		Type		History	Citation	Literature Cutoff Date					
	Full	Evaluation	E G Kon	dev S Juutinen D I Hartley	NDS 150 1 (2018)	1-Feb-2018					
$Q(\beta^{-}) = -1062$ Additional info	1 15; S(n) ormation)=10900 <i>12</i> ; \$ 1.	S(p)=2660	<i>13</i> ; $Q(\alpha)$ =6109 <i>3</i> 2017Wa10	NDS 150, 1 (2018)	1-reb-2018					
				¹⁸⁸ Pb Levels							
				Cross Reference (XRE	EF) Flags						
				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		Comments						
0	0^{+}	25.5 s 1	ABCD	$\%\epsilon + \%\beta^+ = 91.5 5; \%\alpha = 8.5 5$							
				%α: Weighted average of 8.0 ((1996Bi17). Others: 3-10 (1 T _{1/2} : weighted average of 25.5 (1981To02,1984To09), 24.5 (1972Ga27). Other: 1967Es($A < r^2 > (^{188}Pb \ ^{208}Pb) = -0.930$ fr	5 (2003Va16), 9.3 8 (1 992Wa14,1994Wa13) 5 s I (1993Wa03,1992 s $I5$ (1973Ho01), 26 s 05 quotes a value of 2 $n^2 I0$ (2007De09 200	999An22) and 8.5 <i>13</i> and 22 7 (1981To02). Wa14), 22 s 2 s 2 (1974Le02), 23.6 s 45 6 s, but without uncertainty.					
591.0 20	0+		A C	E(level): From ce data in ¹⁵⁶ Gd(³⁶ Ar,4n γ) (1999Le61). Others: 588 keV 9 (2003Va16), 591 keV 10 (1999An22) and 569 keV 31 (1996Bi17) from Q α and E α . Note the discrepant value of 568 keV 8 (1998Al27).							
723.6 [@] 3	2+	5.9 ps 24	BCD	J^{π} : 723.9 γ E2 to 0 ⁺ ; band assi T _{1/2} : Other: 9 ps 5 (2003De24	gnment.						
725? 2	0+		С	E(level): From ce data 156 Gd(3 decay (2003Va16). J ^{π} : E0 transition to g.s. A cano	6 Ar,4n γ) (1999Le61). lidate for a prolate 0 ⁺	Not observed in ¹⁹² Po α intruder state.					
952.5 <mark>&</mark> <i>3</i>	2^{+}		С	J^{π} : 228.7 γ E0+E2 to 2 ⁺ , 952.5	5γ to 0 ⁺ ; band assignment	nent.					
1063.8 [@] 4	4+	11.0 ps 7	BCD	J^{π} : 340.2 γ E2 to 2 ⁺ ; band assi $T_{1/2}$: Other: 11 ps 6 (2003De2	gnment. 24).						
1195.1 6	$(3,4^{+})$		В	J^{π} : 471.5 γ to 2 ⁺ ; absence of γ	to 0^+ .						
1218.9 ^h 8	(1-)		C	J ^{π} : 1219 γ to 0 ⁺ ; band assignm nuclei.	ent; systematics of sir	nilar structures in neighboring					
1314.9 ^{&} 4	4+		С	J^{π} : 250.8 γ E0+E2 to 4 ⁺ , 362.4	γ E2 to 2 ⁺ ; band assi	gnment.					
1411.3 ⁸ 4	4+		C	J^{π} : 458.8 γ (E2) to 2 ⁺ , 376.6 γ	M1+E2 from 5^+ .						
1433.5 ^w 4	6+	2.8 ps 4	BCD	J^{π} : 369.7 γ E2 to 4 ⁺ ; band assi	gnment.						
1516.9 ⁿ 4	(3-)		С	J^{n} : 793.1 γ (E1) to 2 ⁺ , 298 γ to	(1^{-}) ; band assignment	.t.					
$1786.3^{\circ} 4$ 1788.08 4	6' 5+		BC	J [*] : 352.6 γ E0+E2 to 6 ⁺ , 4/1.: I ^{π} : 429.2 γ from 7 ⁺ 354.8 γ to	5γ E2 to 4'; band assignment	gnment.					
$1867.3^{@}4$	5 8 ⁺	17 ns 3	RCD	I^{π} : 433 82 F2 to 6 ⁺ : hand assi	gnment						
$1956 1^{h} 4$	(5^{-})	1.7 ps 5	BC	I^{π} : 439 1 γ E2 to (3 ⁻) 892 4 γ	(E1) to 4^+ band assign	nment					
2138.0 5	(6^+)		C	J^{π} : 726.7 γ to 4 ⁺ .	(11) to 1, ound using						
2210.5 ^e 4	(5 ⁻)		С	J^{π} : 1146.6 γ to 4 ⁺ , 305.5 γ from	n 7 ⁻ ; band assignment						
2217.1 ⁸ 4	7+		BC	J'': 783.7 γ M1+E2 to 6 ⁺ ; band	l assignment.						
2299.2° 4	8+		BC	J ^{<i>n</i>} : 431.7 γ E0+E2 to 8 ⁺ , 513.0	by E2 to 6^+ ; band assi	gnment.					
2366.3 ^{••} 5 2448.5 4	10 ⁺ (6 ⁻)		BC C	J^{n} : 499.0 γ E2 to 8 ⁺ ; band assi J^{π} : 129 γ E2 from 8 ⁻ , 660.5 γ t	gnment. o 5 ⁺ .						

