		_	History							
		Туре		Author		Citation	Literature Cutoff Date			
	Ful	l Evaluation	F. G. Kon	dev, S. Juutine	en, D. J. Hartley	NDS 150, 1 (2018)	1-Feb-2018			
$Q(\beta^{-}) = -524$	9; S(n)=6	5867 <i>30</i> ; S(p)=	4415 <i>9</i> ; Q	(α)=3450 <i>10</i>	2017Wa10					
					¹⁸⁸ Ir Levels					
				Cross	s Reference (XRI	EF) Flags				
				A B C	¹⁸⁸ Pt ε decay (1 ¹⁸⁷ Re(α ,3n γ) ¹⁸⁶ W(⁷ Li,5n γ)	0.16 d)				
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments				
0.0 [#]	1-	41.5 h 5	ABC	$\%\varepsilon + \%\beta^+ = 10$	00					
				$\mu = +0.31 I (2)$ $\Omega = +0.484 6$	2006Ve10) (1996Se15 20169	St14)				
				J^{π} : J was dire	ectly measured u	sing the NMR (1985Ed	102) and resonance ionization			
				spectrosco	py (2006Ve10) te	chniques; π from μ and	d 478.3 γ E1 from 1 ⁺ .			
				μ : using reso (NMR-nuc	lear orientation.	985Ed02) 0.385 20 (19	280Be27, 1974EkZW.			
				Q: using the	NMR on oriented	d nuclei method. Other	rs: +0.46 5 (2006Ve10), +0.507			
				34 (1996H	(a09), +0.543 18	(1985Ed02), +0.492 20	6 (1988Oh05,1988Oh08), 1.26			
				$\Delta < r^2 > (^{193}\text{OVIU})$	188 Ir)=-0.140 4 ((2006Ve10).				
				T _{1/2} : from 1	950Ch11. Others	: 41 h I (1963Gr22), 4	1 h 4 (1955Sm42), and 40 h 3			
				(1954Na25 configuration). : Dominant $K^{\pi} =$	$1^{-}, \pi 3/2^{+} [402] \otimes v 1/2^{-} [$	5101 with possible			
				$\pi 1/2^+[400]$	⊗v3/2 [−] [512] adm	nixtures.				
54.81 [#] 4	2-	1.93 ns 10	ABC	J^{π} : 54.85 γ M	$[1+E2 \text{ to } 1^-; 97.2]$	2γ M1 from (3) ⁻ ; abse	nce of a direct β^- feeding to			
				$T_{1/2}$: From 5 and 2.7 ns 1969Ma37	$4.8e(L_{ii}+L_{iii})-14$ 8 (1965Kr03,197	10.2 d (J = 0). 10.3 e (K)(t) in 1969Ma3 70Ba53), but the accura	87. Others: 2.3 ns 2 (1965Ja06) acy of those values is disputed in			
				configuration	: Most likely a n	the member of the $K^{\pi} = 1^{-1} g$	g.s. band, given the large B(E2)			
96.73 4	2-	1.59 ns 12	ABC	strength. J^{π} : 96.70 γ E	$2+M1$ to 1^- : 114	6γ M1(+E2) from (3)	$$: absence of a direct β^{-}			
				feeding to	this level in ¹⁸⁸ P	Pt ε decay (10.2 d) (J ^{π} =	; =0 ⁺).			
				$T_{1/2}$: From 4	$1.9e(L) - 381.6\gamma($	t) in 1969Ma37.	noosikla			
				$\pi 1/2^{+}[400]$	$ \otimes v3/2^{-}[512]$ adn	$\frac{402}{8}$ $\frac{8}{1/2}$ $\frac{1310}{10}$ with $\frac{1}{10}$	possible			
151.95 <i>12</i>	3-		BC	J ^π : 97.2γ M1	to 2^- ; the abser	nce of direct population	in in ¹⁸⁸ Pt ε decay (10.2 d)			
166 17 9	(3^{-})		R	$(J^{\pi}=0^{+})$ we $I^{\pi} \cdot 166.2\gamma$ (F	ould argue agains (72) to 1 ⁻	st $J^{n} = 1^{-}$.				
187.62 7	$(1)^{-}$	56 ps <i>13</i>	A	J^{π} : 187.59 γ I	$E2(+M1)$ to 1^- ; of	direct population of this	s level in ¹⁸⁸ Pt ε decay (10.2			
				d) $(J^{\pi}=0^+)$	ZII 197 50/I \/4	: 10(0M-27				
195.10 5	1-	51 ps 10	A	$J_{1/2}^{\pi}$: 140.35 γ I	$M1(+E2)$ to 2^- ;	$195.05\gamma \text{ M1}(+\text{E2}) \text{ to } 1^{-1}$; direct population of this level			
				in 188 Pt ε	decay (10.2 d) (J	$\pi = 0^+$) would argue aga	ainst $J^{\pi} = 2^{-1}$.			
211.19 7	(3) ⁻		BC	J ^{π} : 114.6 γ M d) (I ^{π} =0 ⁺)	$I1(+E2)$ to 2^- ; the would argue again	e absence of direct pop inst $I^{\pi} = 1^{-}$	pulation in ¹⁸⁸ Pt ε decay (10.2			
280.30 15	(1,2)-		A	J^{π} : 280.30 γ I	E2+M1 to 1^- ; di	rect population in 188 P	t ε decay (10.2 d) (J ^{π} =0 ⁺)			
				would argue excluded (the against $J^{\pi}=3^{-}$, log $ft=7.3$).	but first forbidden uni	que β^- transition cannot be			

Continued on next page (footnotes at end of table)

