Adopted Levels, Gammas

				History		
	Тур		Aı	ithor	Citation	Literature Cutoff Date
	Full Eval	luation F. G. Kor	idev, S. Ju	utinen, D. J. Hartley	NDS 150, 1 (2018)	1-Feb-2018
$Q(\beta^{-}) = -5450 \ 6;$ Additional inform	S(n)=9207 mation 1.	25; S(p)=5561 28;	$Q(\alpha)=40$	007 5 2017Wa10		
				¹⁸⁸ Pt Levels		
				Cross Reference (XRE	EF) Flags	
				A ¹⁸⁸ Au ε decay (8 B ¹⁹⁰ Pt(p,t) C (HI,xn γ)	8.84 min)	
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comme	nts
0.0 [@]	0^{+}	10.16 d <i>18</i>	ABC	$\% \varepsilon + \% \beta^+ = 99.999974$	4 3: $\%\alpha = 2.6 \times 10^{-5}$ 3	
	0			%α: Weighted avera and 3.0×10^{-5} 6 (1 T _{1/2} : Weighted avera 10.0 d 3 (1955Sm Eα=3870 keV 50 (1) (1978E111) and 39 $\Delta < r^2 > (^{190}Pt-^{188}Pt)=$ fm ² 7 (1992Hi07,	ge of $2.2 \times 10^{-5} 5$ (197 1963Gr08). Other: 5.0: age of 10.5 d <i>10</i> (1963 42), and 10.3 d <i>4</i> (195 963Ka17), 3930 keV <i>1</i> 205 keV <i>15</i> (1979Ha10 =-0.040 fm ² 8 (1988L 1990Hi08).	9Ha10), $2.8 \times 10^{-5} 5$ (1978E111) ×10 ⁻⁵ +50-25 (1963Ka17). 8Ka17), 10.2 d 3 (1963Gr08), 4Na25). 00 (1963Gr08), 3915 keV 10 1). e22). $\Delta < r^2 > (^{194}Pt - ^{188}Pt) = -0.188$
265.61 [@] 5	2+	66 ps <i>3</i>	A C	μ=+0.58 8 J ^π : 265.63γ E2 to 0 ⁻⁷ T _{1/2} : Weighted averation (2017Ro07), both ps 13 using 265.6 μ: From g=+0.29 4 (1996St12), ωτ(2 ⁺¹)	+. age of 65 ps 5 (1995A using the Dopler-shift $3\beta\gamma(t)$ in 1972Fi12. using the transient-fiel +)=160 mrad 10 and τ	nZQ) and 67 ps $+4-3$ recoil distance method. Other: 72 d integral PAC technique $(2^+)=93$ ps 7 were used.
605.69 ^b 6	2+		AC	J^{π} : 605.3 γ E2 to 0 ⁺ .		
670.97 [@] 6	4+	5.1 ps +15-11	AC	J^{π} : 405.49 γ E2 to 2	+; band assignment.	
798.75 8	0^{+}		AB	XREF: B(800).	E2 to 2 [±] and 700 2m [±]	$E0 to 0^{+}$
936.41 6	3+		AC	J^{π} : 330.76 γ E2(+M1	L2 to 2 and 799.27 (1) to 2^+ : 689.1 γ E2 from	bom 1 ⁺ .
1085.38 ^b 8	4+		AC	J^{π} : 479.40 γ E2 to 2 ⁺	⁺ , 414.79 γ M1(+E2) to	o 4 ⁺ .
1115.22 5	2+		A C	XREF: C(1116.4). J^{π} : 316.53 γ to 0 ⁺ , 4	14.18 γ E2 to 4 ⁺ .	
1184.43 [@] 13	6+	1.53 ps 14	С	J^{π} : 513.4 γ E2 to 4 ⁺ ;	; band assignment.	
1214.69 9	$(2)^{+}$		Α	J^{π} : 949.09 γ E2(+M1	1) to 2^+ , 1214.2 γ to 0^+	•
1312.73 6	$2^+_{2^-}$		A	J^{n} : 1312.62 γ E2 to (0^+ , 641.82 γ (E2) to 4^+	
1349.99 0	3		AC	J^{n} : 6/9.13 γ E1 to 4	$^{\circ}$, 1084.33 γ E1 to 2 $^{\circ}$.	
1528.04 13	2^{+}		A	I^{π} : 857.0v to 4 ⁺ . 15	28.3 γ to 0 ⁺ . 1262.46 γ	$E0+M1+E2$ to 2^+
1565.60^{d} 13	- 5-		 C	I^{π} · 215 9y E2 to 3 ⁻	$381 1\gamma$ to 6^+	
1625.71 8	1+		Ā	J^{π} : 1626.2 γ M1 to 0	$0^+, 689.1 \text{ E2 to } 3^+.$	
1636.31 ^b 13	6+		С	J^{π} : 550.9 γ E2 to 4 ⁺ .	, 451.9 γ to 6 ⁺ : band as	ssignment.
1674.53 22	$(0^+, 1, 2)$		A	J^{π} : 1408.92 γ to 2 ⁺ ;	probable direct popula	tion in ¹⁸⁸ Au ε decay (J ^{π} =(1 ⁻)).
1685.6 4	$(0^+, 1, 2)$		Α	J ^{π} : 1079.7 γ to 2 ⁺ ; p	robable direct populati	on in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
1768.15 ^d 16	7-	0.20 ns 2	С	J^{π} : 202.6 γ E2 to 5 ⁻ :	; 583.7 γ (E1) to 6 ⁺ ; ba	and assignment.
				T _{1/2} : From 203ce(K)(t) in 1979Ri08. Othe	r: 0.621 ns 38 from 203ce(K)(t)

Continued on next page (footnotes at end of table)

¹⁸⁸Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
1776.08 7	(1 ⁻)		A	in 1978Ti02, but the line is weak and contaminations cannot be excluded (see 1978Ti02 for details). A long-lived component of 14 ns 2 was also reported to the 203ce(K) line in 1978Ti02, but not in 1979Ri08. J^{π} : 426.5 γ (E2) to 3 ⁻ ; 977.27 γ (E1) to 0 ⁺ .
1782.23 [@] 19	8+	0.97 ps 14	С	J^{π} : 597.8 γ E2 to 6 ⁺ : band assignment.
1810.57 9	$(2)^+$	F	A	J^{π} : 499.58 γ (E0+M1+E2) to 2 ⁺ ; 1139.7 γ to 4 ⁺ .
1954.26 14	(1 ⁺ ,2)		A	J^{π} : 1017.91 γ to 3 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2171.4 4	(0+,1,2)		A	J^{π} : 1905.9 γ to 2 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2179.75 ^c 23 2210.2? 3	8-		C A	J^{π} : 411.6 γ M1+E2 to 7 ⁻ ; band assignment.
2246.52 ^b 17	8+		С	J^{π} : 610.2 γ E2 to 6 ⁺ ; band assignment.
2295.61 12	$(1,2^+)$		Α	J^{π} : 2295.48 γ to 0 ⁺ , 2030.02 γ to 2 ⁺ .
2312.45 ^d 21	9-		С	J^{π} : 544.3 γ E2 to 7 ⁻ ; band assignment.
2437.13 [@] 23	10^{+}	0.49 ps +28-21	С	J^{π} : 654.9 γ to 8 ⁺ ; band assignment.
2446.89 22	$(1,2^+)$	•	A	J^{π} : 2446.87 γ to 0 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2458.05 ^e 22	9-	≈0.66 ns	С	J^{π} : 689.3 γ E2 to 7 ⁻ ; band assignment.
				T _{1/2} : From 1979Ri08, where a delayed component is observed for the electron line associated with the 689-keV γ ray.
2468.4? 5	$(1,2^+)$		A	J^{π} : 1669.6 γ to 0 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2497.50 13			A	
2524.65? 19			A	
2588.07 5 2620.2 <i>3</i>	(8+)		C	J^{π} : 838.0 γ (E2) to 8 ⁺ . Assigned J^{π} =(9 ⁺) in 1988KaZW, but no value was given in 1979DaZN. The relatively lower population of this level, compared to the 10 ⁺ level at 2664 keV, would be consistent with J^{π} =8 ⁺ . The alternative J^{π} =6 ⁺ assignment can be excluded since such a
				level won't be populated in (HI, $xn\gamma$).
2651.25 ^c 24	10-		C	J^{π} : 338.8 γ M1+E2 to 9 ⁻ , 471.5 γ E2 to 8 ⁻ ; band assignment.
2663.63 ⁰ 21	10^{+}		С	J^{π} : 417.1 γ E2 to 8 ⁺ , 226.5 γ to 10 ⁺ ; band assignment.
2701.35 ^e 25	10-		C	J^{π} : 243.3 γ (M1+E2) to 9 ⁻ ; band assignment.
2702.03 24	10+		C	J^{n} : 919.8 γ E2 to 8 ⁺ .
2772.6 ^{<i>a</i>} 3	11-		C	J^{π} : 460.2 γ E2 to 9 ⁻ ; band assignment.
2/90.17 5	10+		A	
2810.15** 25	12	0.00 ns 4	C	T _{1/2} : From 108-, 147- and 373ce(K)(t) in 1979Ri08. configuration: $v(i_{13/2}^{-2})$ rotational-aligned state. The proposed shape isomer interpretation in 2014Mu12 seems to be incorrect. It is based on the observed reduced B(E2) values from 2002Si10 and comparison with Cranked-model calculations, but the values quoted in 2002Si10 are incorrect. See 2015Ko14 for detailed interpretation.
2875.1 ^{<i>a</i>} 3	(11^{+})		С	J^{π} : 173.1 γ (M1) to 10 ⁺ .
2909.6? 3	(2+)		A	J ^{π} : probable E0 admixture in 1596.9 γ to 2 ⁺ ; direct population in ¹⁸⁸ Au ε decay (J ^{π} =(1 ⁻)).
2960.3 ^e 3 3046.73 14	11-		C A	J^{π} : 502.3 γ E2 to 9 ⁻ ; band assignment.
3102.4 [°] 3	12-		С	J^{π} : 329.8 γ to 11 ⁻ , 451.2 γ E2 to 10 ⁻ ; band assignment.
3103.6 [@] 3	12+	<0.42 ps	С	J^{π} : 666.5 γ E2 to 10 ⁺ ; band assignment.
3139.0 ^{&} 3	14^{+}		С	J^{π} : 328.9 γ E2 to 12 ⁺ ; band assignment.
3182.0 3	12+		С	J^{π} : 744.9 γ E2 to 10 ⁺ .