¹⁸⁸Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2464.7 8			С	E(level): From 1999Le61 in 156 Gd(36 Ar,4n γ).
2474.1 ^{h} 4	(7 ⁻)		BC	J^{π} : 518.0 γ E2 to (5 ⁻), 606.8 γ to 8 ⁺ ; band assignment.
2516.1 ^e 4	(7-)		С	J^{π} : 648.7 γ to 8 ⁺ ; band assignment.
2577.2 ^{<i>a</i>} 4	8-	800 ns 20	BC	$\mu = -0.297 \ 24$
				J ^{**} : $2/8.2\gamma$ E1 10 8 [°] , 300.2γ E1 10 7 [°] , 129γ E2 10 (6 [°]). (:) From $g = -0.037$ 3 using TDPAD (2010Io01) in 164 Er(28 Si 4ng)
				T _{1/2} : Weighted average of 797 ns 21 from sum of 723 γ , 340 γ , 370 γ , 434 γ and
				$360\gamma(t)$ in 2000By02, 830 ns 210 from $370\gamma(t)$ in 1999Dr10 and 820 ns 60 from
				γ (t) in 2010Io01.
				configuration: $K^{\pi} = 8^{-}$, $v(7/2^{-}[514], 9/2^{+}[624])$ at prolate deformation. Based on the
				average of g_{K} - g_{P} = -0.182 /8 from in-band branching ratios (2004Dr04).
2663.4 5	(8)		С	J^{π} : 189.3 γ to 7 ⁻ .
2701.6 ^c 5	11-	26 ns 3	BC	J^{π} : 335.4 γ E1 to 10 ⁺ .
				$T_{1/2}$: Weighted average of 26 ns 4 from 335.4 γ (t) in 1999Dr10 and 27 ns 5 from γ (t) in 2010Io01.
				μ =+11.33 33; from g=+1.03 3 using TDPAD (2010Io01) in ¹⁶⁴ Er(²⁸ Si,4n γ).
				configuration: $K^{\pi} = 11^{-}$, $\pi(9/2^{-}[505] \otimes 13/2^{+}[606])$ at oblate deformation. Based on the
				measured g factor and systematics of similar structures in neighboring nuclei, $g_{K-g_{R}} \approx \pm 0.2$ from in-band branching ratios (2004Dr04) is inconsistent with g factor for
				the 8^- state (2010Io01).
2702.6 ⁸ 4	(9+)		С	J^{π} : 485.5 γ to 7 ⁺ , 835.3 γ to 8 ⁺ ; band assignment.
2709.8 ^d 5	12^{+}	97 ns 8	BC	J^{π} : E2 343.5 γ to 10 ⁺ .
				$T_{1/2}$: Weighted average of 94 ns 14 from 343.5 γ (t) (1999Dr10) and 99 ns 10 from $\gamma(t)$ (2010Le01) in ${}^{164}\Xi_{7}$ (${}^{28}Si$ (4pc))
				$\mu = -2.148$ 72: from $g = -0.179$ 6 using TDPAD (2010Io01) in ¹⁶⁴ Er(²⁸ Si.4n γ).
				configuration: $v(i_{13/2})^{-2}$ at spherical shape.
2725.1 ^h 5	(9-)		С	J^{π} : 251.2 γ to 7 ⁻ , 425.8 γ to 8 ⁺ .
2752.2 ^b 5	9-		С	J^{π} : 174.9 γ M1+E2 to 8 ⁻ ; band assignment.
2778.0 ^{<i>f</i>} 5	(8 ⁻)		С	J^{π} : 329.4 γ to (6 ⁻), 561.0 γ to 7 ⁺ ; band assignment.
2833.4 ^{&} 5	10^{+}		С	J^{π} : 534.2 γ E2 to 8 ⁺ ; band assignment.
2853.8 ^e 4	(9 ⁻)		С	J^{π} : 487.5 γ to 10 ⁺ , 986.5 γ to 8 ⁺ ; band assignment.
2923.8 ⁶ 5	12+		C	J^{π} : 557.5 γ E2 to 10 ⁺ ; band assignment.
2945.3^{a} 5	10		C	J^{*} : 193.0 γ M1+E2 to 9, 368.1 γ E2 to 8; band assignment.
3147.0° 5	(10^{-})		C	J^{*} : 201.6 γ to 10 , 394.9 γ to 9 ; band assignment.
3105.77 0	(10) 11^{-}		C C	J^{-1} : 38/.77 to (8); band assignment. I^{π} : 238.22 M1+F2 to 10 ⁻¹ 431.22 (F2) to 9 ⁻¹
3229.2 [°] 5	12^{-11}		c	J^{π} : 527.5 γ M1+E2 to 11 ⁻ ; band assignment.
3240.7 <mark>8</mark> 5	(11^{+})		С	J^{π} : 538.1 γ to (9 ⁺); band assignment.
3241.9 ^e 5	(11-)		С	J^{π} : 318.4 γ to 12 ⁺ , 388.1 γ to (9 ⁻), 875.7 γ to 10 ⁺ : band assignment.
3389.6° 6	12^+ 12^-		C	J^{π} : 556.2 γ to 10 ⁺ ; band assignment.
3599.4 J	12		C	J : 232.27 to 11 , 434.17 to 10 , band assignment.
3617.1 [°] 5	13-		c	J^{π} : 387.7 γ M1+E2 to 12 ⁻ , 915.5 γ E2 to 11 ⁻ ; band assignment.
3649.9 <mark>b</mark> 5	13-		С	J^{π} : 250.5 γ M1+E2 to 12 ⁻ , 466.4 γ to 11 ⁻ ; band assignment.
3680.2 ^e 5	(13 ⁻)		С	J^{π} : 451.0 γ M1+E2 to 12 ⁻ , 978.6 γ E2 to 11 ⁻ ; band assignment.
3699.7 ^d 5	14^{+}		С	J^{π} : 989.9 γ E2 to 12 ⁺ .
3754.5 6	(13^{-})		C	J^{π} : 571.8 γ to 11 ⁻ .
3821 3 11	(13^{+}) (12)		C C	J^{**} : 501.67 to (11°); band assignment. $J^{\pi_{1}}$: 1455 γ to 10 ⁺
3843.9 6	(12) (13^{-})		č	J^{π} : 614.7 γ (M1) to 12 ⁻ .