¹⁸⁸Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
354.14 [@] 9	$(4)^{+}$		BC	J^{π} : 202.2 γ E1 to 3 ⁻ .
410.38 [@] 18	(5) ⁺		В	J ^{π} : 56.2 γ M1 to (4) ⁺ ; assigned by the evaluators as a member of the K^{π} =(4) ⁺ band, by reordering the 56.2 γ and 81.6 γ . This assignment is consistent with the expected smooth behavior as a function of spin
478.18 7	1+	<150 ps	Α	J^{π} : 478.3 γ E1 to 1 ⁻ ; 381.43 γ E1 to 2 ⁻ ; direct population of this level in ¹⁸⁸ Pt ε decay (10.2 d) (J^{π} =0 ⁺) would argue against J^{π} =2 ⁺ . T ₁ (γ : From LMM – 300 (and higher) γ (t) in 1969Ma37.
492.03 [@] 13	$(6)^{+}$		BC	J^{π} : 81.6 γ M1 to (5) ⁺ : 137.9 γ E2 to (4) ⁺ .
641.93 [@] 17	$(7)^+$		BC	J^{π} : 149.9 γ M1,E2 to (6) ⁺ ; band member. J^{π} =(8 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02), see the comment to the 815-keV level
674.9 <i>3</i> 708.13 <i>20</i>	(8^{-}) (8^{-})		BC BC	J^{π} : 33.0 γ (E1) to (7) ⁺ . J^{π} : 66.2 γ (E1) to (7) ⁺ .
764.53 ^{&} 17 801.63.20	(8 ⁺)		C	
814.85 [@] 19	(8+)		C	J ^{π} : 172.8 γ to (7) ⁺ , 322.5 γ to (6) ⁺ ; J ^{π} =(9 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02), but the assignment is incorrect since 322.5 γ would be Mult.=M3.
877.8?			В	
915.5? 923 53 22	$(7 \text{ to } 10)^{-}$		B BC	I^{π} : 215 4 γ M1 E2 to (8 ⁻)
923.53 22 923.53+ x^a 22	(11 ⁻)	4.15 ms 15	BC	Additional information 1. E(level): Presumably decays via a low-energy transition ($E\gamma < 80$ keV), so x<80 keV.
				J^{π} : From systematics of similar high-spin isomers in neighboring ¹⁹⁰ Ir and ¹⁹² Ir nuclei. The assignment is consistent with the expected configuration at 880 keV. The proposed $J^{\pi}=(9^{-})$ assignment in 2004Ba91 and 2008Ju02 is unlikely, since the band-head spin is inconsistent with the proposed $\pi h_{9/2} \otimes v_{13/2}$ configuration, where the low-K, $(\pi 1/2^{-}[541] (h_{9/2})$ and high-K $(v 11/2^{+}[615] (i_{13/2})$ orbitals are near the Fermi surfaces, thus leading to $J^{\pi}=6^{-}$.
				$T_{1/2}$: Weighted average of 4.1 ms 3 (1984Kr18), 4.1 ms 4 (1975An08), and 4.2 ms 2 (1971Go21). Other: 3.8 ms 2 (1973PoVO)
				configuration: Likely $\pi 11/2^{-}[505] \otimes \nu 11/2^{+}[615]$ configuration, expected at 880 keV from energies of known proton and neutron orbitals in neighboring Ir and Os nuclei. This configuration was assigned to the known isomers in ¹⁹⁰ Ir and ¹⁹² Ir.
1042.20 [@] 19	(9 ⁺)		С	J^{π} : 227.4 γ to (8 ⁺); 400.4 γ to (7) ⁺ ; band member.
1143.03 ^{&} 20	(10 ⁺)		C	J ^{π} : 378.5 γ to (8 ⁺); band member. J ^{π} =(11 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02).
1221.77+x ^{<i>a</i>} 8	(12 ⁻)		C	Additional information 2. J^{π} : 298.3 γ M1+E2 to (11 ⁻); band member.
1238.23 [@] 19	(10 ⁺)		C	J^{π} : 196.2 γ to (9 ⁺); 423.2 γ to (8 ⁺); band member. J^{π} =(11 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02).
1252.53 <i>22</i> 1397.94+x ^{<i>a</i>} 6	(13-)		C C	J^{π} : 176.2 γ M1+E2 to (12 ⁻); 474.4 γ E2 to (11 ⁻); band member.
1419.23 22			С	
1540.69 [@] 21	(11 ⁺)		C	J^{π} : 302.4 γ to (10 ⁺); 498.5 γ to (9 ⁺); band member. J^{π} =(12 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02).
1626.83 ^{&} 22 1663.53+x 9	(12 ⁺)		C C	J^{π} : 483.8 γ to (10 ⁺); band member.

