⁸Ta nuclide. The secondary ions were implanted into RISING active stopper consisting of double-sided silicon strip detectors. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma\gamma(t)$, β (implanted ions) correlations, $I\beta$, and isomer half-lives using RISING array of 15 seven-element Ge cluster detectors for γ rays, two multi-wire proportional counters for position measurements, two scintillation detectors providing time-of-flight and position information, and two scintillators and an ionization chamber (MUSIC) for energy loss measurements.

- The authors of 2009Al30 state that the presence of two, low-lying β -decaying states in ¹⁸⁸Ta cannot be ruled out. In fact, now that the 184-keV transition, which could not be placed in a level scheme by 2009Al30, was found to depopulate the $K^{\pi}=8^-$ isomer in ¹⁸⁸W (2010La16), provides clear evidence for the existence of a high-spin (J \approx 7) β decaying state in ¹⁸⁸Ta. In addition, despite the large uncertainties in the measured gamma-ray intensities in 2009Al30, the total intensity for the 143-keV transition (depopulating the 2⁺ state) is much larger than that of the 440-keV transition (depopulating the 4⁺ state) which may be indicative that a low-spin β decaying state in ¹⁸⁸Ta directly populates the 2⁺ state in ¹⁸⁸W.
- Since the level scheme proposed in 2009Al30 is incomplete, and the experimental data are of poor quality, no log *ft* values were calculated in the present evaluation. The 53 % β decay branch to the 6⁺ level of the g.s. band in ¹⁸⁸W reported in 2009Al30 and the deduced log *ft*=5.40 may be spurious, due to incomplete decay scheme, since such a transition would be forbidden with Δ K=7.

¹⁸⁸W Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0 143.0 <i>10</i> 440.0 <i>15</i> 874.0 <i>18</i> 1341.7 <i>5</i> 1742.7 [#] <i>10</i> 1926.7 [@] <i>15</i>	$ \begin{array}{r} 0^+ \\ 2^+ \\ 4^+ \\ 6^+ \\ 5^{(-)} \\ 7^{(-)} \\ 8^- \end{array} $	Additional information 1.

[†] From a least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

[#] The existence of this level in β - decay of ¹⁸⁸Ta is based on the observed 401 γ in 2009Al30, which is associated by the evaluators with the 7⁻ to 5⁽⁻⁾ transition, depopulating the 1742.7-keV level in the adopted level scheme of ¹⁸⁸W.

^(a) The existence of this level in β - decay of ¹⁸⁸Ta is based on the observed 184 γ in 2009Al30, which is associated by the evaluators with the 8⁻ to 7⁻ transition, depopulating the 1926.7-keV level in the adopted level scheme of ¹⁸⁸W.

 $\gamma(^{188}W)$

$$\frac{E_{\gamma}^{\dagger}}{143 \ I} = \frac{I_{\gamma}^{\dagger}}{100 \ 22} = \frac{E_{i}(\text{level})}{143.0} = \frac{J_{i}^{\pi}}{2^{+}} = \frac{E_{f}}{0} = \frac{J_{f}^{\pi}}{0^{+}} = \frac{Mult.}{[E2]} = \frac{\alpha^{\textcircled{0}}}{1.00 \ 3} = \frac{I_{(\gamma+ce)}^{\#}}{200 \ 44} = \frac{Comments}{\alpha(\text{K})=0.405 \ I0; \ \alpha(\text{L})=0.450 \ I6; \ \alpha(\text{M})=0.113 \ 4}{\alpha(\text{N})=0.0267 \ I0; \ \alpha(\text{O})=0.00370 \ I3; \ \alpha(\text{P})=3.05\times10^{-5} \ 7}$$

				188	Ta β^- de	cay 2009A	130 (conti	nued)		
γ ⁽¹⁸⁸ W) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments		
297 1	123 31	440.0	4+	143.0 2+	[E2]	0.0876 16	134 <i>34</i>	$\alpha(K)=0.0585 \ 10; \ \alpha(L)=0.0222 \ 5; \\ \alpha(M)=0.00542 \ 11 \\ \alpha(N)=0.001285 \ 25; \ \alpha(O)=0.000187 \ 4; \\ \alpha(P)=5.01\times10^{-6} \ 9$		
401 [‡] 1		1742.7	$7^{(-)}$	1341.7 5 ⁽⁻⁾						
434 1	80 26	874.0	6+	440.0 4+	[E2]	0.0301	82 27	$\alpha(K)=0.0224 \ 4; \ \alpha(L)=0.00592 \ 10; \alpha(M)=0.001415 \ 23 \alpha(N)=0.000337 \ 6; \ \alpha(O)=5.06\times10^{-5} \ 8; \alpha(P)=2.02\times10^{-6} \ 3$		

[†] From 2009Al30, unless otherwise stated. [‡] Observed in 2009Al30, but the placement in the level scheme is based on 2010La16 and the Adopted Levels. [#] From I γ and $\alpha_{\rm T}$. Note, that if the ¹⁸⁸Ta β - decay proceeds via direct feeding to the 6⁺ level at 874 keV, which then cascades via 434-, 297- and 143-keV gamma rays to the ¹⁸⁸W g.s., then one may expect Ti(434 γ)=Ti(297 γ)=Ti(143 γ).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁸⁸Ta β^- decay 2009Al30

Decay Scheme

 $^{188}_{74}W_{114}$