¹⁸⁸Pb Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
3930.4 ^a 6	14-		С	J^{π} : 280.7 γ to 13 ⁻ , 530.9 γ to 12 ⁻ ; band assignment.
3983.4 <mark>&</mark> 7	(14^{+})		С	J^{π} : 593.8 γ to 12 ⁺ ; band assignment.
3983.8 6	(13)		С	J^{π} : 754.6 γ to 12 ⁻ .
4096.4 ^c 5	15-		С	J^{π} : 479.2 γ E2 to 13 ⁻ , 566.6 γ to 14 ⁺ .
4136.2 6	(13)		С	J^{π} : 907.0 γ to 12 ⁻ .
4163.4 [@] 6	16^{+}		С	J^{π} : 633.6 γ E2 to 14 ⁺ ; band assignment.
4211.9 ^b 6	15-		С	J^{π} : 562.0 γ to 13 ⁻ ; band assignment.
4244.9 ^d 6	15^{+}		С	J^{π} : 545.2 γ (M1) to 14 ⁺ , 267 γ M1+E2 from 16 ⁺ .
4250.4 6	(15 ⁻)		С	J^{π} : 570.2 γ (E2) to 13 ⁻ .
4294.3 12	(13)		С	J^{π} : 473.0 γ to (12).
4389.8? 10			C	E(level): 546γ to (13 ⁻); level not shown in level scheme (figures 1 and 2) of 2004Dr04.
4409.0 6	(14 ⁻)		С	J^{π} : 791.9 γ to 13 ⁻ .
4512.4 ^d 6	16+		С	J^{π} : 267.5 γ M1+E2 to 15 ⁺ , 982.6 γ and 812.8 γ to 14 ⁺ .
4533.0 ^a 6	16-		С	J^{π} : 602.6 γ to 14 ⁻ ; band assignment.
4565.6 [°] 6	17^{-}		С	J^{π} : 469.2 γ E2 to 15 ⁻ .
4780.0 7	(17)		С	J^{π} : 616.6 γ to 16 ⁺ .
4783.4 7	(19 ⁻)	0.44 µs 6	С	J^{π} : 217.8 γ (E2) to 17 ⁻ .
				T _{1/2} : from $\gamma\gamma\gamma(t)$ (2004Dr04). configuration: $\pi(9/2^{-}[505], 13/2^{+}[606]) \otimes \nu(7/2^{+}[633], 9/2^{+}[624])$.
4868.2 [@] 7	(18^{+})		С	J^{π} : 704.8 γ to 16 ⁺ ; band assignment.
5084.2 [°] 7	(18 ⁻)		С	J^{π} : 518.6 γ (M1) to 17 ⁻ .
5128.4 8	(20^{-})		С	J^{π} : 345.0 γ to (19 ⁻).
5435.0 12	(19)		С	J^{π} : 655 γ to (17).
5725.4 8	(21^{-})		С	J^{π} : 597.0 γ to (20 ⁻).

[†] From least-squares fit to $E\gamma$, unless otherwise stated.

[‡] Based on the deduced transition multipolarities, systematics, band assignment, and relative population in (HI,xnγ). Most of the assignments are adopted from 2004Dr04 (¹⁵⁶Gd(³⁶Ar,4nγ)).
 [#] From 2006Gr16 (also 2008Gr04) in ¹⁰⁸Pd(⁸³Kr,3nγ), using the differential-decay curve method, unless otherwise stated.

- [@] Band(A): $K^{\pi} = 0^+$, prolate-deformed yrast band.
- & Band(B): $K^{\pi} = 0^+$, oblate-deformed band.
- ^{*a*} Band(C): $K^{\pi} = 8^{-}$, $v(7/2^{-}[514], 9/2^{+}[624])$ (prolate), $\alpha = 0$.
- ^b Band(c): $K^{\pi} = 8^{-}$, $v(7/2^{-}[514], 9/2^{+}[624])$ (prolate), $\alpha = 1$.
- ^c Band(D): $K^{\pi} = 11^{-}$, $\pi(9/2^{-}[505], 13/2^{+}[606])$ oblate-deformed band.
- ^d Seq.(H): γ cascade based on $J^{\pi}=12^+ \nu(i_{13/2})^{-2}$ (spherical).
- ^{*e*} Band(E): (5⁻) band, possible $v(p_{3/2}, i_{13/2})$ configuration.
- ^{*f*} Band(e): (6⁻) band, possible $\nu(p_{3/2}, i_{13/2})$ configuration.
- ^{*g*} Band(F): possible γ band, $\alpha = 1$.
- ^{*h*} Band(G): possible $K^{\pi}=1^{-}$ octupole band.