¹⁸⁸Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1709.92+x ^a 7 1717.2 3	(14 ⁻)		C C	J^{π} : 312.0 γ M1+E2 to (13 ⁻); 488.1 γ to (12 ⁻); band member.
1753.83 [@] 22	(12^{+})		С	J^{π} : 515.6 γ to (10 ⁺); band member. J^{π} =(13 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02).
1921.11+x ^{<i>a</i>} 8	(15 ⁻)		C	J^{π} : 211.2 γ M1+E2 to (14 ⁻); 523.2 γ E2 to (13 ⁻); band member.
2010.53 <i>24</i> 2070.39+x <i>16</i>			C C	
2121.19 [@] 23 2133.25+x 12	(13 ⁺)		C C	J^{π} : 580.5 γ to (11 ⁺); band member. J^{π} =(14 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02).
2166.49+x <i>10</i> 2199.49+x <i>16</i>	(15 ⁻)		C C	J ^{π} : 456.7 γ M1+E2 to (14 ⁻); 768.7 γ to (13 ⁻).
2218.13 ^{&} 24	(14^{+})		С	J^{π} : 591.3 γ to (12 ⁺); band member.
2288.07+x ^a 9	(16 ⁻)		С	J^{π} : 367.1 γ to (15 ⁻); 578.0 γ to (14 ⁻); band member.
$2352.74^{@}24$	(14^+)		C	I^{π} : 598 9v to (12 ⁺); hand member I^{π} =(15 ⁺) in ¹⁸⁶ W(⁷ Li 5nv) (2008Iu02)
2441.65+x 12	(16^{-})		c	J^{π} : 275.2 γ (M1+E2) to (15 ⁻).
$2455.14 \pm x$ 10	(16^{-})		č	J^{π} : 745.4 γ to (14 ⁻): 533.9 γ to (15 ⁻).
$2554.21 + x^{a}$ 10	(17^{-})		c	J^{π} : 266.2 γ to (16 ⁻); 633.0 γ to (15 ⁻); hand member.
2642.64 + x 14	(18^{-})	12.27 ns 14	č	J^{π} : 88.3 γ (M1+E2) to (17 ⁻).
2677.52+x 11	(17^{-})		c	$T_{1/2}$: from $\gamma\gamma(t)$ (2008Ju02). J ^{π} : 222.5 γ (M1+E2) to (16 ⁻).
2723.92+x 13	(16^{-})		С	J^{π} : 802.8 γ M1+E2 to (15 ⁻).
2744.77+x 14			С	
$2761.2^{\textcircled{0}}$ 11	(15^{+})		С	J^{π} : 640y to (13 ⁺); hand member, $J^{\pi} = (16^+)$ in ¹⁸⁶ W(⁷ Li,5ny) (2008Ju02).
2892.90 + x 13	(18^{-})		c	J^{π} : 338.8 γ M1+E2 to (17 ⁻).
2894.7 ^{&} 3	(16 ⁺)		C	J^{π} : 676.6 γ to (14 ⁺); band member.
2946.67+x 15	(10=)		C	
2987.09+x ^a 17 3001.32+x 24	(18 ⁻)		C C	J^{n} : 432.8 γ to (17 ⁻); 699.1 γ to (16 ⁻); band member.
$3027.3^{\textcircled{0}}4$	(16^{+})		С	J^{π} : 674.6 γ to (14 ⁺); band member, J^{π} =(17 ⁺) in ¹⁸⁶ W(⁷ Li,5n γ) (2008Ju02).
3068.52+x 23 3155 67+x 25	(18 ⁻)		C C	J^{π} : 391.0 γ to (17 ⁻); 627 γ to (16 ⁻).
322320 + x 12	(19^{-})		c	I^{π} . 330 3v to (18 ⁻): 545 7v to (17 ⁻)
$3305 15 \pm x 19$	(1))		c	5 . 550.57 to (10 ⁻), 515.77 to (17 ⁻).
3353.0+x.4			c	
$3448.93 \pm x.17$			c	
349552 + x25			c	
3520.95 + x 16			c	
3521.90+x 16			č	
3627 0 & 11	(18^{+})		c	I^{π} : 732.3 $_{2}$ to (16 ⁺): hand member
3027.0 11	(10^+)		C	$T = \frac{1}{12} = \frac{1}{$
3680.0 - 4	(18^{-})		C	$J^{*}: 652.7\gamma$ to (16°); band member. $J^{*}=(19^{\circ})$ in ¹⁰⁰ W([*] Li,5n\gamma) (2008)u02).
3093.79+X 14			C	
3/48.0+X 3 2828 20 + x 17			C	
$3020.29 \pm x$ 1/			C	
$3907.3 \pm x J$			Ċ	
$4040.9 \pm x = 4$ $4091.43 \pm x = 18$			c	
$4098.36 \pm x.16$			c	
$4227 \ 36+x \ 19$			c	
4352.54+x 17			č	
4459.4+x 3			č	
4690.7+x 3			č	
4705.56+x 18			č	
4824.8+x <i>3</i>			č	
4839.4+x 3			Ċ	
4863.86+x 21			С	

¹⁸⁸Ir Levels (continued)

E(level) [†]	XREF						
5046.9+x 3	С	5354.1+x 3	С	5562.5+x 3	С	6002.4+x 4	С
5065.21+x 21	С	5363.56+x 21	С	5669.7+x 11	С	6062.9+x 4	С
5222.2+x 4	С	5479.4+x 11	С	5877.6+x 3	С	6127.9+x 3	С
5262.3+x <i>3</i>	С	5516.3+x <i>3</i>	С	5998.6+x 4	С	6299.3+x 11	С

[†] From a least-squares fit to $E\gamma's$.

^{\ddagger} From deduced γ -ray transition multipolarities and apparent band structures, unless otherwise stated.

[#] Band(A): $K^{\pi}=1^{-}$, $\pi 3/2^{+}[402] \otimes \nu 1/2^{-}[510]$ g.s. band. [@] Band(B): $K^{\pi}=4^{+}$, $\pi 3/2^{+}[402] \otimes \nu 11/2^{+}[615]$ band. [&] Band(C): Band based on the (8⁺) level at 764.5 keV.

^{*a*} Band(D): $K^{\pi} = 11^{-}$, $\pi 11/2^{-} [505] \otimes \nu 11/2^{+} [615]$ band.

