### <sup>9</sup>Be(<sup>208</sup>Pb,Xγ) 2005Ca02,2009Al30,2011St21

|                 | History                                  |                   |                        |
|-----------------|------------------------------------------|-------------------|------------------------|
| Туре            | Author                                   | Citation          | Literature Cutoff Date |
| Full Evaluation | F. G. Kondev, S. Juutinen, D. J. Hartley | NDS 150, 1 (2018) | 1-Feb-2018             |

2005Ca102: Projectile fragmentation of a 1 GeV/A <sup>208</sup>Pb beam on a 1.6 g/cm<sup>2</sup> thick Be target at GSI. Fragments were analysed using the Fragment Recoil Separator (FRS), energy losses and time-of-flight and implanted on a Al plate at the FRS focal plane. Measured  $E\gamma$ ,  $I\gamma$ ,  $\gamma\gamma$  coin. and  $\gamma\gamma$ (t) coin. using four Clover-type Ge detectors (providing 16 independent Ge crystals). Others from the same experiment: 2000PoZY, 2001Ca13.

- 2009Al30: Projectile fragmentation of a 1 GeV/A <sup>208</sup>Pb beam on a 2.446 g/cm<sup>2</sup> target. Fragments were analysed using the FRS, energy losses and time-of-flight. Three DSSD were used for  $\beta$  particle detection. Measured E $\gamma$ , I $\gamma$ ,  $\beta\gamma$ ,  $\beta\gamma\gamma$  coin. and  $\beta\gamma\gamma(t)$  coin. using the RISING spectrometer. Others from the same experiment: 2009Al16 and 2012Al05.
- 2011St21: Projectile fragmentation of a 1 GeV/A <sup>208</sup>Pb beam on a 2.526 g/cm<sup>2</sup> thick Be target backed by a 0.223 g/cm<sup>2</sup> Nb foil at GSI. Fragments were analysed using the FRS, energy losses and time-of-flight. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin. and  $\gamma\gamma$ (t) coin. using the RISING spectrometer.
- 2012ReZZ: E=478-492 MeV/nucleon from UNILAC-SIS facility at GSI on a 1.035 g/cm<sup>2</sup> Be target with a 0.221 g/cm<sup>2</sup> Nb backing. Schottky mass spectrometry technique used to measure masses directly and to identify isomers. Mostly bare atoms of the highly-charged reaction products were separated with FRS and injected into storage ring ESR. The ions were stochastically and electron cooled. Deduced masses from Schottky spectra. Others from the same experiment: 2012Re19, 2010Re07.

#### <sup>188</sup>Ta Levels

| E(level)      | $\mathbf{J}^{\pi}$             | T <sub>1/2</sub>       | Comments                                                                                                                                                                                                                                                                                                              |
|---------------|--------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | (1 <sup>-</sup> ) <sup>†</sup> | 19.6 <sup>†</sup> s 20 |                                                                                                                                                                                                                                                                                                                       |
| 99 <i>33</i>  | (7 <sup>-</sup> ) <sup>†</sup> | 19.6 <sup>†</sup> s 20 | E(level): From 2012ReZZ, assumed by the evaluators to be the excitation energy of the $(7^{-})$ isomer. The assignment is tentative.                                                                                                                                                                                  |
| 391 <i>33</i> |                                | 3.7 µs 4               | E(level): Based on the preferential populaton of high-spin states in fragmentaton reactions,<br>evaluators assume that $292.4\gamma$ populates the (7 <sup>-</sup> ) isomer. It is reported in 2005Ca02 that a<br>low-energy (<50 keV) $\gamma$ ray may precede or follow the 292.4 keV transition. The assignment is |

tentative.  $T_{1/2}$ : Weighted average of 5  $\mu$ s 2 (from 292.4 $\gamma$ (t) in 2005Ca02), 4.4  $\mu$ s 10 (from 292 $\gamma$ (t) in 2009Al30) and 3.5  $\mu$ s 4 (from 291.9 $\gamma$ (t) in 2011St21).

An isomeric ratio (number of ions found in isomeric state to the total number of ions produced for that nuclide) was measured to be 0.5 % + 3-1 in 2005Ca02, but 8 % 2 in 2011St21.

<sup>†</sup> See Adopted Levels for details.

### $\gamma(^{188}\text{Ta})$

| Eγ      | $I_{\gamma}$ | E <sub>i</sub> (level) | $E_f$ | $\mathbf{J}_f^{\pi}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------|------------------------|-------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 292.4 2 | 100          | 391                    | 99    | (7 <sup>-</sup> )    | $E_{\gamma}$ : From 2005Ca02. Others: 291.9 keV 5 (2011St21) and 292 keV (2009Al30,2012Al05). $I_{\gamma}$ : Evaluators assume 100% branch from this level, as no other $\gamma$ rays were observed. Mult.: The authors in 2005Ca02 ruled out a M2 assignment due to the lack of tantalum x rays in the observed $\gamma$ -ray spectrum (high conversion coefficient of a M2 transition would |

rays in the observed  $\gamma$ -ray spectrum (high conversion coefficient of a M2 transition would lead to an x-ray peak with approximately 70% of the counts observed in a  $\gamma$ -ray peak). However, M1 or E2 assignments cannot be unambiguously excluded.

# <sup>9</sup>Be(<sup>208</sup>Pb,Xγ) 2005Ca02,2009Al30,2011St21

## <u>Level Scheme</u> Intensities: Relative $I_{\gamma}$



<sup>188</sup>73Ta<sub>115</sub>