Continued on next page (footnotes at end of table)

¹⁸⁸Pt Levels (continued)

E(level) [†]	J π ‡	XREF	Comments
3226.6 ^e 3	12-	С	J^{π} : 525.3 γ E2 to 10 ⁻ ; band assignment.
3232.49 17		Α	
3260.66 18	(12+)	A	
3261.34 4	(13+)	C	J^{π} : 386.2 γ (E2) to (11 ⁺); band assignment.
3325.1 ^{<i>a</i>} 4	13-	C	J^{π} : 552.5 γ E2 to 11 ⁻ ; band assignment.
3565.0° 4	13-	С	J^{α} : 604.6 γ E2 to 11 ⁻ ; band assignment.
3580.5 ⁶ 3	14+	C	J^{π} : 476.9 γ E2 to 12 ⁺ ; band assignment.
3625.8° 4	14-	С	J^{n} : 523.3 γ E2 to 12 ⁻ ; band assignment.
3627.0 [°] 4	16+	C	J^{π} : 488.0 γ E2 to 14 ⁺ ; band assignment.
3749.6 ^a 4	(15^{+})	C	J^{π} : 488.3 γ to (13 ⁺); band assignment.
3867.2° 4	14	C	J^{*} : 640.3 γ E2 to 12 ; band assignment.
3946.6 ^{<i>a</i>} 4	15-	С	J^{n} : 621.4 γ E2 to 13 ⁻ ; band assignment.
4007.6 4	16+	C	J^{π} : 427.1 γ E2 to 14 ⁺ ; band assignment.
41/4.5° 4	16	C	J^{π} : 548./ γ to 14 ⁻ ; band assignment.
4237.8° 4	15	C	J^{*} : $6/2.8\gamma$ E2 to 13 ; band assignment.
4243.8 4	18+	С	J^{n} : 616.8 γ E2 to 16 ⁺ ; band assignment.
4280.5 4	(17^{-})	C	J^{π} : 333.9 γ (E2) to 15 ⁻ ; band assignment.
4353.2 ^{<i>a</i>} 4	(17^{+})	С	J^{n} : 603.6 γ to (15 ⁺); band assignment.
4478.8° 6	(18^+)	C	J^{n} : 471.2 γ to 16 ⁺ ; band assignment.
4549.7	(16 ⁻)	С	J^{n} : 682.5 γ (E2) to 14 ⁻ ; band assignment.
4593.4 ^J 4	(18^{-})	C	J^{π} : 312.9 γ to (17 ⁻); band assignment.
4665.4 ^{<i>a</i>} 4	(17^{-})	С	J^{π} : 718.8 γ to 15 ⁻ ; band assignment.
4765.4°7	(18^{-})	C	J^{π} : 590.9 γ to 16 ⁻ ; band assignment.
4947.6 ^J 5	(19 ⁻)	С	J^{π} : 354.2 γ to (18 ⁻); band assignment.
4960.7 ^{&} 5	20^{+}	С	J^{π} : 716.9 γ E2 to 18 ⁺ ; band assignment.
5201.3 ⁸ 6		С	
5505.2 ⁸ 6		C	
5744.9 ^{&} 7	(22^{+})	С	J^{π} : 784.2 γ to 20 ⁺ ; band assignment.
6549.9 <mark>&</mark> 9	(24^{+})	С	J^{π} : 805.0 γ to (22 ⁺); band assignment.
7367.9 ^{&} 10	(26^{+})	С	J^{π} : 818.0 γ to (24 ⁺); band assignment.

[†] From least-squares fit to $E\gamma$'s.

[‡] From deduced transition multipolarities and band structures.

[#] From 2017Ro07 in (HI,xny), using the recoil distance doppler shift method, unless otherwise stated.

^(a) Band(A): $K^{\pi}=0^+$, ground-state band.

& Band(B): Band based on the 2810.13-keV level, associated with a pair of $i_{13/2}$ neutrons (α =0).

- ^{*a*} Band(C): Band based on the 2875.1-keV level, associated with pair of $i_{13/2}$ neutrons (α =1).
- ^{*b*} Band(D): $K^{\pi}=2^+$, gamma-vibrational band.
- ^c Band(E): Band based on the 2179.75-keV level (α =0). Probably a mixture of several bands within the $v^2(9/2[624], 1/2[510])$ and $v^2(9/2[624], 3/2[512])$ configurations (by the evaluators).
- ^d Band(F): Band based on the 1768.15-keV level (α =1). Probably a mixture of several bands within the $v^2(9/2[624], 1/2[510])$ and $v^2(9/2[624], 3/2[512])$ configurations (by the evaluators).
- ^{*e*} Band(G): $K^{\pi} = 9^{-}$, $v^2(9/2[624], 9/2[505])$ band.
- ^f Band(H): Band based on the 4280.5-keV level.
- ^g Band(I): Band based on the 5201.3-keV level.

						Ad	opted Leve	ls, Gammas (continued)
								γ ⁽¹⁸⁸ Pt)
E_i (level)	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [#]	α [@]	Comments
265.61	2+	265.63 [‡] 6	100‡	0.0	0+	E2	0.1425	α(K)=0.0829 12; α(L)=0.0451 7; α(M)=0.01137 16 α(N)=0.00278 4; α(O)=0.000450 7; α(P)=8.21×10-6 12 B(E2)(W.u.)=89 4 Mult.: From K/L1=7.4 14, L1/L2=0.44 9, L1/L3=0.77 17 (1970Jo02), K/L3=5.8 7 and α(L3)exp=0.0143 7 (1972Fi12); K/L=2.4, α(L)exp=0.032 (1971Hu02); DCO=1.13 3 and POL=0.11 3 (2017Mu12); K/L≈2 (1979Ri08); A ₂ =0.216 9, A ₄ =-0.030 11 (1967Ne02); A ₂ =0.16 4, A ₄ =-0.08 5 (1988KaZW); A ₂ =0.21 2, A ₄ =-0.05 3 (1979DaZN).
605.69	2+	340.04 [‡] 5	100 [‡] 4	265.61	2+	E2(+M1)	0.218	$\alpha(K)=0.180 \ 3; \ \alpha(L)=0.0292 \ 4; \ \alpha(M)=0.00674 \ 10$ $\alpha(N)=0.001668 \ 24; \ \alpha(O)=0.000300 \ 5; \ \alpha(P)=2.03\times10^{-5} \ 3$ Mult.: From $\alpha(L3)\exp=0.0060 \ 4 \ (1972Fi12)$. Others: $\alpha(K)\exp=0.055 \ 5 \ (1970Jo02)$ and K/M=13.9, $\alpha(K)\exp=0.055, \ \alpha(L)\exp=0.004 \ (1971Hu02)$. However, 1972Fi12 pointed out that $ce(K)(340\gamma)$ is complex. DCO=1.02 10 and POL=-0.05 9 (2017Mu12).
		605.3 [‡] 2	68.2 [‡] 25	0.0	0+	E2	0.01578	α (K)=0.01208 <i>17</i> ; α (L)=0.00282 <i>4</i> ; α (M)=0.000677 <i>10</i> α (N)=0.0001667 <i>24</i> ; α (O)=2.85×10 ⁻⁵ <i>4</i> ; α (P)=1.279×10 ⁻⁶ <i>18</i> Mult.: From α (K)exp=0.0114 <i>4</i> (1972Fi12); α (K)exp=0.009 (1971Hu02). DCO=1.10 <i>3</i> and POL=0.11 <i>5</i> (2017Mu12); A ₂ =0.24 <i>5</i> , A ₄ =-0.08 <i>5</i> (1988KaZW); A ₂ =0.23 <i>6</i> , A ₄ =-0.03 <i>8</i> (1979DaZN).
670.97	4+	405.49 [‡] 5	100‡	265.61	2+	E2	0.0422	$\alpha(K)=0.0295\ 5;\ \alpha(L)=0.00967\ 14;\ \alpha(M)=0.00238\ 4$ $\alpha(N)=0.000584\ 9;\ \alpha(O)=9.73\times10^{-5}\ 14;\ \alpha(P)=3.06\times10^{-6}\ 5$ B(E2)(W.u.)=1.5×10 ² +4-5 Mult.: From $\alpha(L3)exp=0.0023\ 3\ (1972Fi12)$. Also $\alpha(M)exp=0.0027\ 5\ (1972Fi12)$, but the authors pointed out that this line is complex in ce data. DCO=1.02 2 and POL=0.12 2\ (2017Mu12);\ A_2=0.270\ 13,\ A_4=-0.044\ 14\ (1967Ne02);\ A_2=0.23\ 4, A_4=-0.07\ 5\ (1988KaZW);\ A_2=0.26\ 2,\ A_4=-0.07\ 3\ (1979DaZN).
798.75	0^+	192.89 [‡] <i>19</i>	2.9 [‡] 7	605.69	2+			
		533.4 [‡] <i>3</i>	100 [‡] 4	265.61	2+	E2	0.0212	α (K)=0.01585 23; α (L)=0.00407 6; α (M)=0.000983 14 α (N)=0.000242 4; α (O)=4.10×10 ⁻⁵ 6; α (P)=1.672×10 ⁻⁶ 24 Mult.: From α (L)exp=0.0039 4 (1972Fi12); α (K)exp=0.014 (1971Hu02).
		799.2 5		0.0	0^{+}	E0		E_{γ} : From ¹⁸⁸ Au ε decay. Mult : From $\alpha(K)\exp[-1.3](1972Fi12)$; $\alpha(K)\exp[-2](1971Hu02)$.
936.41	3+	330.76 [‡] 5	62.3 [‡] 24	605.69	2+	E2(+M1)	0.234	$\begin{aligned} \alpha(\text{K}) = 0.193 \ 3; \ \alpha(\text{L}) = 0.0315 \ 5; \ \alpha(\text{M}) = 0.00727 \ 11 \\ \alpha(\text{N}) = 0.00180 \ 3; \ \alpha(\text{O}) = 0.000324 \ 5; \ \alpha(\text{P}) = 2.19 \times 10^{-5} \ 3 \\ \text{I}_{\gamma}: \ \text{Other:} \ 95 \ 10 \ \text{in} \ (\text{HI,xn}\gamma). \\ \text{Mult.: From } \alpha(\text{L}3) \exp = 0.0055 \ 7 \ (1972\text{Fi12}). \ \text{A}_2 = -0.08 \ 5, \ \text{A}_4 = 0.08 \ 5 \ (1988\text{KaZW}). \end{aligned}$
		670.83 [‡] 5	100 [‡] 4	265.61	2+	M1(+E2)	0.0363	$\alpha(K)=0.0301 5; \alpha(L)=0.00479 7; \alpha(M)=0.001102 16$ $\alpha(N)=0.000273 4; \alpha(O)=4.91\times10^{-5} 7; \alpha(P)=3.35\times10^{-6} 5$ Mult.: From A ₂ =0.02 5, A ₄ =-0.06 6 (1988KaZW).
1085.38	4+	414.79 [‡] <i>10</i>	70 [‡] 8	670.97	4+	M1(+E2)	0.1277	$\alpha(K)=0.1056\ 15;\ \alpha(L)=0.01708\ 24;\ \alpha(M)=0.00394\ 6$