$\gamma(^{188}\text{Pb})$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_j^{\pi}$, Mult. [†]	α^{\ddagger}	Comments
591.0	0+	591 2		0 0	E0		E _{γ} : Transition energy from measured E(ce)(K). No E γ has been observed. Mult.: from K:L = 5:1 from ce data in ¹⁵⁶ Gd(³⁶ Ar 4ng) (1999) a61)
723.6	2+	723.5 5	100	0 0	⁺ E2	0.01280	B(E2)(W.u.)=7 3 α (K)=0.00981 14; α (L)=0.00227 4; α (M)=0.000550 8 (N)=0.0001202 20 (O)=2.60.10^{-5} 4
							$\alpha(N)=0.0001393\ 20;\ \alpha(O)=2.69\times10^{-6}\ 4;$ $\alpha(P)=2.39\times10^{-6}\ 4$ Mult : DCO=0.96.7 from ¹⁵⁶ Gd(³⁶ Ar 4nx)
725?	0+	725 [@] 2		0 0*	⊦ E0		E _{γ} : Transition energy from the measured E(ce)(K). Note that the energy overlaps with the much stronger 723.9 γ , E2 2 ⁺ to 0 ⁺ transition. Mult.: K:L = 5.4:1.0 from ce data in ¹⁵⁶ Gd(³⁶ Ar,4n γ) (1999Le61). The measured large α (K)exp=0.044 5 for the doublet 725 γ indicate E0 component. A 767 keV <i>12</i> E0 transition was reported in ¹⁹² Po α decay (1998A127), but the population of this state was questioned in the later ¹⁹² Po α decay work (2003Va16).
952.5	2+	228.7 3	9.4 7	723.6 2	+ E0+E2	2.9 5	Mult.: $A_2 = -0.33 \ 15$, $\alpha(\exp) = 2.9 \ 5$ from ¹⁵⁶ Gd(³⁶ Ar,4n\gamma); E0 component inferred from large $\alpha(\exp)$ and A_2 implies large E2 component. An M1 admixture should be expected, if $K \neq 0$ for the initial and final states. α : From $\alpha(\exp)$ in 2004Dr04 (¹⁵⁶ Gd(³⁶ Ar,4n\gamma)).
1063.8	4+	952.5 <i>3</i> 340.2 <i>3</i>	100 <i>3</i> 100	0 0 ⁻ 723.6 2 ⁻	+ + E2	0.0802	B(E2)(W.u.)=163 <i>11</i> α (K)=0.0486 7; α (L)=0.0237 4; α (M)=0.00605 9 α (N)=0.001530 22; α (O)=0.000283 4; α (P)=1.84×10 ⁻⁵ 3 Mult.: A ₂ =+0.24 4, DCO=0.96 7, α (K)exp=0.065 20 from ¹⁵⁶ Gd(³⁶ Ar 4ny)
1195.1 1218.9	$(3,4^+)$ (1^-)	471.5 <i>5</i> 1219 <i>1</i>	100 100	$723.6 2^{+}$	+		E_{γ} : From ¹⁶⁴ Er(²⁸ Si,4n γ).
1314.9	4+	250.8 <i>3</i>	11.7 <i>10</i>	1063.8 4	+ E0+E2	2.4 3	Mult.: $A_2 = -0.31$ 18, $\alpha(exp) = 2.4$ 3; E0 component inferred from large $\alpha(exp)$ and A_2 implies large E2 component. An M1 admixture should be expected, if $K \neq 0$ for the initial and final states.
		362.4 <i>3</i>	100 3	952.5 2	⁺ E2	0.0672	α: From $\alpha(\exp)$ in 2004Dr04 (¹³⁶ Gd(³⁰ Ar,4nγ)). $\alpha(K)=0.0421 6$; $\alpha(L)=0.0189 3$; $\alpha(M)=0.00480 7$ $\alpha(N)=0.001215 18$; $\alpha(O)=0.000226 4$; $\alpha(P)=1.517\times10^{-5} 22$ Mult : $\Delta_{2}=\pm0.16 14$
		591.5 <i>3</i>	99 <i>4</i>	723.6 2	⁺ E2	0.0199	E _y : 360.2y and 362.4y form a doublet structure. $\alpha(K)=0.01466\ 21;\ \alpha(L)=0.00394\ 6;\ \alpha(M)=0.000967$ 14 $\alpha(N)=0\ 000245\ 4;\ \alpha(Q)=4\ 67\times10^{-5}\ 7;$
1411.3	4+	458.8 <i>3</i>	100	952.5 2	+ (E2)	0.0362	$\begin{aligned} &\alpha(P) = 3.90 \times 10^{-6} \ 6 \\ &\text{Mult.: } A_2 = +0.39 \ 10. \\ &\alpha(K) = 0.0250 \ 4; \ \alpha(L) = 0.00852 \ 12; \ \alpha(M) = 0.00213 \ 3 \\ &\alpha(N) = 0.000539 \ 8; \ \alpha(O) = 0.0001014 \ 15; \\ &\alpha(P) = 7.62 \times 10^{-6} \ 11 \\ &\text{Mult.: } A_2 = +0.23 \ 14. \end{aligned}$

γ ⁽¹⁸⁸Pb) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
1433.5	6+	369.7 <i>3</i>	100	1063.8 4	+	E2	0.0637	B(E2)(W.u.)= 4.3×10^2 7 α (K)= 0.0402 6; α (L)= 0.0176 3; α (M)= 0.00447 7 α (N)= 0.001131 17; α (O)= 0.000210 3; α (P)= 1.427×10^{-5} 21
1516.0	(2-)	208 1	24.0	1212.0 (1	1-)			Mult.: $A_2 = +0.26 4$, DCO=1.06 <i>10</i> (1993He05).
1310.9	(3)	793.1 <i>3</i>	100 <i>14</i>	723.6 2	1) +	(E1)	0.00383	$\alpha(K)=0.00319$ 5; $\alpha(L)=0.000494$ 7; $\alpha(M)=0.0001142$ 16
								$\alpha(N)=2.89\times10^{-3} 4; \ \alpha(O)=5.71\times10^{-6} 8; \\ \alpha(P)=5.81\times10^{-7} 9$
1786.3	6+	352.6 3	6.3 11	1433.5 6	;+	E0+E2	1.3 3	Mult.: $A_2 = -0.2$ 3. Mult.: $\alpha(\exp) = 1.3$ 3; E0 component inferred from large $\alpha(\exp)$. An M1 admixture should be expected, if K \neq 0 for the initial and final states.
		471.5 <i>3</i>	100 2	1314.9 4	+	E2	0.0339	α: From $\alpha(\exp)$ in 2004Dr04 (¹³⁶ Gd(³⁶ Ar,4nγ)). $\alpha(K)=0.0235 4$; $\alpha(L)=0.00781 11$; $\alpha(M)=0.00195 3$ $\alpha(N)=0.000493 7$; $\alpha(O)=9.29\times10^{-5} 14$; $\alpha(P)=7.07\times10^{-6} 10$
								Mult.: $A_2 = +0.24$ 10. E_{γ} : 471.5 γ and 472.9 γ from 1788 form a doublet structure.
		723 1	14 4	1063.8 4	+			
1788.0	5+	354.8 <i>3</i>	24 7	1433.5 6	;+ +			
		376.6 <i>3</i>	100 14	1411.3 4	Ŧ	M1+E2	0.230	$\begin{array}{l} \alpha(\text{K})=0.188 \ 3; \ \alpha(\text{L})=0.0320 \ 5; \ \alpha(\text{M})=0.00748 \ 11 \\ \alpha(\text{N})=0.00190 \ 3; \ \alpha(\text{O})=0.000379 \ 6; \\ \alpha(\text{P})=4.06\times10^{-5} \ 6 \end{array}$
		472.9 <i>3</i>	99 4	1314.9 4	+			Mult.: $A_2 = +1.0 4$. E_{γ} : 471.5 γ from 1786.4 and 472.9 γ form a doublet structure.
		724	≈14	1063.8 4	+			
1867.3	8+	433.8 3	100	1433.5 6	;+	E2	0.0417	B(E2)(W.u.)= $3.3 \times 10^2 6$ α (K)= $0.0282 4$; α (L)= $0.01022 15$; α (M)= $0.00257 4$ α (N)= $0.000649 10$; α (O)= $0.0001217 18$; α (P)= $8.92 \times 10^{-6} 13$ Multi A = $0.026 4$ DCO= $1.07.0$ (1002U205)
1956.1	(5 ⁻)	439.1 <i>3</i>	54 5	1516.9 (3	3-)	E2	0.0405	$\alpha(K)=0.0274 \ 4; \ \alpha(L)=0.00982 \ 14; \ \alpha(M)=0.00246 \ 4 \\ \alpha(N)=0.000623 \ 9; \ \alpha(O)=0.0001169 \ 17; \\ \alpha(P)=8.62\times10^{-6} \ 13$
								Mult.: $A_2 = +0.29 \ 20.$
		892.4 <i>3</i>	100 8	1063.8 4	+	(E1)	0.00308	$\alpha(K)=0.00257 \ 4; \ \alpha(L)=0.000394 \ 6; \\ \alpha(M)=9.09\times10^{-5} \ 13 \\ \alpha(L)=2.20\times10^{-5} \ 4; \ \alpha(Q)=4.55\times10^{-6} \ 7;$
								$\alpha(N) = 2.50 \times 10^{-7} 7$ $\alpha(P) = 4.67 \times 10^{-7} 7$
2138.0	(6^{+})	726 7 3	100	1411.3 4	+			Mult.: $A_2 = -0.11$ 10.
2130.0	(5^{-})	1146.6 3	100	1063.8 4	+			
2217.1	7+	429.2 <i>3</i>	100 11	1788.0 5	+			E_{γ} : 429.2 γ and 430.6 γ form a doublet structure.
		430.6 <i>3</i> 783.7 <i>3</i>	21 <i>3</i> 56 6	1786.3 6 1433.5 6	+ +	M1+E2	0.0333	E_{γ} : 429.2γ and 430.6γ form a doublet structure. α (K)=0.0274 4; α (L)=0.00455 7; α (M)=0.001061 15
								$\alpha(N)=0.000270 \ 4; \ \alpha(O)=5.38\times10^{-5} \ 8; \ \alpha(P)=5.78\times10^{-6} \ 9$
2299.2	8+	431.7 <i>3</i>	19 <i>3</i>	1867.3 8	+	E0+E2	≈0.3	Mult.: $\alpha(\exp) \approx 0.3$; E0 component inferred from large $\alpha(\exp)$. An M1 admixture should be