					Adopt	ted Levels, G	ammas (contr	nued)
						$\gamma(^{18}$	⁸ Ir)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	Comments
54.81	2-	54.85 [@] 5	100@	0.0 1-	M1+E2	0.65 4	24.5 17	$ \begin{array}{l} \alpha(\text{L}) = 18.6 \ 13; \ \alpha(\text{M}) = 4.7 \ 4; \ \alpha(\text{N}+) = 1.31 \ 9 \\ \alpha(\text{N}) = 1.13 \ 8; \ \alpha(\text{O}) = 0.176 \ 12; \ \alpha(\text{P}) = 0.00269 \ 9 \\ \text{B}(\text{M1})(\text{W.u.}) = 0.00191 \ 18; \ \text{B}(\text{E2})(\text{W.u.}) = 108 \ 13 \\ \text{Mult.: from } \alpha(\text{L}) \exp = 12.7, \ \text{L1/L2/L3} = 39/100/100 \ (1963 \text{Pr12}) \ \text{and} \\ \text{L1/L2} = 0.27 \ 6, \ \text{L1/L3} = 0.29 \ 6 \ (1962 \text{Ca27}) \ \text{in} \ ^{188} \text{Pt} \ \varepsilon \ \text{decay} \ (10.2 \ \text{d}). \end{array} $
96.73	2-	41.98 [@] 5	100 [@] 11	54.81 2-	M1+E2	0.070 7	14.8 <i>4</i>	$ \begin{array}{l} \alpha(L) = 11.37 \ 25; \ \alpha(M) = 2.64 \ 6; \ \alpha(N+) = 0.770 \ 17 \\ \alpha(N) = 0.649 \ 15; \ \alpha(O) = 0.1134 \ 24; \ \alpha(P) = 0.00789 \ 12 \\ B(M1)(W.u.) = 0.0103 \ 19; \ B(E2)(W.u.) = 12 \ 3 \\ Mult.: \ from \ L1/L2/L3 = 100/11/5.7 \ (1963Pr12) \ and \ L1/L2 = 7.1 \ 10 \\ (1962Ca27) \ in \ ^{188}Pt \ \varepsilon \ decay \ (10.2 \ d). \end{array} $
		96.70 [@] 5	33 [@] 15	0.0 1-	E2+M1	1.41 <i>4</i>	5.78 9	$\begin{array}{l} \alpha(\mathrm{K}){=}2.38\ 7;\ \alpha(\mathrm{L}){=}2.57\ 5;\ \alpha(\mathrm{M}){=}0.652\ 13;\ \alpha(\mathrm{N}{+}){=}0.183\ 4\\ \alpha(\mathrm{N}){=}0.158\ 3;\ \alpha(\mathrm{O}){=}0.0245\ 5;\ \alpha(\mathrm{P}){=}0.000297\ 9\\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}){=}9.\mathrm{E}{-}5\ 5;\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}){=}8\ 4\\ \mathrm{Mult.:\ from\ K/L1/L2/L3{=}100/14/54/38\ (1963\mathrm{Pr12})\ in\ ^{188}\mathrm{Pt}\ \varepsilon\\ \mathrm{decay\ (10.2\ d)}. \end{array}$
151.95	3-	55.2	0.	96.73 2-				E_{γ} : From ¹⁸⁷ Re(α ,3n γ).
		97.2 ^{&} 2	100 ^{∞}	54.81 2-	M1		6.64	$\alpha(K)=5.47 \ 9; \ \alpha(L)=0.902 \ 14; \ \alpha(M)=0.208 \ 4; \ \alpha(N+)=0.0608 \ 10 \ \alpha(N)=0.0511 \ 8; \ \alpha(O)=0.00905 \ 14; \ \alpha(P)=0.000681 \ 11 \ Mult.; from \ \alpha(L)exp=0.6 \ 3 \ for a doublet line in \ ^{187}Re(\alpha,3n\gamma).$
166.17	(3 ⁻)	166.2 ^{&} 1	100 ^{&}	0.0 1-	(E2)		0.658	$\alpha(K)=0.271 \ 4; \ \alpha(L)=0.292 \ 5; \ \alpha(M)=0.0745 \ 11; \ \alpha(N+)=0.0209 \ 3 \ \alpha(N)=0.0180 \ 3; \ \alpha(O)=0.00279 \ 4; \ \alpha(P)=2.69\times10^{-5} \ 4 \ Mult.: from intensity balance in \ ^{187}Re(\alpha,3n\gamma).$
187.62	(1) ⁻	132.86 [@] 10	1.3 [@] 3	54.81 2-	E2		1.503	$\alpha(K)=0.456\ 7;\ \alpha(L)=0.788\ 12;\ \alpha(M)=0.202\ 3;\ \alpha(N+)=0.0564\ 9$ $\alpha(N)=0.0489\ 7;\ \alpha(O)=0.00751\ 11;\ \alpha(P)=4.60\times10^{-5}\ 7$ B(E2)(W.u.)=34\ 12 Mult: $\alpha(L)$ exp=0.69; L2/L3=1.5 (1962Ca27) in ¹⁸⁸ Pt ε decay
		187.59 [@] 10	100 [@] 5	0.0 1-	E2(+M1)	≈30	≈0.430	(10.2 d). $\alpha(K) \approx 0.201; \ \alpha(L) \approx 0.1734; \ \alpha(M) \approx 0.0441; \ \alpha(N+) \approx 0.01236$ $\alpha(N) \approx 0.01068; \ \alpha(O) \approx 0.001662; \ \alpha(P) \approx 2.01 \times 10^{-5}$ Mult.: K/L1/L2/L3/M/N=1.0/0.16/0.02/0.002/0.044/0.01 (1964Sa30) in ¹⁸⁸ Pt ε decay (10.2 d).
195.10	1-	98.37 [@] 5	1.82 [@] 18	96.73 2-	M1(+E2)	<0.1	6.41	$\alpha(K)=5.27 \ 8; \ \alpha(L)=0.882 \ 17; \ \alpha(M)=0.204 \ 5; \ \alpha(N+)=0.0596 \ 12 \ \alpha(N)=0.0501 \ 10; \ \alpha(O)=0.00884 \ 17; \ \alpha(P)=0.000655 \ 10 \ Mult.: from \ \alpha(K)exp=6.7 \ and \ K/L1/L2=100/15/1.5 \ (1963Pr12).$
		140.35 [@] 10	12.5 [@] 6	54.81 2-	M1(+E2)	<0.13	2.32	$\alpha(K)=1.91 \ 3; \ \alpha(L)=0.316 \ 6; \ \alpha(M)=0.0730 \ 13; \ \alpha(N+)=0.0214 \ 4 \ \alpha(N)=0.0180 \ 3; \ \alpha(O)=0.00317 \ 5; \ \alpha(P)=0.000236 \ 4 \ Mult.: from \ \alpha(K)exp=1.32 \ and \ K/L1/L2/L3=100/21/1.5/<0.2 \ (1963Pr12).$
		195.05 [@] 10	100 [@] 5	0.0 1-	M1(+E2)	< 0.1	0.918 14	$\alpha(K)=0.757 \ 11; \ \alpha(L)=0.1238 \ 18; \ \alpha(M)=0.0285 \ 4;$