					Adopte	d Levels, G	ammas (continued)
						$\gamma(^{188}\text{Pt})$ (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [#]	α [@]	Comments
							α (N)=0.000974 <i>14</i> ; α (O)=0.0001755 <i>25</i> ; α (P)=1.190×10 ⁻⁵ <i>17</i> I _{γ} : Other: 40.2 <i>16</i> in (HI,xn γ). Mult.: From α (K)exp=0.078 <i>11</i> (1972Fi12) for 413.3 γ +414.79 γ . A ₂ =-0.06 <i>5</i> , A ₄ =-0.07 <i>5</i> (1988KaZW); A ₂ =-0.22 <i>12</i> , A ₄ =-0.03 <i>16</i> (1979DaZN).
1085.38	4+	479.40 [‡] 9	100 [‡] <i>10</i>	605.69 2+	E2	0.0275	α (K)=0.0201 3; α (L)=0.00563 8; α (M)=0.001370 20 α (N)=0.000337 5; α (O)=5.67×10 ⁻⁵ 8; α (P)=2.11×10 ⁻⁶ 3 Mult.: From α (L)exp=0.0057 10 (1972Fi12). DCO=1.17 7 and POL=0.09 5 (2017Mu12); A ₂ =0.26 5, A ₄ =-0.07 5 (1988KaZW); A ₂ =0.43 14, A ₄ =0.08 17 (1979DaZN).
		819.4 [‡] 4	27 [‡] 9	265.61 2+	E2	0.00819	α (K)=0.00652 <i>10</i> ; α (L)=0.001277 <i>18</i> ; α (M)=0.000301 <i>5</i> α (N)=7.42×10 ⁻⁵ <i>11</i> ; α (O)=1.295×10 ⁻⁵ <i>19</i> ; α (P)=6.90×10 ⁻⁷ <i>10</i> Mult.: From A ₂ =0.20 <i>5</i> , A ₄ =0.09 <i>6</i> (1988KaZW).
1115.22	2+	316.53 [‡] 9	19 [‡] 2	798.75 0 ⁺	[E2]	0.0841	$\alpha(K)=0.0535 \ 8; \ \alpha(L)=0.0232 \ 4; \ \alpha(M)=0.00579 \ 9$ $\alpha(N)=0.001418 \ 20; \ \alpha(O)=0.000232 \ 4; \ \alpha(P)=5.42\times10^{-6} \ 8$
		444.18 [‡] 8	21.7 [‡] 18	670.97 4+	E2	0.0333	$\begin{aligned} &\alpha(K) = 0.0239 \ 4; \ \alpha(L) = 0.00717 \ 10; \ \alpha(M) = 0.001754 \ 25 \\ &\alpha(N) = 0.000431 \ 6; \ \alpha(O) = 7.22 \times 10^{-5} \ 11; \ \alpha(P) = 2.50 \times 10^{-6} \ 4 \\ &\text{Mult.: From } \alpha(K) \exp = 0.023 \ 2, \ \alpha(L3) \exp = 0.0066 \ 25, \ \alpha(M) \exp = 0.0050 \ 18 \\ &(1972Fi12). \ \text{Authors'} \ \alpha(L3) \exp \text{ agrees with } \alpha(L) \ \text{rather than with } \alpha(L3). \\ &\text{Ice}(L3) \ \text{given by } 1972Fi12 \ \text{should possibly be interpreted as Ice}(L). \end{aligned}$
		849.3 [‡] 6	14 [‡] 5	265.61 2+	E0+M1+E2	0.27 1	$\alpha(K)=0.01644\ 24;\ \alpha(L)=0.00260\ 4;\ \alpha(M)=0.000598\ 9$ $\alpha(N)=0.0001479\ 21;\ \alpha(O)=2.67\times10^{-5}\ 4;\ \alpha(P)=1.83\times10^{-6}\ 3$ E _y : 850.9 3 in (HI,xny). Mult.: From $\alpha(K)$ exp=0.22 1, $\alpha(L)$ exp=0.038 2, and $\alpha(M)$ exp=0.0098 20 (1972Fi12). A ₂ =-0.63 5, A ₄ =0.19 5 (1988KaZW). $\delta: -1.1 + 20 - 2 \text{ from } \gamma(\theta)$ (1988KaZW). $\alpha: 0.27 L$ deduced from $\alpha(K)$ exp + $\alpha(L)$ exp + $\alpha(M)$ exp in 1972Fi12
		1115.25 [‡] 5	100 [‡] 4	0.0 0+	(E2)	0.00442	$\begin{array}{l} \alpha(\text{K})=0.00361\ 5;\ \alpha(\text{L})=0.000627\ 9;\ \alpha(\text{M})=0.0001458\ 21\\ \alpha(\text{N})=3.60\times10^{-5}\ 5;\ \alpha(\text{O})=6.36\times10^{-6}\ 9;\ \alpha(\text{P})=3.79\times10^{-7}\ 6;\ \alpha(\text{IPF})=3.24\times10^{-7}\\ 5 \end{array}$
1184.43	6+	513.4 2	100	670.97 4+	E2	0.0232	Mult.: From α (K)exp \approx 0.002 (1972Fi12). α (K)=0.01723 25; α (L)=0.00456 7; α (M)=0.001105 16 α (N)=0.000272 4; α (O)=4.60×10 ⁻⁵ 7; α (P)=1.82×10 ⁻⁶ 3 B(E2)(W.u)=158 15 Mult.: DCO=0.95 5 and POL=0.10 4 (2017Mu12); A ₂ =0.187 22, A ₄ =-0.078 25 (1967Ne02); A ₂ =0.23 4, A ₄ =-0.07 5 (1988KaZW); A ₂ =0.24 3, A ₄ =-0.08 4 (1979DaZN).
1214.69	(2)+	949.09 [‡] 8	100 [‡] 7	265.61 2+	E2(+M1)	0.01494	α (K)=0.01240 <i>18</i> ; α (L)=0.00195 <i>3</i> ; α (M)=0.000449 <i>7</i> α (N)=0.0001111 <i>16</i> ; α (O)=2.00×10 ⁻⁵ <i>3</i> ; α (P)=1.375×10 ⁻⁶ <i>20</i> Mult.: From α (K)exp=0.0046 <i>5</i> (1972Fi12).
		1214.2 ^{‡&} 5	19.7 [‡] <i>12</i>	0.0 0+			Mult.: $\alpha(K)\exp\approx 0.085$ (1972Fi12) indicates E0 mixture, implying a probable doublet in ce data.