γ ⁽¹⁸⁸Pb) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
2299.2	8+	513.0 3	100 3	1786.3	6+	E2	0.0276	expected, if $K \neq 0$ for the initial and final states. α : From α (exp) in 2004Dr04 (156 Gd(36 Ar,4n γ)). α (K)=0.0197 3; α (L)=0.00600 9; α (M)=0.001489 21 α (N)=0.000377 6; α (O)=7.13×10 ⁻⁵ 10; α (P)=5.63×10 ⁻⁶ 8
2366.3	10+	866 <i>1</i> 499.0 <i>3</i>	9 <i>3</i> 100	1433.5 1867.3	6+ 8+	E2	0.0295	Mult.: A ₂ =+0.21 9. α (K)=0.0209 3; α (L)=0.00653 10; α (M)=0.001624 23 α (N)=0.000411 6; α (O)=7.77×10 ⁻⁵ 11; α (P)=6.06×10 ⁻⁶ 9
2448.5	(6 ⁻)	660.5 <i>3</i> 1015 <i>1</i>	100 <i>17</i> 35 5	1788.0 1433.5	5+ 6+			Mult.: $A_2 = +0.26 4$, DCO=1.10 <i>11</i> (1993He05).
2464.7	(7-)	1031 <i>1</i> 1401 <i>1</i>	100.5	1433.5 1063.8	6^+ 4^+	50	0.0070	E_{γ} : From 1999Le61 in ¹⁵⁶ Gd(³⁶ Ar,4nγ). E_{γ} : From 1999Le61 in ¹⁵⁶ Gd(³⁶ Ar,4nγ).
2474.1	(/)	518.0 3	100 5	1956.1	(5)	E2	0.0270	α (K)=0.0193 3; α (L)=0.00583 9; α (M)=0.001444 21 α (N)=0.000366 6; α (O)=6.93×10 ⁻⁵ 10; α (P)=5.48×10 ⁻⁶ 8 Mult.: A ₂ =+0.33 13.
2516.1	(7-)	606.8 <i>3</i> 688 <i>1</i> 1040 <i>1</i> 305.5 <i>3</i>	≈6.7 ≈3.3 ≈20 ≈14	1867.3 1786.3 1433.5 2210.5	8^+ 6^+ (5^-)			-
2577.2	0-	648.7 <i>3</i>	100 19	1867.3	8 ⁺	1.41	0 (0 14	$P(M)(M) > 0.2 \cdot 10^{-7} I_{5}$
2311.2	0	129 /	14.2 20	2474.1	(7)	E2	2.20 8	B(M1)(w.u.)=9.5×10 ⁻¹⁷⁵ $\alpha(K)=7.00\ 12;\ \alpha(L)=1.221\ 20;\ \alpha(M)=0.286\ 5$ $\alpha(N)=0.0728\ 12;\ \alpha(O)=0.01450\ 24;\ \alpha(P)=0.00155\ 3$ Mult.: $\alpha(\exp)=8\ 2.$ $\alpha(K)=0.413\ 8;\ \alpha(L)=1.33\ 6;\ \alpha(M)=0.352\ 14$
					(-)			α (N)=0.089 4; α (O)=0.0159 7; α (P)=0.000671 25 B(E2)(W.u.)=0.0120 20 Mult.: α (exp)=2.0 13.
		278.2 3	47.3 20	2299.2	8+	E1	0.0352	B(E1)(W.u.)=1.54×10 ⁻⁹ 12 α (K)=0.0288 4; α (L)=0.00491 7; α (M)=0.001147 17 α (N)=0.000289 5; α (O)=5.60×10 ⁻⁵ 8; α (P)=5.14×10 ⁻⁶ 8 Write (corp.) 0.08 5
		360.2 3	100 3	2217.1	7+	E1	0.0195	Mult.: $\alpha(\exp)=0.08$ 5. B(E1)(W.u.)=1.50×10 ⁻⁹ 11 $\alpha(K)=0.01599$ 23; $\alpha(L)=0.00265$ 4; $\alpha(M)=0.000618$ 9 $\alpha(N)=0.0001559$ 22; $\alpha(O)=3.04\times10^{-5}$ 5; $\alpha(P)=2.88\times10^{-6}$ 4 Mult.: $\alpha(\exp)<0.05$
		709.9 3	41.2 20	1867.3	8+	[E1]	0.00474	$E_{\gamma}: 360.2\gamma \text{ and } 362.4\gamma \text{ form a doublet structure.} B(E1)(W.u.)=8.1×10-11 7α(K)=0.00394 6; α(L)=0.000614 9; α(M)=0.000142120α(N)=3.59×10-5 5; α(O)=7.09×10-6 10;$
2663.4 2701.6	(8) 11 ⁻	189.3 <i>3</i> 335.4 <i>3</i>	100 100	2474.1 2366.3	(7 ⁻) 10 ⁺	E1	0.0229	$\alpha(P)=7.16\times10^{-7} \ 10$ B(E1)(W.u.)=2.05×10 ⁻⁷ \ 24 $\alpha(K)=0.0188 \ 3; \ \alpha(L)=0.00314 \ 5; \ \alpha(M)=0.000731 \ 11$ $\alpha(N)=0.000184 \ 3; \ \alpha(O)=3.59\times10^{-5} \ 5; \ \alpha(P)=3.37\times10^{-6} \ 5$ Mult.: A ₂ =-0.16 8.