S

From ENSDF

¹⁸⁸1r₁₁₁-5

					Adopted	Levels, Gammas (continued)	
						$\gamma(^{188}$ Ir) (continued	1)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	Comments
								$\begin{array}{l} \alpha(\mathrm{N}+)=0.00835 \ l2 \\ \alpha(\mathrm{N})=0.00701 \ l0; \ \alpha(\mathrm{O})=0.001241 \ l8; \ \alpha(\mathrm{P})=9.32\times10^{-5} \ l4 \\ \mathrm{Mult.: \ from } \ \alpha(\mathrm{K})\mathrm{exp}=0.89, \ \mathrm{K/L}=6.55 \ 7, \ \mathrm{L/M}=3.47 \ 3 \\ (1962\mathrm{Ca27}). \ \mathrm{Other:} \\ \mathrm{K/L1/L2/L3/M/N}=1.0/0.17/0.01/0.002/0.043/0.01 \\ (1964\mathrm{Sa30}). \end{array}$
211.19	(3)-	59.4 ⁶		151.95 3-				E_{γ} : From ¹⁸⁷ Re(α ,3n γ).
		114.6 ^{&} 1	100 ^{&} 6	96.73 2-	M1(+E2)	<0.9	3.8 4	α(K)=2.8 7; α(L)=0.78 22; α(M)=0.19 6; α(N+)=0.054 17 α(N)=0.046 15; α(O)=0.0077 21; α(P)=0.00034 8 Mult.,δ: from $α(L)exp=0.7 3$ in ¹⁸⁷ Re($α$,3nγ).
		156.2 ^{&} 1	54 ^{&} 5	54.81 2-	(E2)		0.823	$\alpha(K)=0.315$ 5; $\alpha(L)=0.383$ 6; $\alpha(M)=0.0979$ 14; $\alpha(N+)=0.0274$ 4
								α (N)=0.0237 4; α (O)=0.00366 6; α (P)=3.12×10 ⁻⁵ 5 Mult.: from intensity balance in ¹⁸⁷ Re(α ,3n γ) (1984Kr18).
280.30	$(1,2)^{-}$	92.9 ^{@b} 2	≈7.5 [@]	187.62 (1)-				
		280.30 [@] 15	100 [@] 13	0.0 1-	E2+M1	1.16 +27-21	0.211 23	$\alpha(K)=0.160\ 21;\ \alpha(L)=0.0388\ 13;\ \alpha(M)=0.00932\ 23;\ \alpha(N+)=0.00268\ 8$
		0	0					α (N)=0.00228 6; α (O)=0.000382 14; α (P)=1.9×10 ⁻⁵ 3 Mult.: from α (K)exp=0.16 in ¹⁸⁸ Pt ε decay (10.2 d).
354.14	$(4)^{+}$	142.9 ^{&} 1	100 5	211.19 (3)-	E1		0.1602	α (K)=0.1309 <i>19</i> ; α (L)=0.0226 <i>4</i> ; α (M)=0.00521 <i>8</i> ; α (N+)=0.001485 <i>21</i>
		0	0					α (N)=0.001262 <i>18</i> ; α (O)=0.000212 <i>3</i> ; α (P)=1.181×10 ⁻⁵ <i>17</i> Mult.: from α (L)exp=0.03 <i>2</i> in ¹⁸⁷ Re(α ,3n γ) (1984Kr18).
		188.0 ^{&} 1	10.9 [°] 9	166.17 (3 ⁻)				
		202.2 1	48 ^{&} 3	151.95 3-	E1		0.0664	$\alpha(K)=0.0547 \ 8; \ \alpha(L)=0.00904 \ 13; \ \alpha(M)=0.00208 \ 3; \ \alpha(N+)=0.000596 \ 9$
								α (N)=0.000505 7; α (O)=8.60×10 ⁻⁵ 12; α (P)=5.17×10 ⁻⁶ 8 Mult.: from α (L)exp=0.025 15 in ¹⁸⁷ Re(α ,3n γ) (1984Kr18).
410.38	(5)+	56.2 ^{&} 2	100 ^{&}	354.14 (4)+	M1		5.78 11	$\alpha(L)=4.45\ 8;\ \alpha(M)=1.026\ 18;\ \alpha(N+)=0.300\ 6$ $\alpha(N)=0.252\ 5;\ \alpha(O)=0.0446\ 8;\ \alpha(P)=0.00336\ 6$ $E_{\gamma}:\ placement\ made\ by\ the\ evaluators.$ Mult.: from intensity balance in ¹⁸⁷ Re(α ,3n γ).
478.18	1+	197.8 ^{@b} 4	<0.78 [@]	280.30 (1,2)-	(E1)		0.0702 11	$\alpha(K)=0.0578 \; 9; \; \alpha(L)=0.00957 \; 15; \; \alpha(M)=0.00220 \; 4; \\ \alpha(N+)=0.000631 \; 10 \\ \alpha(N)=0.000535 \; 8; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.09\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.00\times10^{-5} \; 14; \; \alpha(P)=5.45\times10^{-6} \; 8 \\ M = 0.000535 \; 0; \; \alpha(O)=9.00\times10^{-5} \; 0; \;$
		283.15 [@] 20	1.4 [@] 7	195.10 1-	[E1]		0.0290	Mult.: $\alpha(K)\exp<2.6$ in ¹⁰⁰ Pt ε decay (10.2 d). $\alpha(K)=0.0240$ 4; $\alpha(L)=0.00384$ 6; $\alpha(M)=0.000882$ 13; $\alpha(N+)=0.000254$ 4 $\alpha(N)=0.000215$ 3; $\alpha(O)=3.69\times10^{-5}$ 6; $\alpha(P)=2.36\times10^{-6}$ 4