S

I

γ (¹⁸⁸Pt) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	Comments
1312.73	2^{+}	198.1 [‡] 3	7.1 [‡] 24	1115.22 2	2+			
		376.70 [‡] <i>15</i>	17 [‡] 3	936.41	3+	E2+M1	0.1652	$\alpha(K)=0.1364\ 20;\ \alpha(L)=0.0221\ 4;\ \alpha(M)=0.00511\ 8$ $\alpha(N)=0.001263\ 18;\ \alpha(O)=0.000227\ 4;\ \alpha(P)=1.542\times10^{-5}\ 22$ Mult.: From $\alpha(K)\exp=0.074\ 7,\ \alpha(L)\exp\approx0.040\ (1972Fi12).$
		641.82 [‡] <i>18</i>	22 [‡] 4	670.97 4	4+	(E2)	0.01383	$\alpha(K)=0.01069 \ 15; \ \alpha(L)=0.00240 \ 4; \ \alpha(M)=0.000574 \ 8 \ \alpha(N)=0.0001413 \ 20; \ \alpha(O)=2.43\times10^{-5} \ 4; \ \alpha(P)=1.132\times10^{-6} \ 16 \ Mult.; \ From \ \alpha(K)exp=0.0071 \ 26 \ (1972Fi12).$
		707.08 [‡] 14	31 [‡] 4	605.69 2	2+	E0+M1+E2	0.076 5	$\alpha(K)=0.0263 \ 4; \ \alpha(L)=0.00418 \ 6; \ \alpha(M)=0.000961 \ 14$ $\alpha(N)=0.000238 \ 4; \ \alpha(O)=4.29\times10^{-5} \ 6; \ \alpha(P)=2.93\times10^{-6} \ 5$ Mult.: From $\alpha(K)exp=0.061 \ 3$ and $\alpha(L)exp=0.011 \ 2 \ (1972Fi12)$ indicate E0 admixtures. $\alpha: \ 0.076 \ 5 \ deduced \ from \ \alpha(K)exp \ + \ \alpha(L)exp \ \times \ (1 \ + \ M/L \ + \ N/L).$
		1046.99 [‡] <i>11</i>	65 [‡] 7	265.61 2	2+	E0+M1+E2	0.076 3	$\alpha(K)=0.00968 \ 14; \ \alpha(L)=0.001521 \ 22; \ \alpha(M)=0.000349 \ 5$ $\alpha(N)=8.64\times10^{-5} \ 13; \ \alpha(O)=1.559\times10^{-5} \ 22; \ \alpha(P)=1.072\times10^{-6} \ 15$ Mult.: From $\alpha(K)exp=0.065 \ 2, \ \alpha(L)exp=0.0075 \ 8 \ (1972Fi12) \ indicate \ E0$ admixtures. $\alpha(O)=0.076 \ 3 \ deduced \ from \ \alpha(K)exp \ + \ \alpha(L)exp \ \times \ (1 \ + \ M/L \ + \ N/L)$
		1312.62 [‡] 9	100 [‡] 7	0.0 (0+	E2	0.00326	$\alpha(K)=0.00266\ 4;\ \alpha(L)=0.000442\ 7;\ \alpha(M)=0.0001024\ 15$ $\alpha(N)=2.53\times10^{-5}\ 4;\ \alpha(O)=4.49\times10^{-6}\ 7;\ \alpha(P)=2.79\times10^{-7}\ 4;\ \alpha(IPF)=1.87\times10^{-5}$
		+	+					Mult.: α (K)exp=0.0029 4 (1972Fi12).
1349.99	3-	234.8+ 3	3.6+ 11	1115.22 2	2+			
		413.3+& 5	7.7+ 5	936.41 3	3+			
		679.13+ 6	30.5+ 18	670.97 4	4+	E1	0.00441	$\alpha(K)=0.00369\ 6;\ \alpha(L)=0.000556\ 8;\ \alpha(M)=0.0001270\ 18$ $\alpha(N)=3.13\times10^{-5}\ 5;\ \alpha(O)=5.56\times10^{-6}\ 8;\ \alpha(P)=3.57\times10^{-7}\ 5$ Mult.: from $\alpha(K)\exp<0.0036\ (1972Fi12)$.
		1084.33 [‡] 5	100 [‡] 5	265.61 2	2+	E1	0.00183	$\alpha(K)=0.001539\ 22;\ \alpha(L)=0.000225\ 4;\ \alpha(M)=5.12\times10^{-5}\ 8$ $\alpha(N)=1.262\times10^{-5}\ 18;\ \alpha(O)=2.26\times10^{-6}\ 4;\ \alpha(P)=1.514\times10^{-7}\ 22$ Mult.: from $\alpha(K)\exp\leq0.0015\ (1972Fi12).$
1443.7?		507.3 3	100	936.41 3	3+			E_{γ}, I_{γ} : from (p,4n γ) data (1977Nu03). $I_{\gamma}(507\gamma)/I_{\gamma}(266\gamma)=0.102$ 5.
1528.04	2+	591.4 ^{‡&} 5	11.9 [‡] <i>16</i>	936.41 3	3+	(M1)	0.0503	α (K)=0.0416 6; α (L)=0.00666 10; α (M)=0.001534 22 α (N)=0.000379 6; α (O)=6.84×10 ⁻⁵ 10; α (P)=4.66×10 ⁻⁶ 7 Mult.: from α (K)exp≈0.056 (1972Fi12).
		857.0 [‡] 5	8.7 [‡] 16	670.97 4	4+			
		922.23 [‡] 18	69 [‡] 10	605.69 2	2+	E0+M1+E2	0.029 3	α (K)=0.01334 <i>19</i> ; α (L)=0.00210 <i>3</i> ; α (M)=0.000484 <i>7</i> α (N)=0.0001196 <i>17</i> ; α (O)=2.16×10 ⁻⁵ <i>3</i> ; α (P)=1.480×10 ⁻⁶ <i>21</i> Mult.: from α (K)exp=0.024 <i>2</i> (1972Fi12). α : 0.029 <i>3</i> from K/T and α (K)exp.
		1262.46 [‡] <i>19</i>	100 [‡] 14	265.61 2	2+	E0+M1+E2	0.037 4	α (K)=0.00605 9; α (L)=0.000945 14; α (M)=0.000217 3 α (N)=5.37×10 ⁻⁵ 8; α (O)=9.69×10 ⁻⁶ 14; α (P)=6.68×10 ⁻⁷ 10;

					Adopte	d Levels, Ga	ammas (continued)
						$\gamma(^{188}\text{Pt})$ (continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult. [#]	α [@]	Comments
							α (IPF)=1.746×10 ⁻⁵ 25 Mult.: from α (K)exp=0.031 3 (1972Fi12). α : 0.037 4 from K/T and α (K)exp.
1528.04	2+	1528.3 [‡] 3	57 † 12	0.0 0+			
1565.60	5-	215.9 2	9.6 9	1349.99 3-	E2	0.278	α (K)=0.1401 20; α (L)=0.1037 15; α (M)=0.0264 4 α (N)=0.00645 10; α (O)=0.001031 15; α (P)=1.350×10 ⁻⁵ 20 Mult.: DCO=1.14 9 (2017Mu12); A ₂ =0.32 11, A ₄ =0.01 14 (1979DaZN).
		381.1 2	9.1 14	1184.43 6+	(51)	0.00001	$A_2=0.295, A_4=0.386$ (1988KaZW).
		480.1 5	20.9 9	1085.38 4	(EI)	0.00901	α (K)=0.00751 <i>I1</i> ; α (L)=0.001161 <i>I7</i> ; α (M)=0.000266 <i>4</i> α (N)=6.54×10 ⁻⁵ <i>I0</i> ; α (O)=1.157×10 ⁻⁵ <i>I7</i> ; α (P)=7.14×10 ⁻⁷ <i>I1</i> Mult.: From A ₂ =-0.36 <i>5</i> , A ₄ =0.12 <i>5</i> (1988KaZW); A ₂ =-0.22 <i>I8</i> , A ₄ =0.05 <i>24</i> (1979DaZN).
		894.5 2	100 5	670.97 4+	(E1)	0.00260	α (K)=0.00218 3; α (L)=0.000323 5; α (M)=7.36×10 ⁻⁵ 11 α (N)=1.81×10 ⁻⁵ 3; α (O)=3.24×10 ⁻⁶ 5; α (P)=2.14×10 ⁻⁷ 3 Mult.: DCO=0.49 2 and POL=0.12 3 (2017Mu12); A ₂ =-0.30 5, A ₄ =0.06 5 (1988KaZW); A ₂ =-0.20 2, A ₄ =0.07 3 (1979DaZN).
1625.71	1+	313.0 [‡] 5	3.9 [‡] 5	1312.73 2+			
		689.1 [‡] 3	9 [‡] 3	936.41 3+	E2	0.01182	$\alpha(K)=0.00923 \ I3; \ \alpha(L)=0.00198 \ 3; \ \alpha(M)=0.000472 \ 7 \\ \alpha(N)=0.0001163 \ I7; \ \alpha(O)=2.01\times10^{-5} \ 3; \ \alpha(P)=9.77\times10^{-7} \ I4 \\ Mult : from \ \alpha(K)=0.010 \ 3 \ (1972Fi12) \\ \end{array}$
		1020 1‡ 4	19‡ 5	605 69 2+			$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
		$1360 \ 10^{\ddagger} \ 7$	100 5	265.61 2+			
		1626 2 8	$22^{\ddagger} 14$	0.0 0+	M1	0 00404	$\alpha(\mathbf{K}) = 0.00322$ 5: $\alpha(\mathbf{L}) = 0.000500$ 7: $\alpha(\mathbf{M}) = 0.0001146$ 17
		1020.2	22 17	0.0 0	IVII	0.00101	$\alpha(N)=2.84\times10^{-5} 4; \ \alpha(O)=5.12\times10^{-6} 8; \ \alpha(P)=3.54\times10^{-7} 5; \ \alpha(IPF)=0.0001678 \ 24$
1636 31	6+	451.0.2	12 1	1184 43 6+			Mult.: from α (K)exp=0.0054 <i>18</i> (1972Fi12).
1050.51	0	550.9 2	100 8	1085.38 4+	E2	0.0196	α (K)=0.01477 21; α (L)=0.00370 6; α (M)=0.000892 13 α (N)=0.000219 3; α (O)=3.73×10 ⁻⁵ 6; α (P)=1.561×10 ⁻⁶ 22 Mult.: A ₂ =0.27 5, A ₄ =-0.08 5 (1988KaZW); A ₂ =0.26 4, A ₄ =-0.12 5
		0(5.2.2	24.5	(70.07.4+			(1979DaZN).
1674.50	(0 ± 1.0)	965.3 2	24.5	6/0.9/ 4+			
16/4.53	$(0^+, 1, 2)$	1408.92* 21	100#	265.61 2	F		
1085.0	$(0^{+},1,2)$	$4/1.1^{+}$ 3	01^{+} 33	1214.69 (2)			
1768.15	7-	10/9./* 5 131.8 2	6.1 <i>10</i>	605.69 2 ⁺ 1636.31 6 ⁺	(E1)	0.202	$\alpha(K)=0.1639\ 24;\ \alpha(L)=0.0291\ 5;\ \alpha(M)=0.00673\ 10$ $\alpha(N)=0.001641\ 24;\ \alpha(O)=0.000279\ 4;\ \alpha(P)=1.348\times10^{-5}\ 20$ B(E1)(W.u.)=1.21×10 ⁻⁵ \ 24 Mult.: From A ₂ =-0.16 5, A ₄ =-0.10 5 (1988KaZW); A ₂ =-0.15 12, A ₄ =0.02 16 (1970Po ₂ TN)
		202.6 2	88 5	1565.60 5-	E2	0.344	$\alpha(K)=0.1645\ 24;\ \alpha(L)=0.1351\ 20;\ \alpha(M)=0.0345\ 5$