γ ⁽¹⁸⁸Pb) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
2702.6 2709.8	(9 ⁺) 12 ⁺	485.5 <i>3</i> 835.3 <i>3</i> 343.5 <i>3</i>	100 5 100 <i>17</i> 100	2217.1 1867.3 2366.3	7+ 8+ 10+	E2	0.0780	B(E2)(W.u.)=0.0177 <i>15</i> α (K)=0.0475 <i>7</i> ; α (L)=0.0229 <i>4</i> ; α (M)=0.00584 <i>9</i> α (N)=0.001477 <i>22</i> ; α (O)=0.000273 <i>4</i> ;
2725.1 2752.2	(9 ⁻) 9 ⁻	251.2 <i>3</i> 425.8 <i>3</i> 174.9 <i>3</i>	100 <i>30</i> 40 <i>10</i> 100	2474.1 2299.2 2577.2	(7 ⁻) 8 ⁺ 8 ⁻	M1+E2	1.91	$\alpha(P)=1.79\times10^{-5}$ 3 Mult.: A ₂ =+0.18 <i>11</i> . $\alpha(K)=1.557$ 23; $\alpha(L)=0.268$ 4; $\alpha(M)=0.0629$ <i>10</i> $\alpha(N)=0.01599$ 24; $\alpha(O)=0.00319$ 5;
2778.0 2833.4	(8 ⁻) 10 ⁺	329.4 <i>3</i> 561.0 <i>3</i> 534.2 <i>3</i>	62 9 100 8 100	2448.5 2217.1 2299.2	(6 ⁻) 7 ⁺ 8 ⁺	E2	0.0251	α (P)=0.000341 5 Mult.: A ₂ =-0.63 18. α (K)=0.0181 3; α (L)=0.00531 8; α (M)=0.001313 19
2853.8	(9-)	337.6 3	17.0 24	2516.1	(7-)			α (N)=0.000332 5; α (O)=6.31×10 ⁻⁵ 9; α (P)=5.06×10 ⁻⁶ 8 Mult.: A ₂ =+0.31 5.
2923.8 2945.3	12 ⁺ 10 ⁻	380.4 <i>3</i> 487.5 <i>3</i> 986.5 <i>3</i> 557.5 <i>3</i> 193.0 <i>3</i>	≈20 100 12 38 4 100 100 10	2474.1 2366.3 1867.3 2366.3 2752.2	(7^{-}) 10^{+} 8^{+} 10^{+} 9^{-}	E2 M1+E2	1.447 22	Mult.: A ₂ =+0.37 6, DCO=1.22 <i>16</i> (1993He05). α (K)=1.181 <i>18</i> ; α (L)=0.203 <i>3</i> ; α (M)=0.0476 <i>7</i>
		368.1 <i>3</i>	67 14	2577.2	8-	E2	0.0644	α (N)=0.01211 <i>18</i> ; α (O)=0.00241 <i>4</i> ; α (P)=0.000258 <i>4</i> Mult.: A ₂ =-0.72 <i>17</i> . α (K)=0.0406 <i>6</i> ; α (L)=0.0179 <i>3</i> ; α (M)=0.00454 <i>7</i> α (N)=0.001149 <i>17</i> ; α (O)=0.000213 <i>3</i> ; α (P)=1.446×10 ⁻⁵ 21
3147.0	11-	201.6 <i>3</i> 394.9 <i>3</i>	100 <i>18</i> 86 <i>18</i>	2945.3 2752.2	10^{-} 9 ⁻			Mult.: $A_2 = +0.29 \ 20.$
3183.4	(10) 11 ⁻	387.7" 3 238.2 3	84 <i>16</i>	2778.0 2945.3	(8) 10 ⁻	M1+E2	0.805	α (K)=0.657 <i>10</i> ; α (L)=0.1127 <i>17</i> ; α (M)=0.0264 <i>4</i> α (N)=0.00671 <i>10</i> ; α (O)=0.001338 <i>20</i> ; α (P)=0.0001430 <i>21</i> With: $A = 0.82$
		431.2 3	100 20	2752.2	9-	(E2)	0.0424	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0286 \ 4; \ \alpha(\mathrm{L}) = 0.01043 \ 15; \\ \alpha(\mathrm{M}) = 0.00262 \ 4 \\ \alpha(\mathrm{N}) = 0.000662 \ 10; \ \alpha(\mathrm{O}) = 0.0001242 \ 18; \\ \alpha(\mathrm{P}) = 9.07 \times 10^{-6} \ 13 \\ \end{array}$
3229.2	12-	527.5 3	100	2701.6	11-	M1+E2	0.0937	Mult.: $A_2 \approx +0.3$. $\alpha(K)=0.0768 \ I1; \ \alpha(L)=0.01292 \ I9;$ $\alpha(M)=0.00302 \ 5$ $\alpha(N)=0.000767 \ I1; \ \alpha(O)=0.0001530 \ 22;$ $\alpha(P)=1.640 \times 10^{-5} \ 24$
3240.7 3241.9	(11^+) (11^-)	538.1 <i>3</i> 318.4 <i>3</i> 388.1 <i>3</i> 875.7 <i>3</i>	100 18 4 100 <i>10</i> 37 7	2702.6 2923.8 2853.8 2366.3	(9 ⁺) 12 ⁺ (9 ⁻) 10 ⁺			Mun A20.05 J.
3389.6	12+	556.2 3	100	2833.4	10+			