6

 $^{188}_{77}\mathrm{Ir}_{111}\mathrm{-}6$

L

	Adopted Levels, Gammas (continued)											
	γ ⁽¹⁸⁸ Ir) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments					
478.18	1+	290.64 [@] 20	1.4 [@] 5	187.62 (1)-	[E1]	0.0272	α (K)=0.0226 4; α (L)=0.00360 5; α (M)=0.000826 12; α (N+)=0.000238 4 α (N)=0.000201 3; α (O)=3.46×10 ⁻⁵ 5; α (P)=2.23×10 ⁻⁶ 4					
		381.43 [@] 10	100 [@] 5	96.73 2-	E1	0.01445	$\alpha(K)=0.01202 \ 17; \ \alpha(L)=0.00188 \ 3; \ \alpha(M)=0.000429 \ 6; \ \alpha(N+)=0.0001240$					
							α (N)=0.0001047 <i>15</i> ; α (O)=1.81×10 ⁻⁵ <i>3</i> ; α (P)=1.217×10 ⁻⁶ <i>17</i> Mult.: α (K)exp=0.0144 in ¹⁸⁸ Pt ε decay (10.2 d).					
		423.34 [@] 10	58 [@] 3	54.81 2-	E1	0.01144	$\alpha(K)=0.00953 \ 14; \ \alpha(L)=0.001474 \ 21; \ \alpha(M)=0.000337 \ 5; \ \alpha(N+)=9.75\times10^{-5} \ 14$					
							$\alpha(N)=8.22\times10^{-5}$ 12; $\alpha(O)=1.429\times10^{-5}$ 20; $\alpha(P)=9.72\times10^{-7}$ 14 Mult.: $\alpha(K)\exp=0.0078$ in ¹⁸⁸ Pt ε decay (10.2 d).					
		478.3 [@] 5	24 [@] 4	0.0 1-	E1	0.00876	$\alpha(K)=0.00731 \ 11; \ \alpha(L)=0.001119 \ 16; \ \alpha(M)=0.000256 \ 4; \ \alpha(N+)=7.40 \times 10^{-5} \ 11$					
							$\alpha(N)=6.24\times10^{-5} 9; \ \alpha(O)=1.087\times10^{-5} 16; \ \alpha(P)=7.52\times10^{-7} 11$ Mult: $\alpha(K)\exp<0.02$ in ¹⁸⁸ Pt ε decay (10.2 d).					
492.03	(6) ⁺	81.6 ^{&} 2	6.4 ^{&} 4	410.38 (5)+	M1	10.95 17	$\alpha(K)=9.00 \ 14; \ \alpha(L)=1.498 \ 24; \ \alpha(M)=0.345 \ 6; \ \alpha(N+)=0.1010 \ 16 \ \alpha(N)=0.0849 \ 14; \ \alpha(O)=0.01502 \ 24; \ \alpha(P)=0.001131 \ 18 \ E_{\gamma}: \text{ placement made by the evaluators.}$ Mult : from intensity belance in $\ ^{187}\text{Pe}(\alpha, 3n\alpha)$					
		137.9 ^{&} 1	100 ^{&} 5	354.14 (4)+	E2	1.305	$\alpha(K)=0.420 \ 6; \ \alpha(L)=0.666 \ 10; \ \alpha(M)=0.1708 \ 25; \ \alpha(N+)=0.0477 \ 7 \ \alpha(N)=0.0413 \ 6; \ \alpha(O)=0.00635 \ 10; \ \alpha(P)=4.21\times10^{-5} \ 6 \ Mult : from \ \alpha(L)exp=0.7 \ 2 \ in \ ^{187}Re(\alpha \ 3n\chi)$					
641.93	$(7)^{+}$	149.9 ^{&} 1	100 ^{&}	492.03 (6)+	M1,E2		Mult.: $\alpha(L)exp=0.4 I$ in ¹⁸⁷ Re(α ,3n γ) gives mult=E2,M1, but intensity balance favors E2. 1981RoZY quote mult=M1.					
674.9	(8 ⁻)	33.0 ^{&} 2	100 ^{&}	641.93 (7)+	(E1)	1.60 4	α (L)=1.23 3; α (M)=0.290 7; α (N+)=0.0791 18 α (N)=0.0684 15; α (O)=0.01040 23; α (P)=0.000342 7 Mult.: from intensity balance in ¹⁸⁷ Re(α .3n γ).					
708.13	(8 ⁻)	66.2 ^{&} 1	100 ^{&}	641.93 (7)+	(E1)	0.237	$\alpha(L)=0.183 \ 3; \ \alpha(M)=0.0425 \ 7; \ \alpha(N+)=0.01191 \ 18 \ \alpha(N)=0.01019 \ 15; \ \alpha(O)=0.001645 \ 24; \ \alpha(P)=7.27\times10^{-5} \ 11 \ Mult.; from intensity balance in \ ^{187}Re(\alpha.3n\gamma).$					
764.53	(8+)	272.5 1	100	492.03 (6)+								
801.63	(\mathbf{Q}^+)	159.7 1	100	$641.93 (7)^+$ $641.03 (7)^+$								
014.03	(0)	322.5 1	29 4	492.03 (6)+								
877.8?		202.9 ^b		674.9 (8 ⁻)			E_{γ} : From ¹⁸⁷ Re(α ,3n γ).					
915.5?		207.4 ^b		708.13 (8-)			E_{γ} : From ¹⁸⁷ Re(α ,3n γ).					
923.53	(7 to 10) ⁻	215.4 ^{&} 1	100 ^{&}	708.13 (8-)	M1,E2	0.698	$\alpha(K)=0.577 \ 9; \ \alpha(L)=0.0937 \ 14; \ \alpha(M)=0.0216 \ 3; \ \alpha(N+)=0.00631 \ 9 \ \alpha(N)=0.00530 \ 8; \ \alpha(O)=0.000940 \ 14; \ \alpha(P)=7.09\times10^{-5} \ 10 \ Mult.; from \ \alpha(L)exp=0.14 \ 8 in \ ^{187}Re(\alpha.3n\gamma).$					
1042.20	(9+)	227.4 1	96 9	814.85 (8+)								