 \neg

					Adopted	Levels, Gamn	nas (continued)
						$\gamma(^{188}\text{Pt})$ (conti	inued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]	Comments
1768.15	7-	583.7 2	100 5	1184.43 6+	(E1)	0.00598	$\begin{array}{l} \alpha(\mathrm{N})=0.00842 \ 13; \ \alpha(\mathrm{O})=0.001342 \ 20; \ \alpha(\mathrm{P})=1.573\times10^{-5} \ 23\\ \mathrm{B(E2)(W.u.)}=50 \ 7\\ \mathrm{Mult.: \ DCO=1.20 \ 2 \ and \ POL=0.28 \ 5 \ (2017\mathrm{Mu12}); \ \mathrm{A_2}=0.28 \ 5, \\ \mathrm{A_4}=-0.11 \ 6 \ (1988\mathrm{KaZW}); \ \mathrm{A_2}=0.22 \ 3, \ \mathrm{A_4}=-0.12 \ 4 \ (1979\mathrm{DaZN}). \\ \alpha(\mathrm{N})=4.28\times10^{-5} \ 6; \ \alpha(\mathrm{O})=7.60\times10^{-6} \ 11; \ \alpha(\mathrm{P})=4.80\times10^{-7} \ 7 \\ \alpha(\mathrm{K})=0.00500 \ 7; \ \alpha(\mathrm{L})=0.000761 \ 11; \ \alpha(\mathrm{M})=0.0001741 \ 25 \\ \mathrm{B(E1)(W.u.)}=2.3\times10^{-6} \ 3 \\ \mathrm{Mult.: \ DCO=0.53 \ 2 \ and \ POL=0.11 \ 3 \ (2017\mathrm{Mu12}); \ \mathrm{A_2}=-0.19 \ 5, \\ \mathrm{A_4}=0.03 \ 5 \ (1988\mathrm{KaZW}); \ \mathrm{A_2}=-0.15 \ 3, \ \mathrm{A_4}=0.02 \ 3 \ (1979\mathrm{DaZN}). \end{array}$
1776.08	(1-)	426.5 [‡] 3	12 [‡] 3	1349.99 3-	(E2)	0.0370	$\alpha(K)=0.0262 \ 4; \ \alpha(L)=0.00818 \ 12; \ \alpha(M)=0.00201 \ 3 \ \alpha(N)=0.000493 \ 7; \ \alpha(O)=8.23\times10^{-5} \ 12; \ \alpha(P)=2.73\times10^{-6} \ 4 \ Mult.: From \ \alpha(K)exp\approx0.018 \ (1972Fi12).$
		977.27 [‡] 10	75 [‡] 6	798.75 0+	(E1)	0.00221	$\alpha(K)=0.00186 \ 3; \ \alpha(L)=0.000273 \ 4; \ \alpha(M)=6.22\times10^{-5} \ 9 \ \alpha(N)=1.532\times10^{-5} \ 22; \ \alpha(O)=2.74\times10^{-6} \ 4; \ \alpha(P)=1.82\times10^{-7} \ 3 \ Mult.: From \ \alpha(K)exp=0.0032 \ 9 \ (1972Fi12).$
		1170.49 [‡] 9	96 [‡] 7	605.69 2+	(E1)	1.61×10 ⁻³	$\alpha(K)=0.001344 \ 19; \ \alpha(L)=0.000196 \ 3; \ \alpha(M)=4.45\times10^{-5} \ 7 \\ \alpha(N)=1.098\times10^{-5} \ 16; \ \alpha(O)=1.97\times10^{-6} \ 3; \ \alpha(P)=1.325\times10^{-7} \ 19; \\ \alpha(IPF)=9.10\times10^{-6} \ 13 \\ Mult.: \ From \ \alpha(K)exp=0.0023 \ 4 \ (1972Fi12).$
		1510.38 [‡] 9	100 [‡] 7	265.61 2+	(E1)	1.21×10 ⁻³	$\alpha(K)=0.000867 \ I3; \ \alpha(L)=0.0001248 \ I8; \ \alpha(M)=2.83\times10^{-5} \ 4$ $\alpha(N)=6.99\times10^{-6} \ I0; \ \alpha(O)=1.256\times10^{-6} \ I8; \ \alpha(P)=8.58\times10^{-8} \ I2; \ \alpha(PF)=0.000185 \ 3$ Mult : From $\alpha(K)\exp\{0.00077 \ (1972Fi12)$
1782.23	8+	597.8 2	100	1184.43 6+	E2	0.01623	$\alpha(K)=0.01240 \ I8; \ \alpha(L)=0.00292 \ 5; \ \alpha(M)=0.000702 \ I0$ $\alpha(N)=0.0001727 \ 25; \ \alpha(O)=2.96\times10^{-5} \ 5; \ \alpha(P)=1.312\times10^{-6} \ I9$ B(E2)(W.u.)=118 $I7$ Mult: DCO=0.95 5 and POL=0.12 6 (2017Mu12); A ₂ =0.26 5, A ₄ =-0.06 5 (1988KaZW); A ₂ =0.27 3, A ₄ =-0.09 3 (1979DaZN).
1810.57	(2)+	498.6 [‡] 5	23 [‡] 6	1312.73 2+	(E0+M1+E2)	0.225 14	$\begin{aligned} &\alpha(\text{K}) = 0.0650 \ 10; \ \alpha(\text{L}) = 0.01045 \ 15; \ \alpha(\text{M}) = 0.00241 \ 4 \\ &\alpha(\text{N}) = 0.000596 \ 9; \ \alpha(\text{O}) = 0.0001073 \ 16; \ \alpha(\text{P}) = 7.30 \times 10^{-6} \ 11 \\ &\text{Mult.: From } \alpha(\text{K}) \text{exp} = 0.11 \ 1 \ \text{and } \alpha(\text{L}) \text{exp} = 0.089 \ 8 \ (1972\text{Fi12}). \\ &\alpha: \ 0.225 \ 14 \ \text{deduced from } \alpha(\text{K}) \text{exp} + \alpha(\text{L}) \text{exp} \times (1 + \text{M/L} + \text{N/L}). \end{aligned}$
		695.4 [‡] 5	8.2 [‡] 9	1115.22 2+	M1(+E2)	0.0331	α (K)=0.0274 4; α (L)=0.00436 7; α (M)=0.001004 15 α (N)=0.000248 4; α (O)=4.48×10 ⁻⁵ 7; α (P)=3.06×10 ⁻⁶ 5 Mult.: From α (K)exp=0.031 11 (1972Fi12).
		874.66 [‡] 24	25 [‡] 6	936.41 3+			
		1139.7 [‡] 4	16 [‡] 5	670.97 4+			
		1204.60 [‡] <i>13</i>	70 [‡] 7	605.69 2+			
		1545.00 [‡] <i>10</i>	100 [‡] 8	265.61 2+			