γ ⁽¹⁸⁸Pb) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
3399.4	12-	252.2 3	37 9	3147.0	11-			
3529.8	14 ⁺	454.1 <i>3</i> 606.0 <i>3</i>	100 <i>14</i> 100	2945.3 2923.8	10 ⁻ 12 ⁺	E2	0.0188	$\alpha(K)=0.01396\ 20;\ \alpha(L)=0.00368\ 6;$
								$\alpha(M) = 0.000902 \ 13$ $\alpha(N) = 0.000228 \ 4; \ \alpha(O) = 4.36 \times 10^{-5} \ 7;$ $\alpha(P) = 3.67 \times 10^{-6} \ 6$ Mult : $A_{2} = +0.22 \ 10 \ DCO = 1.07.22 \ (1993He05)$
3617.1	13-	387.7 [#] 3	59 [#] 3	3229.2	12-	M1+E2	0.213	$\alpha(K)=0.1742\ 25;\ \alpha(L)=0.0296\ 5;\ \alpha(M)=0.00691\ 10 \\ \alpha(N)=0.001757\ 25;\ \alpha(O)=0.000350\ 5; \\ \alpha(P)=3.75\times10^{-5}\ 6$
		915.5 <i>3</i>	100 5	2701.6	11-	E2	0.00792	Mult.: $A_2=-0.42$ 9. $\alpha(K)=0.00626$ 9; $\alpha(L)=0.001267$ 18; $\alpha(M)=0.000303$ 5 $\alpha(N)=7.68\times10^{-5}$ 11; $\alpha(O)=1.496\times10^{-5}$ 21;
3649.9	13-	250.5 <i>3</i>	57 14	3399.4	12-	M1+E2	0.700	α (P)=1.417×10 ⁻⁶ 20 Mult.: A ₂ =+0.22 9. α (K)=0.572 9; α (L)=0.0980 15; α (M)=0.0230 4 α (N)=0.00583 9; α (O)=0.001163 17; α (P)=0.0001243 18 Mult.: A ₂ =-0.5 3.
		466.4 3	100 14	3183.4	11-			
2(00.2	(12-)	503.0 3	86 19	3147.0	11-			
3680.2	(13)	438.4 3 451.0 3	100 <i>12</i> 53 <i>3</i>	3241.9 3229.2	(11) 12^{-}	M1+E2	0.1420	$\alpha(K)=0.1163 \ 17; \ \alpha(L)=0.0197 \ 3; \ \alpha(M)=0.00460$
								α (N)=0.001168 <i>17</i> ; α (O)=0.000233 <i>4</i> ; α (P)=2.49×10 ⁻⁵ <i>4</i> Mult.: A ₂ =-0.48 <i>12</i> .
		756.2 <i>3</i> 978.6 <i>3</i>	23 5 41 3	2923.8 2701.6	12+ 11-	E2	0.00695	α (K)=0.00552 8; α (L)=0.001085 16; α (M)=0.000259 4 α (N)=6.55×10 ⁻⁵ 10; α (O)=1.279×10 ⁻⁵ 18; α (P)=1.229×10 ⁻⁶ 18 Mult.: A ₂ =+0.31 20.
3699.7	14+	776 1	26 5	2923.8	12^{+}			
		989.9 <i>3</i>	100 5	2709.8	12+	E2	0.00679	$\alpha(K)=0.00541 \ 8; \ \alpha(L)=0.001057 \ 15; \alpha(M)=0.000252 \ 4 \alpha(N)=6.38\times10^{-5} \ 9; \ \alpha(O)=1.246\times10^{-5} \ 18; \alpha(P)=1.199\times10^{-6} \ 17 Mult.: \ A_2=+0.32 \ 12.$
3754.5	(13 ⁻)	571.1 3	100	3183.4	11-			-
3802.5	(13^{+})	561.8 3	100	3240.7	(11^+)			
3821.3	(12) (13^{-})	1455 <i>I</i> 614 7 3	100	2366.3	10'	(M1)	0.0627	$\alpha(K) = 0.0514.8$; $\alpha(L) = 0.00861.13$;
5073.9	(15)	014.7 5	100	5229.2	12	(111)	0.0027	$\begin{array}{l} \alpha(M) = 0.00201 \ 3\\ \alpha(M) = 0.00201 \ 3\\ \alpha(N) = 0.000511 \ 8; \ \alpha(O) = 0.0001019 \ 15; \\ \alpha(P) = 1.094 \times 10^{-5} \ 16 \\ \end{array}$
3930.4	14-	280.7 3	≈33	3649.9	13-			······································
		530.9 <i>3</i>	100 24	3399.4	12^{-}			
3983.4	(14^{+})	593.8 <i>3</i>	100	3389.6	12^{+}			
3983.8	(13)	754.6 3	100	3229.2	12-	5.2	0.011	
4096.4	15-	416.3 <i>3</i>	62 7	3680.2	(13 ⁻)	E2	0.0464	α (K)=0.0308 5; α (L)=0.01172 17; α (M)=0.00295 5