7

$\gamma(^{188}$ Ir) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [‡]	α^{\dagger}	Comments
1042.20	(9+)	400.4 1	100 10	641.93 (7)+			
1143.03	(10^{+})	378.5 1	100	764.53 (8 ⁺)			
1221.77+x	(12 ⁻)	298.3 1	100	923.53+x (11 ⁻) M1+E2	0.285	α (K)=0.236 4; α (L)=0.0381 6; α (M)=0.00876 13; α (N+)=0.00256 4 α (N)=0.00215 3; α (O)=0.000382 6; α (P)=2.89×10 ⁻⁵ 4 Mult.: DCO=0.89 2 (2008Ju02). Others: DCO(Q)=0.66 3 and DCO(D)=1.18 8 (2004Ba91).
1238.23	(10 ⁺)	196.2 <i>1</i> 423.2 <i>1</i>	37 5 100 8	$\begin{array}{ccc} 1042.20 & (9^+) \\ 814.85 & (8^+) \end{array}$			
1252.53		450.9 <i>1</i>	100	801.63			
1397.94+x	(13-)	176.2 <i>1</i>	17.6 4	1221.77+x (12 ⁻	M1+E2	1.223	α (K)=1.010 <i>15</i> ; α (L)=0.1647 <i>24</i> ; α (M)=0.0379 <i>6</i> ; α (N+)=0.01110 <i>16</i> α (N)=0.00932 <i>14</i> ; α (O)=0.001651 <i>24</i> ; α (P)=0.0001245 <i>18</i> Mult.: DCO(O)=0.63 7 and DCO(D)=0.76 7 (2004Ba91).
		474.4 1	100 7	923.53+x (11 ⁻) E2	0.0271	α (K)=0.0199 3; α (L)=0.00544 8; α (M)=0.001317 19; α (N+)=0.000377 6 α (N)=0.000321 5; α (O)=5.32×10 ⁻⁵ 8; α (P)=2.24×10 ⁻⁶ 4 Mult.: DCO=1.02 3 (2008Ju02). Others: DCO(Q)=0.95 4 (2004Ba91).
1419.23		617.6 <i>1</i>	100	801.63			
1540.69	(11^{+})	302.4 2	38 9	1238.23 (10+)		
		498.5 <i>1</i>	100 25	1042.20 (9 ⁺)			
1626.83	(12^{+})	483.8 1	100	1143.03 (10 ⁺)		
1663.53+x		441.8 <i>1</i>	100	$1221.77 + x (12^{-1})$)		
1709.92+x	(14^{-})	312.0 <i>1</i>	100.0 25	1397.94+x (13 ⁻) M1+E2	0.253	$\alpha(K)=0.209 \ 3; \ \alpha(L)=0.0337 \ 5; \ \alpha(M)=0.00775 \ 11; \ \alpha(N+)=0.00227 \ 4$
							α (N)=0.00191 3; α (O)=0.000338 5; α (P)=2.55×10 ⁻⁵ 4 Mult.: DCO=0.86 7 (2008Ju02). Others: DCO(Q)=0.76 4 and DCO(D)=0.95 7 (2004Ba91).
		488.1 <i>1</i>	48.9 <i>15</i>	1221.77+x (12 ⁻) (E2)	0.0252	α (K)=0.0187 3; α (L)=0.00498 7; α (M)=0.001204 17; α (N+)=0.000344 5 α (N)=0.000294 5; α (O)=4.87×10 ⁻⁵ 7; α (P)=2.11×10 ⁻⁶ 3 Mult.: DCO=1.30 18 (2008Ju02). Others: DCO(Q)=1.34 22 and DCO(D)=1.20
1717.0		16172	100	1050.52			9 (2004Ba91).
1/1/.2	(12^{+})	404./2 515.6.1	100	1232.33			
1755.85 1921.11+x	(12) (15^{-})	211.2 <i>I</i>	16.1 <i>4</i>	1236.25 (10 1709.92+x (14 ⁻	M1+E2	0.737	α (K)=0.609 9; α (L)=0.0990 14; α (M)=0.0228 4; α (N+)=0.00667 10 α (N)=0.00560 8; α (O)=0.000993 14; α (P)=7.49×10 ⁻⁵ 11 Mult.: DCO=0.74 6 (2008Ju02). Others: DCO(Q)=0.76 9 and DCO(D)=0.88 10 (2004Ba91).
		523.2 1	100.0 <i>19</i>	1397.94+x (13 ⁻) E2	0.0213	$\alpha(K)=0.01599\ 23;\ \alpha(L)=0.00403\ 6;\ \alpha(M)=0.000970\ 14;\ \alpha(N+)=0.000278\ 4$ $\alpha(N)=0.000237\ 4;\ \alpha(O)=3.95\times10^{-5}\ 6;\ \alpha(P)=1.81\times10^{-6}\ 3$ Mult.: DCO=0.98 3 (2008Ju02). Others: DCO(Q)=0.97 4 and DCO(D)=1.39 8.
2010.53		591.3 <i>1</i>	100	1419.23			
2070.39+x		406.7 2	100	1663.53+x			
2121.19	(13^{+})	580.5 1	100	1540.69 (11+)		
2133.25+x		469.8 1	100	1663.53+x			
2166.49+x	(15 ⁻)	456.7 ^{<i>a</i>} 1	100 ^{<i>a</i>} 4	1709.92+x (14 ⁻	M1+E2	0.0912	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0756 \ 11; \ \alpha(\mathbf{L}) = 0.01206 \ 17; \ \alpha(\mathbf{M}) = 0.00277 \ 4; \ \alpha(\mathbf{N}+) = 0.000811 \ 12 \\ &\alpha(\mathbf{N}) = 0.000681 \ 10; \ \alpha(\mathbf{O}) = 0.0001207 \ 17; \ \alpha(\mathbf{P}) = 9.17 \times 10^{-6} \ 13 \end{aligned} $