 ∞

L

γ (¹⁸⁸Pt) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [#]	α [@]	Comments
1954.26	$(1^+, 2)$	1017.91 [‡] <i>18</i>	100 [‡] 14	936.41 3+			
		1348.50 [‡] <i>19</i>	69 [‡] 10	605.69 2+			
2171.4	$(0^+, 1, 2)$	1565.6 [‡] 5	63 [‡] 23	605.69 2+			
		1905.9 [‡] 4	100 [‡] 26	265.61 2+			
2179.75	8-	411.6 2	100	1768.15 7-	M1+E2	0.1304	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.1077 \ 16; \ \alpha(\mathrm{L}) = 0.01744 \ 25; \ \alpha(\mathrm{M}) = 0.00402 \ 6 \\ \alpha(\mathrm{N}) = 0.000995 \ 14; \ \alpha(\mathrm{O}) = 0.000179 \ 3; \ \alpha(\mathrm{P}) = 1.215 \times 10^{-5} \ 17 \\ \mathrm{Mult.: \ DCO} = 0.77 \ 3 \ \mathrm{and \ POL} = -0.17 \ 11 \ (2017\mathrm{Mul2}); \ \mathrm{A_2} = 0.51 \ 5, \ \mathrm{A_4} = 0.03 \ 6 \\ (1988\mathrm{KaZW}); \ \mathrm{A_2} = 0.50 \ 7, \ \mathrm{A_4} = 0.11 \ 8 \ (1979\mathrm{DaZN}). \end{array} $
		544 ^{&} 1		1636.31 6+			E_{γ} : From 1988KaZW.
2210.2?		1944.6 [‡] <i>3</i>	100‡	265.61 2+			
2246.52	8+	464.3 2	26 6	1782.23 8+	(M1+E2)	0.0947	$\alpha(K)=0.0783 \ 11; \ \alpha(L)=0.01263 \ 18; \ \alpha(M)=0.00291 \ 4$ $\alpha(N)=0.000720 \ 11; \ \alpha(O)=0.0001297 \ 19; \ \alpha(P)=8.81\times10^{-6} \ 13$ Mult.: From A ₂ =-0.12 5, A ₄ =-0.02 5 (1988KaZW) and the adopted level
							scheme.
		610.2 2	100 9	1636.31 6+	E2	0.01549	$\alpha(K)=0.01188\ 17;\ \alpha(L)=0.00276\ 4;\ \alpha(M)=0.000662\ 10$ $\alpha(N)=0.0001629\ 23;\ \alpha(O)=2.79\times10^{-5}\ 4;\ \alpha(P)=1.257\times10^{-6}\ 18$ Mult.: DCO=1.06 3 and POL=0.10 4 (2017Mu12); A ₂ =0.28 5, A ₄ =-0.05 6 (1988KaZW): A ₂ =0.27 5, A ₄ =-0.09 6 (1979DaZN).
		1062.1 2	21 4	1184.43 6+			
2295.61	$(1,2^{+})$	2030.02 [‡] 12	100 [‡] 9	265.61 2+			
		2295.48 [‡] 23	50 [‡] 7	0.0 0+			
2312.45	9-	544.3 2	100	1768.15 7-	E2	0.0202	α (N)=0.000227 4; α (O)=3.87×10 ⁻⁵ 6; α (P)=1.601×10 ⁻⁶ 23 α (K)=0.01516 22; α (L)=0.00383 6; α (M)=0.000925 13 Mult.: DCO=1.01 5 and POL=0.10 5 (2017Mu12); A ₂ =0.24 5, A ₄ =-0.07 5 (1988K ₂ 7W): A ₂ =0.37 5, A ₄ =0.03 6 (1979D ₂ 7N)
2437.13	10^{+}	654.9 2	100	1782.23 8+	E2	0.01322	$\alpha(K)=0.01025\ 15;\ \alpha(L)=0.00227\ 4;\ \alpha(M)=0.000543\ 8$
							α (N)=0.0001336 <i>19</i> ; α (O)=2.30×10 ⁻⁵ <i>4</i> ; α (P)=1.085×10 ⁻⁶ <i>16</i> B(E2)(W.u.)=1.5×10 ² +7-9 Mult.: DCO=1.11 <i>4</i> and POL=0.13 <i>3</i> (2017Mu12); A ₂ =0.31 <i>3</i> , A ₄ =-0.06 <i>4</i> (1979DaZN): A ₂ =0.20 5, A ₄ =-0.05 6 (1988KaZW).
2446.89	(1.2^{+})	2446.87 [‡] 22	100‡	0.0 0+			
2458.05	9-	145.6 2	37 7	2312.45 9-	[M1]	2.28	$\alpha(K)=1.88 \ 3; \ \alpha(L)=0.310 \ 5; \ \alpha(M)=0.0718 \ 11 \ \alpha(N)=0.0178 \ 3; \ \alpha(O)=0.00319 \ 5; \ \alpha(P)=0.000215 \ 4 \ B(M1)(Wu) \approx 0.0018$
		689.9 2	100 <i>10</i>	1768.15 7-	E2	0.01179	$\alpha(K)=0.00921 \ I3; \ \alpha(L)=0.00198 \ 3; \ \alpha(M)=0.000471 \ 7$ $\alpha(N)=0.0001159 \ I7; \ \alpha(O)=2.00\times10^{-5} \ 3; \ \alpha(P)=9.75\times10^{-7} \ I4$ B(E2)(W.u.) ≈ 0.039 Mult.: DCO=1.07 5 and POL=0.24 7 (2017Mu12); A ₂ =0.25 I0, A ₄ =-0.18 I3 (1979DaZN): A ₂ =0.23 4 A ₄ =-0.06 6 (1988KaZW)
2468.4?	$(1,2^+)$	1669.6 [‡] 5	100‡	798.75 0+			

9

 $^{188}_{78}\text{Pt}_{110}\text{-}9$

γ (¹⁸⁸Pt) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]	Comments
2497.50 2524.65?		2231.88 [‡] <i>12</i> 2259.07 [‡] <i>19</i>	100 [‡] 100 [‡]	$265.61 \ 2^+$ $265.61 \ 2^+$			
2588.6? 2620.2	(8+)	1917.6* 3 838.0 2	100* 100	670.97 4 ⁺ 1782.23 8 ⁺	(E2)	0.00782	α (K)=0.00624 <i>9</i> ; α (L)=0.001209 <i>17</i> ; α (M)=0.000285 <i>4</i> α (N)=7.02×10 ⁻⁵ <i>10</i> ; α (O)=1.226×10 ⁻⁵ <i>18</i> ; α (P)=6.60×10 ⁻⁷ <i>10</i> Mult.: From A ₂ =0.35 <i>10</i> , A ₄ =0.05 <i>12</i> (1979DaZN); A ₂ =0.17 <i>5</i> , A ₄ =0.05 <i>6</i>
2651.25	10-	338.8 2	32 4	2312.45 9-	M1+E2	0.220	(1988KaZW). $\alpha(\text{K})=0.181\ 3;\ \alpha(\text{L})=0.0295\ 5;\ \alpha(\text{M})=0.00681\ 10$ $\alpha(\text{N})=0.001685\ 24;\ \alpha(\text{O})=0.000303\ 5;\ \alpha(\text{P})=2.05\times10^{-5}\ 3$ M_{W} by DCO = 0.72 0 and DCU = 0.16 (4 (2017) (-12))
		471.5 2	100 9	2179.75 8-	E2	0.0286	Mult.: DCO=0.78 9 and POL=-0.16 74 (2017/Mult2). $\alpha(K)=0.0208 \ 3; \ \alpha(L)=0.00593 \ 9; \ \alpha(M)=0.001445 \ 21$ $\alpha(N)=0.000355 \ 5; \ \alpha(O)=5.97\times10^{-5} \ 9; \ \alpha(P)=2.19\times10^{-6} \ 3$ Mult.: DCO=1.08 5 and POL=0.11 9 (2017Mult2).
2663.63	10+	226.5 2 417.1 2	35 5 100 6	2437.13 10 ⁺ 2246.52 8 ⁺	E2	0.0392	$\alpha(K)=0.0276 \ 4; \ \alpha(L)=0.00881 \ 13; \ \alpha(M)=0.00216 \ 3$ $\alpha(N)=0.000531 \ 8; \ \alpha(O)=8.86\times10^{-5} \ 13; \ \alpha(P)=2.87\times10^{-6} \ 4$ Mult.: DCO=1.14 4 and POL=0.10 4 (2017Mu12); A ₂ =0.32 4, A ₄ =-0.09 6
		881.4 2	38.1 24	1782.23 8+	(E2)	0.00705	$\alpha(\text{H}_{288\text{KaZW}}); \text{A}_2=0.38 \text{ /, } \text{A}_4=0.06 \text{ 9 (H}_{9}\text{PaZN}).$ $\alpha(\text{K})=0.00565 \text{ 8; } \alpha(\text{L})=0.001071 \text{ 15; } \alpha(\text{M})=0.000252 \text{ 4}$ $\alpha(\text{N})=6.20\times10^{-5} \text{ 9; } \alpha(\text{O})=1.086\times10^{-5} \text{ 16; } \alpha(\text{P})=5.97\times10^{-7} \text{ 9}$ $M_{\text{C}} = 0.24 \text{ 20 A} = 0.18 \text{ 24 (1027)} \text{ 70}$
2701.35	10-	243.3 2	96 <i>14</i>	2458.05 9-	(M1+E2)	0.542	Mult.: $A_2=0.34\ 20, A_4=-0.18\ 24\ (1979) DaZN).$ $\alpha(K)=0.447\ 7; \ \alpha(L)=0.0733\ 11; \ \alpha(M)=0.01692\ 24$ $\alpha(N)=0.00419\ 6; \ \alpha(O)=0.000754\ 11; \ \alpha(P)=5.09\times10^{-5}\ 8$ Mult.: DCO=0.71 5 (2017Mu12); $A_2=0.13\ 5, A_4=0.15\ 6\ (1988KaZW).$ $\delta; \ 6\ +8-3\ (1988KaZW).$
2702.02	10+	388.9 2	100 24	2312.45 9 ⁻	50	0.00(47	
2702.03	10	919.8 2	100 6	1/82.23 8	E2	0.00647	$\alpha(K)=0.00520\ 8;\ \alpha(L)=0.000969\ 14;\ \alpha(M)=0.000227\ 4$ $\alpha(N)=5.60\times10^{-5}\ 8;\ \alpha(O)=9.82\times10^{-6}\ 14;\ \alpha(P)=5.49\times10^{-7}\ 8$ Mult : DCO=1.08.2 and POL=0.11.9: A ₂ =0.28.4. A ₄ =-0.15.6 (1988KaZW).
2772.6	11-	460.2 2	100	2312.45 9-	E2	0.0304	$\alpha(K)=0.0220 \ 3; \ \alpha(L)=0.00640 \ 9; \ \alpha(M)=0.001562 \ 22 \ \alpha(N)=0.000384 \ 6; \ \alpha(O)=6.45\times10^{-5} \ 9; \ \alpha(P)=2.31\times10^{-6} \ 4 \ Mult.: \ DCO=0.96 \ 7 \ and \ POL=0.12 \ 3 \ (2017Mul2); \ A_2=0.27 \ 4, \ A_4=-0.12 \ 6 \ (1988KaZW): \ A_2=0.16 \ 7, \ A_4=-0.21 \ 9 \ (1979DaZN)$
2798.1? 2810.13	12+	2532.5 5 108.1 2	100 41 9	265.61 2 ⁺ 2702.03 10 ⁺	E2	3.56 6	$\alpha(K)=0.645 \ 10; \ \alpha(L)=2.19 \ 4; \ \alpha(M)=0.566 \ 10 \ \alpha(N)=0.1380 \ 23; \ \alpha(O)=0.0215 \ 4; \ \alpha(P)=7.17\times10^{-5} \ 11 \ B(E2)(W.u.)=78 \ 21 \ E_{V}: \ Other: \ 107.8 \ 2 \ from ce \ data in \ 1979Ri08.$
		146.5 2	100 19	2663.63 10+	E2	1.091	Mult.: from K/L \approx 0.4 (1979Ri08). α (K)=0.360 6; α (L)=0.550 9; α (M)=0.1415 22 α (N)=0.0345 6; α (O)=0.00543 9; α (P)=3.44 \times 10 ⁻⁵ 5