γ ⁽¹⁸⁸Pb) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
4096.4	15-	479.2 3	100 4	3617.1	13-	E2	0.0326	$\begin{aligned} &\alpha(\text{N}) = 0.000746 \ 11; \ \alpha(\text{O}) = 0.0001396 \ 20; \\ &\alpha(\text{P}) = 1.004 \times 10^{-5} \ 15 \\ &\text{Mult.: } \text{A}_2 = +0.31 \ 16. \\ &\alpha(\text{K}) = 0.0227 \ 4; \ \alpha(\text{L}) = 0.00742 \ 11; \ \alpha(\text{M}) = 0.00185 \ 3 \\ &\alpha(\text{N}) = 0.000468 \ 7; \ \alpha(\text{O}) = 8.82 \times 10^{-5} \ 13; \\ &\alpha(\text{P}) = 6.76 \times 10^{-6} \ 10 \\ &\text{Mult.: } \text{A}_2 = +0.26 \ 9. \end{aligned}$
4136.2 4163.4	(13) 16 ⁺	566.6 <i>3</i> 907.0 <i>3</i> 633.6 <i>3</i>	13.2 25 100 100	3529.8 3229.2 3529.8	14 ⁺ 12 ⁻ 14 ⁺	E2	0.01705	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01276 \ 18; \ \alpha(\mathbf{L}) = 0.00325 \ 5; \\ &\alpha(\mathbf{M}) = 0.000793 \ 12 \\ &\alpha(\mathbf{N}) = 0.000201 \ 3; \ \alpha(\mathbf{O}) = 3.85 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{P}) = 3.29 \times 10^{-6} \ 5 \\ &\text{Mult.: } \mathbf{A}_2 = +0.36 \ 16. \end{aligned}$
4211.9 4244.9	15 ⁻ 15 ⁺	562.0 <i>3</i> 545.2 <i>3</i>	100 76 <i>6</i>	3649.9 3699.7	13 ⁻ 14 ⁺	(M1)	0.0859	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0704 \ 10; \ \alpha(\mathbf{L}) = 0.01184 \ 17; \ \alpha(\mathbf{M}) = 0.00277 \\ &4 \\ &\alpha(\mathbf{N}) = 0.000703 \ 10; \ \alpha(\mathbf{O}) = 0.0001402 \ 20; \\ &\alpha(\mathbf{P}) = 1.503 \times 10^{-5} \ 22 \\ &\text{Mult.: } \mathbf{A}_2 = -0.13 \ 19. \end{aligned}$
4250.4	(15 ⁻)	715.2 <i>3</i> 570.2 <i>3</i>	100 <i>11</i> 100	3529.8 3680.2	14 ⁺ (13 ⁻)	(E2)	0.0216	α (K)=0.01580 23; α (L)=0.00438 7; α (M)=0.001078 16 α (N)=0.000273 4; α (O)=5.20×10 ⁻⁵ 8; α (P)=4.28×10 ⁻⁶ 6 Mult.: A ₂ =+0.2 3.
4294.3 4389.8? 4409.0	(13) (14 ⁻)	473.0 <i>3</i> 546 [@] 791.9 <i>3</i>	100 100 100	3821.3 3843.9 3617.1	(12) (13 ⁻) 13 ⁻			-
4512.4	16+	267.5 3	100 21	4244.9	15+	M1+E2	0.584	$\begin{array}{l} \alpha(\mathrm{K}) = 0.477 \ 7; \ \alpha(\mathrm{L}) = 0.0817 \ 12; \ \alpha(\mathrm{M}) = 0.0191 \ 3\\ \alpha(\mathrm{N}) = 0.00486 \ 7; \ \alpha(\mathrm{O}) = 0.000969 \ 14; \\ \alpha(\mathrm{P}) = 0.0001036 \ 15\\ \mathrm{Mult.:} \ \mathrm{A_2} = -0.39 \ 20. \end{array}$
4533.0 4565.6	16 ⁻ 17 ⁻	812.8 <i>3</i> 982.6 <i>3</i> 602.6 <i>3</i> 469.2 <i>3</i>	28 8 29 8 100 100	3699.7 3529.8 3930.4 4096.4	14 ⁺ 14 ⁺ 14 ⁻ 15 ⁻	E2	0.0343	$\alpha(K)=0.0238$ 4; $\alpha(L)=0.00793$ 12; $\alpha(M)=0.00198$ 3 $\alpha(N)=0.000501$ 7; $\alpha(O)=9.43\times10^{-5}$ 14; $\alpha(P)=7.16\times10^{-6}$ 11 Mult.: A ₂ =+0.16 10.
4780.0 4783.4	(17) (19 ⁻)	616.6 <i>3</i> 217.8 <i>3</i>	100 100	4163.4 4565.6	16 ⁺ 17 ⁻	(E2)	0.319	B(E2)(W.u.)=0.031 5 α (K)=0.1381 20; α (L)=0.1354 21; α (M)=0.0353 6 α (N)=0.00891 14; α (O)=0.001616 25; α (P)=8.44×10 ⁻⁵ 13 Mult: Δz =+0.3.3 α (exp)=0.23 or 0.51
4868.2 5084.2	(18 ⁺) (18 ⁻)	704.8 <i>3</i> 518.6 <i>3</i>	100 100	4163.4 4565.6	16+ 17 ⁻	(M1)	0.0980	$\alpha(K)=0.0804 \ 12; \ \alpha(L)=0.01352 \ 19; \ \alpha(M)=0.00316 \\ 5 \\ \alpha(N)=0.000803 \ 12; \ \alpha(O)=0.0001602 \ 23; \\ \alpha(P)=1.717\times 10^{-5} \ 25$
5128.4 5435.0 5725.4	(20 ⁻) (19) (21 ⁻)	345.0 <i>3</i> 655 <i>1</i> 597.0 <i>3</i>	100 100 100	4783.4 4780.0 5128.4	(19 ⁻) (17) (20 ⁻)			Mult.: $A_2 = -0.21 \ 16$.

$\gamma(^{188}\text{Pb})$ (continued)

[†] From ¹⁵⁶Gd(³⁶Ar,4nγ), unless otherwise stated. Mult. deduced using γ(θ), γγ(θ)(DCO) and ce data.
[‡] Additional information 2.
[#] Multiply placed with intensity suitably divided.
[@] Placement of transition in the level scheme is uncertain.

 $^{188}_{82}{\rm Pb}_{106}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Adopted Levels, Gammas

Level Scheme (continued)

 $^{188}_{82}\mathrm{Pb}_{106}$

 $^{188}_{82} \rm{Pb}_{106}$