¹⁸⁸Re IT decay (18.59 min) 1968Ma14,1964Ta07,1964Bu10

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	F. G. Kondev, S. Juutinen, D. J. Hartley	NDS 150, 1 (2018)	1-Feb-2018	

Parent: ¹⁸⁸Re: E=171.98 *10*; $J^{\pi}=6^{-}$; $T_{1/2}=18.59 \text{ min } 4$; %IT decay=100.0

1968Ma14: Measured γ , $\gamma\gamma$, $\gamma\gamma$ (t), with Ge(Li) detector, T_{1/2}. This is the only work that separates the 63-keV γ ray from the K X rays.

1964Ta07,1964Bu10: Measured *γ*, *γγ*, *γγ*(t), with NaI(Tl) detector. Others: 1989Ab18, 1972De67, 1967Na05, 1965Hu02, 1963Sc05, 1962Ha46, 1953Mi08, 1953Fl07.

Relative I(L x ray)=1200 100 (1964Ta07); I(K x ray)=1100 (1968Ma14).

¹⁸⁸Re Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	1-		
63.583 <i>3</i>	2-	56 ps 7	$T_{1/2}$: from 63γ-105γ(Δt) (1968Ma14). Others: ≤1.2 ns (1965Hu02) and ≤20 ns (1964Ta07).
156.047 5	3-		
169.445 9	3-		
171.98 <i>10</i>	6-	18.59 min 4	T _{1/2} : from 1989Ab18. Others: 18.5 min 3 (1965Na01), 18.7 min 2 (1964Ta07), and 18.7 min 3
			(1953Fl07).

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

 $\gamma(^{188}\text{Re})$

I γ normalization: from I(γ +ce)(γ 's to g.s.)=100.

E_{γ}^{\ddagger}	I_{γ} #@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
(2.636 3)	3.3×10 ⁻¹⁰ 11	171.98	6-	169.445	3-	(M3)		1.6×10 ¹² 5	% $I\gamma=3.8\times10^{-11}$ 6 $\alpha(M)=1.27\times10^{12}$ 42 $\alpha(N)=3.2\times10^{11}$ 11; $\alpha(O)=4.5\times10^{10}$ 15; $\alpha(P)=2.78\times10^{8}$ 87 Mult.: from ce(N) observed by 1964Ta07.
(13.3932 20)		169.445	3-	156.047	3-				
15.93 10	1.72×10 ⁻⁵ 11	171.98	6-	156.047	3-	M3		1.96×10 ⁷ 9	%Iγ=1.98×10 ⁻⁰⁶ 11 α(L)=1.38×10 ⁷ 7; α(M)=4.51×10 ⁶ 21 α(N)=1.12×10 ⁶ 5; α(O)=1.61×10 ⁵ 8; α(P)=1.98×10 ³ 9 E _γ : From the observed M-shell conversion electron line in 1964Ta07. Mult.: from observed ce(L3). ce(L1) and ce(L2) not detected. M1/M3≈0.2. Other M-conversion lines not found. Hence, M3 assignment (1964Ta07).

¹⁸⁸ Re IT decay (18.59 min) 1968Ma14,1964Ta07,1964Bu10 (continued)										
γ ⁽¹⁸⁸ Re) (continued)										
E _γ ‡	Ι _γ #@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments	
63.583 <i>3</i>	194 7	63.583	2-	0.0	1-	M1+E2	0.061 23	3.42 10	%Iγ=22.3 5 α(L)=2.64 8; $α$ (M)=0.606 18 α(N)=0.147 5; $α$ (O)=0.0245 7; α(P)=0.001742 25 E _γ : Others: 63.7 1 (1962Ha46), 63.58 (1968Ma14), and 63.581 3 (1963Sc05). I _γ : From intensity balance. Others: 21.4 22 (1968Ma14), 13 6 (1963Sc05); I _γ (63.6γ)/I _γ (92.4γ)=4.0 (1972De67).	
92.464 <i>3</i>	45.1 <i>18</i>	156.047	3-	63.583	2-	M1+E2	0.44 13	6.34 12	Mult.: $\alpha(L)\exp=2.75$ using L x ray fluorescence yield of 0.3 in 1964Ta07. %I γ =5.2 3 $\alpha(K)$ =4.6 4; $\alpha(L)$ =1.30 23; $\alpha(M)$ =0.31 6 $\alpha(N)$ =0.075 14; $\alpha(O)$ =0.0117 19; $\alpha(P)$ =0.00051 5 E_{γ} : Others: 92.45 (1968Ma14), 92.8 6 (1964Bu10), and 92.447 6 (1963Sc05). I $_{\gamma}$: From I γ (105.8530 γ)=100.0 18 and I γ (92.464 γ)/I γ (105.8530 γ)= 0.451 16, weighted average from the measured intensities of I γ (105.8530 γ)=200 10 (1968Ma14), 200 20 (1964Ta07) and 226 5 (1963Sc05), and I γ (92.464 γ)=100 5	
105.8530 <i>3</i>	100.0 <i>18</i>	169.445	3-	63.583	2-	M1+E2	0.44 19	4.21 15	(1968Ma14), 100 6 (1964Ta07) and 100 5 (1963Sc05). Mult.: α (K)exp=5.9 9, α (L)exp=0.9 2 (1964Ta07). %I γ =11.5 5 α (K)=3.2 4; α (L)=0.80 17; α (M)=0.19 5 α (N)=0.046 10; α (O)=0.0072 14; α (P)=0.00034 4 I γ : From Adopted gammas. E γ : Other: 105.9 3 (1964Bu10), 105.96 (1968Ma14), 105.960 8 (1963Sc05).	
156.050 6	3.3 4	156.047	3-	0.0	1-	[E2]		0.759	Mult.: $\alpha(K)\exp=3.8 5$, $\alpha(L)\exp=0.7 2$ (1964Ta07). %I γ =0.38 5 $\alpha(K)=0.322 5$; $\alpha(L)=0.330 5$; $\alpha(M)=0.0833 12$ $\alpha(N)=0.0198 3$; $\alpha(O)=0.00287 4$; $\alpha(P)=2.69\times10^{-5} 4$ E_{γ} : Other: 156.03 (1968Ma14).	
169.441 5	4.4 <i>4</i>	169.445	3-	0.0	1-	[E2]		0.566	Adopted gammas branching ratios. $\% I\gamma = 0.51 5$ $\alpha(N) = 0.01384 20; \alpha(O) = 0.00201 3;$ $\alpha(P) = 2.20 \times 10^{-5} 3$ $\alpha(K) = 0.261 4; \alpha(L) = 0.231 4;$ $\alpha(M) = 0.0581 9$ E_{γ} : Other: 169.54 keV (1968Ma14). I_{γ} : From Adopted gammas.	

[†] Additional information 1.

Continued on next page (footnotes at end of table)

¹⁸⁸Re IT decay (18.59 min) **1968Ma14,1964Ta07,1964Bu10** (continued)

$\gamma(^{188}\text{Re})$ (continued)

[‡] From adopted gammas, unless otherwise.

[#] From intensity balances, unless otherwise stated.

[@] For absolute intensity per 100 decays, multiply by 0.115 5.