						Adopted I	Levels, Gamn	nas (continued)
						<u>γ</u>	v(¹⁸⁸ Pt) (cont	inued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
2810.13	12+	373.0 2	78 9	2437.13	10+	[E2]	0.0529	B(E2)(W.u.)=42 <i>10</i> Mult.: DCO=1.15 <i>4</i> (2017Mu12); K/L≈0.7 (1979Ri08); A ₂ =0.22 <i>8</i> , A ₄ =-0.23 <i>10</i> (1979DaZN); A ₂ =0.10 <i>5</i> , A ₄ =-0.01 <i>6</i> (1988KaZW). α (K)=0.0359 <i>5</i> ; α (L)=0.01286 <i>19</i> ; α (M)=0.00318 <i>5</i> α (N)=0.000781 <i>11</i> ; α (O)=0.0001291 <i>19</i> ; α (P)=3.70×10 ⁻⁶ <i>6</i> D(C)(W) = 0.20 α
2875.1	(11+)	173.1 2	100	2702.03	10+	(M1)	1.399	B(E2)(W.u.)=0.30 6 α (K)=1.152 <i>17</i> ; α (L)=0.190 <i>3</i> ; α (M)=0.0439 <i>7</i> α (N)=0.01087 <i>16</i> ; α (O)=0.00196 <i>3</i> ; α (P)=0.0001318 <i>19</i> Mult.: DCO=0.66 <i>19</i> (2017Mu12).
2909.6?	(2+)	1596.9 [‡] 3	100 [‡]	1312.73	2+	(E0+M1+E2)	0.0200 25	$\alpha(K)=0.00337 5; \alpha(L)=0.000523 8; \alpha(M)=0.0001200 17$ $\alpha(N)=2.97\times10^{-5} 5; \alpha(O)=5.36\times10^{-6} 8; \alpha(P)=3.71\times10^{-7} 6;$ $\alpha(IPF)=0.0001516 22$ Mult.: from $\alpha(K)\exp=0.016 2$ (1972Fi12), which suggests E0 admixtures.
2960.3	11-	259.0 <i>5</i> 502.3 <i>2</i>	29 6 100 <i>15</i>	2701.35 2458.05	10- 9-	(E2)	0.0245	α : 0.0200 25 deduced from K/T and α (K)exp. α (K)=0.0181 3; α (L)=0.00487 7; α (M)=0.001183 17 α (N)=0.000291 4; α (O)=4.91×10 ⁻⁵ 7; α (P)=1.90×10 ⁻⁶ 3
3046.73		1697.2 [‡] 4 2441.3 [‡] 3 2780.97 [‡] 15	$25^{\ddagger} 7$ $48^{\ddagger} 9$ $100^{\ddagger} 9$	1349.99 605.69 265.61	3 ⁻ 2 ⁺ 2 ⁺			Mult.: DCO=1.22 3 (2017Mul2); $A_2=0.39$ 3, $A_4=-0.08$ 6 (1988KaZw).
3102.4	12-	329.8 <i>5</i> 451.2 <i>2</i>	13 <i>4</i> 100 7	2772.6 2651.25	11 ⁻ 10 ⁻	E2	0.0320	$\alpha(K)=0.0230 \ 4; \ \alpha(L)=0.00682 \ 10; \ \alpha(M)=0.001666 \ 24$ $\alpha(N)=0.000409 \ 6; \ \alpha(O)=6.86 \times 10^{-5} \ 10; \ \alpha(P)=2.41 \times 10^{-6} \ 4$ Mult: DCO=0.00 4 and POL =0.12 8 (2017Mu12)
3103.6	12+	666.5 2	100	2437.13	10+	E2	0.01272	$\begin{aligned} \alpha(K) &= 0.00988 \ 14; \ \alpha(L) &= 0.00217 \ 3; \ \alpha(M) &= 0.000517 \ 8 \\ \alpha(N) &= 0.0001273 \ 18; \ \alpha(O) &= 2.19 \times 10^{-5} \ 3; \ \alpha(P) &= 1.047 \times 10^{-6} \ 15 \\ B(E2)(W.u.) &> 1.6 \times 10^2 \\ Mult: \ DCO &= 0.99 \ 6 \ and \ POL &= 0.12 \ 10 \ (2017Mul2); \ A_2 &= 0.29 \ 5, \ A_4 &= -0.11 \\ 6 \ (1028K \ a^{-}W) \end{aligned}$
3139.0	14+	328.9 2	100	2810.13	12+	E2	0.0752	$\alpha(K) = 0.0487 \ 7; \ \alpha(L) = 0.0201 \ 3; \ \alpha(M) = 0.00502 \ 8$ $\alpha(N) = 0.001230 \ 18; \ \alpha(O) = 0.000202 \ 3; \ \alpha(P) = 4.96 \times 10^{-6} \ 7$ Mult.: DCO=1.17 5 and POL=0.22 4 (2017Mu12); A ₂ =0.23 6, A ₄ =-0.12 $\alpha(D) = 0.005 \ (2000 \ 6) \ (0.005 \ C) \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ $
3182.0	12+	744.9 2	100	2437.13	10+	E2	0.01000	$\alpha(K)=0.00788 \ 11; \ \alpha(L)=0.001621 \ 23; \ \alpha(M)=0.000384 \ 6$ $\alpha(N)=9.46\times10^{-5} \ 14; \ \alpha(O)=1.642\times10^{-5} \ 23; \ \alpha(P)=8.34\times10^{-7} \ 12$ Mult.: DCO=1.21 20 and POL=0.15 10 (2017Mu12); A ₂ =0.38 8, A ₄ =-0.17 10 (1979DaZN); A ₂ =0.18 5 A ₄ =-0.06 6 (1988KaZW)
3226.6	12-	266.3 5 525.3 2	100	2960.3 2701.35	11 ⁻ 10 ⁻	E2	0.0220	$\alpha(K)=0.01639\ 23;\ \alpha(L)=0.00426\ 6;\ \alpha(M)=0.001030\ 15$ $\alpha(N)=0.000253\ 4;\ \alpha(O)=4.29\times10^{-5}\ 6;\ \alpha(P)=1.728\times10^{-6}\ 25$

11

 $^{188}_{78}\text{Pt}_{110}\text{--}11$

н

						Adopted	d Levels, G	ammas (continued)
							$\gamma(^{188}\text{Pt})$ (6	continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [#]	α [@]	Comments
								Mult.: DCO=1.27 6 (2017Mul2); $A_2=0.28 4$, $A_4=-0.09 5$ (1988KaZW);
3737 10		1882 15 18	82 11	13/10 00	3-			$R_2 = 0.44 \Pi$, $R_4 = 0.05 \Pi$ (1979DaLiv).
5252.49		2626 0 [‡] 3	$100^{\ddagger} 22$	605.60	2+			
3260.66		$736.4^{\ddagger}.6$	$49^{\ddagger} 22$	2524 652	2			
5200.00		$13064^{\ddagger}3$	92 19	1954.26	(1+2)			
		$1300.1 \cdot 3$ 1484 55 [‡] 23	100^{\ddagger} 18	1776.08	$(1^{-},2)$			
		$2994 9^{\ddagger} 4$	91 [‡] 18	265.61	2+			
3261.3	(13^{+})	386.2 2	100	2875.1	(11^+)	(E2)	0.0481	$\alpha(K)=0.0330\ 5;\ \alpha(L)=0.01141\ 17;\ \alpha(M)=0.00282\ 4$
								α (N)=0.000691 <i>10</i> ; α (O)=0.0001146 <i>17</i> ; α (P)=3.42×10 ⁻⁶ 5
		451.0.5		0010 10	12+			Mult.: DCO=1.28 7 (2017Mu12).
3325 1	13-	451.2 5	100	2810.13	121	E2	0.0105	$\alpha(\mathbf{K}) = 0.01468 21; \alpha(\mathbf{I}) = 0.00367.6; \alpha(\mathbf{M}) = 0.000885.13$
5525.1	15	552.5 2	100	2112.0	11	L2	0.0195	$\alpha(\mathbf{N})=0.01468\ 21,\ \alpha(\mathbf{L})=0.00507\ 0,\ \alpha(\mathbf{M})=0.000665\ 15$ $\alpha(\mathbf{N})=0.000218\ 3;\ \alpha(\mathbf{O})=3.70\times10^{-5}\ 6;\ \alpha(\mathbf{P})=1.551\times10^{-6}\ 22$
								Mult.: DCO=1.20 6 and POL=0.07 5 (2017Mu12); $A_2=0.28 4$, $A_4=-0.09 6$
								(1988KaZW); $A_2=0.31$ 10, $A_4=-0.06$ 13 (1979DaZN).
3565.0	13-	338.3 5	38 10	3226.6	12-	БJ	0.01592	$\alpha(K) = 0.01211$ 17; $\alpha(L) = 0.00292$ 4; $\alpha(M) = 0.000680$ 10
		004.0 2	100 24	2900.5	11	E2	0.01362	$\alpha(\mathbf{N}) = 0.01211 \ 17, \ \alpha(\mathbf{L}) = 0.00205 \ 4, \ \alpha(\mathbf{M}) = 0.000080 \ 10$ $\alpha(\mathbf{N}) = 0.0001672 \ 24; \ \alpha(\mathbf{O}) = 2.86 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 1.282 \times 10^{-6} \ 18$
								Mult.: DCO=1.14 6 (2017Mu12); A_2 =0.23 6, A_4 =-0.03 8 (1979DaZN).
3580.5	14^{+}	398.5 2	48 13	3182.0	12+			
		441.5 5	20 8	3139.0	14 ⁺	EO	0.0279	· (K) 0.0002 2; · (L) 0.00572 8; · (M) 0.001202 20
		470.92	100 15	5105.0	12	E2	0.0278	$\alpha(\mathbf{K})=0.0203 \ 3; \ \alpha(\mathbf{L})=0.00372 \ 3; \ \alpha(\mathbf{M})=0.001393 \ 20$ $\alpha(\mathbf{N})=0.000342 \ 5; \ \alpha(\mathbf{O})=5.76\times10^{-5} \ 9; \ \alpha(\mathbf{P})=2.13\times10^{-6} \ 3$
								Mult.: DCO=1.05 4 and POL=0.15 10 (2017Mul2); $A_2=0.32$ 4, $A_4=-0.14$ 6
								(1988KaZW).
2625.9	14-	770.4 2	38 10	2810.13	12^{+}			
3625.8	14	300.6 S	100	3325.1 3102.4	$13 \\ 12^{-}$	F2	0.0222	$\alpha(\mathbf{K}) = 0.01652.24$; $\alpha(\mathbf{I}) = 0.00430.6$; $\alpha(\mathbf{M}) = 0.001042.15$
		525.5 2	100	5102.4	12	12	0.0222	$\alpha(R)=0.01052.24$; $\alpha(D)=0.00450.05$; $\alpha(R)=0.001042.15$ $\alpha(N)=0.000256.4$; $\alpha(Q)=4.34\times10^{-5}.7$; $\alpha(P)=1.743\times10^{-6}.25$
								Mult.: DCO=0.98 3 and POL=0.18 5 (2017Mu12).
3627.0	16+	488.0 2	100	3139.0	14^{+}	E2	0.0263	$\alpha(K)=0.0193 3; \alpha(L)=0.00532 8; \alpha(M)=0.001295 19$
								$\alpha(N)=0.000318 5; \alpha(O)=5.37\times10^{-3} 8; \alpha(P)=2.03\times10^{-6} 3$
								Mult.: $DCO=1.114$ and $POL=0.113$ (201/Mul2); $A_2=0.514$, $A_4=-0.130$ (1988KaZW): $A_2=0.287$ $A_4=-0.149$ (1979DaZN)
3749.6	(15^{+})	488.3 2	100	3261.3	(13^{+})	E2	0.0262	$\alpha(K)=0.0193 \ 3; \ \alpha(L)=0.00531 \ 8; \ \alpha(M)=0.001293 \ 19$
								α (N)=0.000318 5; α (O)=5.36×10 ⁻⁵ 8; α (P)=2.03×10 ⁻⁶ 3
								Mult.: DCO=1.05 4 (2017Mu12); $A_2=0.31 4$, $A_4=-0.13 6$ (1988KaZW);
		610.6.5		3130.0	14^{+}			$A_2=0.28$ /, $A_4=-0.14$ 9 (19/9DaZN).
3867.2	14-	302.2 % 5		3565.0	13-			
5007.2	14	JUL.L J		5505.0	15			

