Adopted Levels, Gammas

	History								
	Туре			Author		Citation	Literature Cutoff Date		
		Full Evaluat	tion F.	G. Kondev, S. Juutinen, D. J.	. Hartley	NDS 150, 1 (2018)	1-Feb-2018		
$Q(\beta^{-})=505$ $\Delta(S(p))=30$	6 55; S 3, Δ(Q	S(n) = 4788 78 (α)) = 303 (sy	; S(p)=80 st, <mark>2017W</mark> a	84 <i>SY</i> ; $Q(\alpha)$ =375 <i>SY</i> 201′ a10).	7Wa10				
				188/	Ta Levels				
				Cross Refere	ence (XRE	EF) Flags			
				A ${}^{9}\text{Be}({}^{20}$	⁸ Pb,X γ)				
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF			Comments			
0	(1^{-})	19.6 s 20	Α	%β ⁻ =100					
99 33	(7-)	19.6 s 20	A	J ^π : Based on the large total intensity for the 142.9γ, depopulating the 2 ⁺ state of ¹⁸⁸ W, which is fed in β-decay of ¹⁸⁸ Ta and the proposed configuration. The assignment is tentative. The ground state for even-N Ta (Z=73) nuclei are assigned 7/2 ⁺ , resulting from the π 7/2[404] orbital. Considering the observed neutron states in ¹⁸⁷ W (N=113), a neighbouring nucleus that is expected to have similar deformation as ¹⁸⁸ Ta, (0.0 keV, 3/2[512]; 145.7 keV, 1/2 ⁻ [510]; 330 keV, 7/2[503]; 350 keV, 9/2[505] and 410 keV, 11/2[615]), one may expect that the ν 7/2[503] orbital is closest to the Fermi surface in ¹⁸⁸ Ta (N=115), and hence, the π 7/2[404] $\otimes \nu$ 7/2[503] configuration. The Gallagher-Moskowski rule favours the K ^π =0 ⁻ over 7 ⁻ assignment. The J ^π =1 ⁻ state within this configuration may be lower than the expected K ^π =0 ⁻ bandhead, depending on the size and sign of the Newby shift, which are unknown at present. The π 7/2[404] $\otimes \nu$ 9/2[505] configuration should be considered as an alternative, but in such a case the Gallagher-Moskowski rule would favor K ^π =8 ⁻ over 1 ⁻ assignment. Calculations in 1997Mo25 favour the π 7/2[404] $\otimes \nu$ 7/2[503] assignment. T _{1/2} : From $\beta\gamma$ (t) in ¹⁸⁸ Ta β - decay, using the 143-, 297- and 434-keV transitions (2009Al30), where the existence of an isomer with a similar lifetime as for the ground state was suggested (2009Al30). The assignment is tentative. Others:>100 s (calculated,1997Mo25).					
22 66	(7)	19.0 8 20	A	π^{-1} , π^{-1} E(level): From 2012ReZZ, (1 ⁻⁷) isomer. The assignt J ^π : Direct β-decay feeding $\pi^{7/2}$ [404] $\otimes v^{7/2}$ [503] cor K ^π =8 ⁻ in band transition Alternatively, if the $\pi^{7/2}$ Gallagher-Moskowski ru assignment is tentative.	assumed nent is ter to the K^{π} nfiguration n in ¹⁸⁸ W [404] $\otimes v9/$ le would	by the evaluators to be ntative. =8 ⁻ isomer in ¹⁸⁸ W a a. The non observation (2009A130), would ar 2[505] configuration is favor $K^{\pi}=1^{-}$ for the is	the excitation energy of the nd the proposed of 348γ , the (9 ⁻) to (8 ⁻), gue against J=8 or 9 assignment. s considered, then the somer and 8 ⁻ for the g.s The		
391 <i>33</i>		3.7 μs 4	A	(2009Al30), where the e was suggested (2009Al30) E(level): Based on the pref evaluators assume that 2 a low-energy (<50 keV) assignment is tentative. $T_{1/2}$: Weighted average of 292 γ (t) in 2009Al30) an An isomeric ratio (number produced for that nuclide 2011St21.	b) decay, 1 xistence o 0). The as ferential p 92.4 γ pop γ ray may 5 μ s 2 (fr d 3.5 μ s 4 of ions fo e) was me	asing 145-, 297- and 4 f an isomer with a sin asignment is tentative. opulaton of high-spin ulates the (7 ⁻) isomer y precede or follow the com 292.4 γ (t) in 20050 4 (from 291.9 γ (t) in 20 bund in isomeric state asured to be 0.5 % +3	states in fragmentation reactions, . It is reported in 2005Ca02 that e 292.4 keV transition. The Ca02), 4.4 μ s 10 (from D11St21). to the total number of ions B-1 in 2005Ca02, but 8 % 2 in		

Adopted Levels, Gammas (continued)

$\gamma(^{188}\text{Ta})$

	г <i>и</i>		T	Г
Comments	$\mathbf{E}_f \mathbf{J}_f^n$	E_i (level)	I_{γ}	E_{γ}
E_{γ} : From 2005Ca02. Others: 291.9 keV 5 (2011St21) and 292 keV (20092)	99 (7 ⁻)	391	100	292.4 2

 E_{γ} : From 2005Ca02. Others: 291.9 keV 5 (2011St21) and 292 keV (2009Al30,2012Al05). Mult.: The authors in 2005Ca02 ruled out a M2 assignment due to the lack of tantalum x rays in the observed γ -ray spectrum (high conversion coefficient of a M2 transition would lead to an x-ray peak with approximately 70% of the counts observed in a γ -ray peak). However, M1 or E2 assignments cannot be unambiguously excluded.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative I_{γ}

¹⁸⁸₇₃Ta₁₁₅