From ENSDF

$\gamma(^{188}\text{Pt})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
3867.2	14-	640.5 2	100	3226.6	12-	E2	0.01389	α (K)=0.01073 <i>15</i> ; α (L)=0.00241 <i>4</i> ; α (M)=0.000577 <i>8</i> α (N)=0.0001421 <i>20</i> ; α (O)=2.44×10 ⁻⁵ <i>4</i> ; α (P)=1.136×10 ⁻⁶ <i>16</i> Mult.: DCO=1.06 <i>6</i> (2017Mu12): A ₂ =0.29 <i>4</i> , A ₄ =-0.11 <i>6</i> (1988KaZW).
3946.6	15-	621.4 2	100	3325.1	13-	E2	0.01487	$\alpha(K)=0.01143 \ 16; \ \alpha(L)=0.00262 \ 4; \ \alpha(M)=0.000629 \ 9$ $\alpha(N)=0.0001547 \ 22; \ \alpha(O)=2.65\times10^{-5} \ 4; \ \alpha(P)=1.210\times10^{-6} \ 17$ Mult.: DCO=1.01 7 and POL=0.18 8 (2017Mu12); A ₂ =0.25 5, A ₄ =-0.03 6 (1988KaZW).
4007.6	16+	380.6 <i>5</i> 427.1 <i>2</i>	94 100 <i>11</i>	3627.0 3580.5	16 ⁺ 14 ⁺	E2	0.0368	α (K)=0.0261 4; α (L)=0.00814 12; α (M)=0.00200 3 α (N)=0.000491 7; α (O)=8.19×10 ⁻⁵ 12; α (P)=2.72×10 ⁻⁶ 4 Mult.: DCO=0.98 4 and POL=0.09 5 (2017Mu12); A ₂ =0.34 5, A ₄ =-0.11 6 (1098K-7W)
4174.5	16-	548.7 2	100	3625.8	14-	E2	0.0198	(1988KaZW). $\alpha(K)=0.01490\ 21;\ \alpha(L)=0.00374\ 6;\ \alpha(M)=0.000903\ 13$ $\alpha(N)=0.000222\ 4;\ \alpha(O)=3.78\times10^{-5}\ 6;\ \alpha(P)=1.574\times10^{-6}\ 22$ Mult : DCO=1 12 4 and POL=0 14 4 (2017Mu12)
4237.8	15-	672.8 2	100	3565.0	13-	E2	0.01246	$\alpha(K) = 0.00969 \ 14; \ \alpha(L) = 0.00211 \ 3; \ \alpha(M) = 0.000504 \ 7 \ \alpha(N) = 0.0001241 \ 18; \ \alpha(O) = 2.14 \times 10^{-5} \ 3; \ \alpha(P) = 1.027 \times 10^{-6} \ 15 \ Mult.; \ A_2 = 0.24 \ 4, \ A_4 = -0.11 \ 6 \ (1988 KaZW).$
4243.8	18+	616.8 2	100	3627.0	16+	E2	0.01512	$\alpha(K)=0.01161\ 17;\ \alpha(L)=0.00268\ 4;\ \alpha(M)=0.000642\ 9$ $\alpha(N)=0.0001580\ 23;\ \alpha(O)=2.71\times10^{-5}\ 4;\ \alpha(P)=1.229\times10^{-6}\ 18$ Mult.: DCO=1.13 3 and POL=0.16 6 (2017Mu12); A ₂ =0.35 4, A ₄ =-0.29 6 (1988KaZW)
4280.5	(17 ⁻)	106.0 <i>5</i> 333.9 <i>2</i>	100	4174.5 3946.6	16 ⁻ 15 ⁻	(E2)	0.0721	$\alpha(K)=0.0469\ 7;\ \alpha(L)=0.0191\ 3;\ \alpha(M)=0.00474\ 7$ $\alpha(N)=0.001163\ 17;\ \alpha(O)=0.000191\ 3;\ \alpha(P)=4.78\times10^{-6}\ 7$ Mult.: DCO=1.26 9 (2017Mul2).
4353.2	(17^+)	603.6 2 726.2 ^{&} 5	100	3749.6 3627.0 4007.6	(15 ⁺) 16 ⁺ 16 ⁺			
4549.7	(16 ⁻)	682.5 5	100	3867.2	10 14 ⁻	(E2)	0.01207	$\alpha(K)=0.00941 \ 14; \ \alpha(L)=0.00203 \ 3; \ \alpha(M)=0.000485 \ 7$ $\alpha(N)=0.0001194 \ 17; \ \alpha(O)=2.06\times10^{-5} \ 3; \ \alpha(P)=9.97\times10^{-7} \ 14$ Mult: $\Delta_2=0.24 \ 5$, $\Delta_4=0.07 \ 6$ (1988K aZW)
4593.4	(18 ⁻)	312.9 2	100	4280.5	(17 ⁻)	(M1)	0.272	$\alpha(K)=0.225 \ 4; \ \alpha(L)=0.0366 \ 6; \ \alpha(M)=0.00846 \ 12 \ \alpha(N)=0.00209 \ 3; \ \alpha(O)=0.000377 \ 6; \ \alpha(P)=2.55\times10^{-5} \ 4 \ Mult.: \ DCO=0.67 \ 8 \ (2017Mul2).$
4665.4 4765.4 4947.6	(17 ⁻) (18 ⁻) (19 ⁻)	418.9 5 718.8 2 590.9 5 354.2 2	100 100 100	4174.5 3946.6 4174.5 4593.4	16 ⁻ 15 ⁻ 16 ⁻ (18 ⁻)			
4960.7	20+	716.9 2	100	4243.8	18+	E2	0.01085	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00852 \ 12; \ \alpha(\mathrm{L}) = 0.00179 \ 3; \ \alpha(\mathrm{M}) = 0.000425 \ 6 \\ \alpha(\mathrm{N}) = 0.0001047 \ 15; \ \alpha(\mathrm{O}) = 1.81 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 9.02 \times 10^{-7} \ 13 \\ \mathrm{Mult.: \ DCO = 1.20 \ 10 \ and \ POL = 0.16 \ 13 \ (2017\mathrm{Mul2}); \ \mathrm{A_2} = 0.12 \ 5, \ \mathrm{A_4} = 0.07 \ 6 \\ (1988\mathrm{KaZW}). \end{array} $

13

L

$\gamma(^{188}\text{Pt})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	Comments
5201.3		607.9 5	100	4593.4 (1	8-)	
5505.2		303.9 5		5201.3		
		557.6 5		4947.6 (1	9-)	
5744.9	(22^{+})	784.2 5	100	4960.7 20)+	$A_2=0.095, A_4=-0.046$ (1988KaZW).
6549.9	(24^{+})	805.0 5	100	5744.9 (2	(2^+)	
7367.9	(26^{+})	818.0 5	100	6549.9 (2	(4+)	

[†] From (HI,xnγ), unless otherwise stated.
[‡] From ¹⁸⁸Au ε decay.
[#] From ce data in ¹⁸⁸Ae ε decay, γγ(θ)(DCO), γ(θ), ce ratios, γ-ray polarization and the apparent band structure.
[@] Additional information 2.
[&] Placement of transition in the level scheme is uncertain.

¹⁸⁸₇₈Pt₁₁₀

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁸₇₈Pt₁₁₀

¹⁸⁸₇₈Pt₁₁₀

 $^{188}_{78} \mathrm{Pt}_{110} \text{--} 19$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Adopted Levels, Gammas

¹⁸⁸₇₈Pt₁₁₀

 $^{188}_{78}{\rm Pt}_{110}$