 ∞

$\gamma(^{188}$ Ir) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments
							Mult.: DCO=0.92 7 (2008Ju02). Others: DCO(Q)=0.92 12 and DCO(D)=1.58 19 (2004Ba91).
2166.49+x	(15 ⁻)	768.7 2	15.1 <i>19</i>	1397.94+x (13 ⁻)	[E2]	0.00893	$\alpha(K)=0.00710 \ 10; \ \alpha(L)=0.001404 \ 20; \ \alpha(M)=0.000331 \ 5; \ \alpha(N+)=9.55\times10^{-5}$ 14
2199.49+x		801.3 2	100	1397.94+x (13 ⁻)	(M1+E2)	0.0213	$\alpha(N)=8.09\times10^{-5}\ 12;\ \alpha(O)=1.383\times10^{-5}\ 20;\ \alpha(P)=8.09\times10^{-7}\ 12$ $\alpha(K)=0.01767\ 25;\ \alpha(L)=0.00277\ 4;\ \alpha(M)=0.000634\ 9;\ \alpha(N+)=0.000186\ 3$ $\alpha(N)=0.0001559\ 22;\ \alpha(O)=2.77\times10^{-5}\ 4;\ \alpha(P)=2.12\times10^{-6}\ 3$ Mult : DCO(O)=0.6 3 and DCO(D)=0.35\ 10\ (2004Ba91)
2218.13	(14^{+})	591.3 <i>1</i>	100	1626.83 (12 ⁺)			1.1111111200(Q) 0.000 and $2.00(D) 0.00010 (2001)D001)$.
2288.07+x	(16 ⁻)	367.1 <i>1</i>	100.0 24	1921.11+x (15 ⁻)	M1+E2	0.1631	α (K)=0.1350 <i>19</i> ; α (L)=0.0217 <i>3</i> ; α (M)=0.00498 <i>7</i> ; α (N+)=0.001458 <i>21</i> α (N)=0.001224 <i>18</i> ; α (O)=0.000217 <i>3</i> ; α (P)=1.645×10 ⁻⁵ <i>23</i> Mult.: DCO=0.81 <i>4</i> (2008Ju02). Others: DCO(Q)=0.59 <i>7</i> and DCO(D)=1.03 <i>18</i> (2004Ba91)
		578.0 <i>1</i>	90.5 24	1709.92+x (14 ⁻)			Mult.: $DCO(Q)=0.6$ 3 and $DCO(D)=1.2$ 6 (2004Ba91).
2352.74	(14^+)	598.9 1	100	1753.83 (12 ⁺)		0.505.0	
2441.65+x	(16 ⁻)	241.9 2	100 7	2199.49+x	(M1+E2)	0.507 8	$\alpha(K)=0.419$ 6; $\alpha(L)=0.0679$ 10; $\alpha(M)=0.01562$ 23; $\alpha(N+)=0.00457$ 7 $\alpha(N)=0.00384$ 6; $\alpha(O)=0.000680$ 10; $\alpha(P)=5.14\times10^{-5}$ 8 Mult.: DCO(Q)=0.43 15 (2004Ba91).
		275.2 2	72 4	2166.49+x (15 ⁻)	(M1+E2)	0.356	$\alpha(K)=0.2945; \alpha(L)=0.04757; \alpha(M)=0.0109316; \alpha(N+)=0.003205 \alpha(N)=0.002694; \alpha(O)=0.0004767; \alpha(P)=3.60\times10^{-5}5$ Mult: DCO=05113 (2008Ju02)
		521.0.2	38 10	$1921.11 + x (15^{-})$			Mara. 200 0.51 15 (2000 a02).
		731.4 2	52 10	$1709.92 + x (14^{-})$			
2455.14+x	(16^{-})	289.3 2	12.2 10	$2166.49 + x (15^{-})$			E_{v} : Poor fit, level energy difference=289.65.
		322.2 2	17.4 10	2133.25+x			, ,
		384.6 2	14.3 10	2070.39+x			
		533.9 <i>1</i>	100 3	$1921.11 + x (15^{-})$			DCO=1.09 <i>12</i> (2008Ju02).
		745.4 2	12.2 10	1709.92 + x (14 ⁻)			
2554.21+x	(17 ⁻)	266.2 1	11.0 5	2288.07+x (16 ⁻)	M1+E2	0.389	α (K)=0.322 5; α (L)=0.0521 8; α (M)=0.01198 17; α (N+)=0.00351 5 α (N)=0.00295 5; α (O)=0.000522 8; α (P)=3.95×10 ⁻⁵ 6
		633.0 <i>1</i>	100.0 21	1921.11+x (15 ⁻)	E2	0.01364	Mult.: DCO(Q)=0.61 <i>14.</i> $\alpha(K)=0.01059$ <i>15</i> ; $\alpha(L)=0.00234$ <i>4</i> ; $\alpha(M)=0.000556$ <i>8</i> ; $\alpha(N+)=0.0001600$ <i>23</i> $\alpha(N)=0.0001359$ <i>19</i> ; $\alpha(O)=2.30\times10^{-5}$ <i>4</i> ; $\alpha(P)=1.206\times10^{-6}$ <i>17</i>
							Mult.: DCO=1.01 7 (2008Ju02). Others: DCO(Q)=1.06 6 and DCO(D)=1.38 9
	(10.)		100				(2004Ba91).
2642.64+x	(18^{-})	88.3 1	100	$2554.21 + x (17^{-})$	(M1)	8.75	$\alpha(K)=7.20$ 11; $\alpha(L)=1.191$ 18; $\alpha(M)=0.274$ 4; $\alpha(N+)=0.0803$ 12
							$\alpha(N)=0.0675 \ 10; \ \alpha(O)=0.01195 \ 18; \ \alpha(P)=0.000899 \ 13$
							B(M1)(W.u.)=0.000267 5
							Mult.: DCO=1.4 3 (2008Ju02).
2677.52+x	(17^{-})	222.5 1	100 6	2455.14+x (16 ⁻)	(M1+E2)	0.638	$\alpha(K)=0.5278; \alpha(L)=0.085612; \alpha(M)=0.01973; \alpha(N+)=0.005779$
							$\alpha(N)=0.00484$ 7; $\alpha(O)=0.000858$ 12; $\alpha(P)=6.48\times10^{-5}$ 10
							Mult.: DCO=0.97 6 (2008Ju02). Others: DCO(Q)=0.75 11 and DCO(D)=1.46 24 (2004Ba91).

9

 $^{188}_{77}\mathrm{Ir}_{111}\mathrm{-9}$

 $^{188}_{77}\mathrm{Ir}_{111}\mathrm{-9}$

	Adopted Levels, Gammas (continued)										
	γ ⁽¹⁸⁸ Ir) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J	$\frac{\pi}{f}$ Mul	t.‡	α^{\dagger}	Comments			
2677.52+x	(17 ⁻)	235.8 2	41.5 11	2441.65+x (16	5 ⁻) (M1+	-E2) 0.	.544	α (K)=0.449 7; α (L)=0.0728 11; α (M)=0.01677 24; α (N+)=0.00491 7 α (N)=0.00412 6; α (O)=0.000730 11; α (P)=5.51×10 ⁻⁵ 8 Mult.: DCO=0.58 13 (2008Ju02). Others: DCO(Q)=0.42 13 and DCO(D)=0.74 19 (2004Ba91).			
		389.1 2	22.3 11	2288.07+x (10	5-)						
		511 <mark>b</mark>		2166.49+x (15	5-)			E _v : 512.3 keV in 2004Ba91.			
2723.92+x	(16 ⁻)	802.8 1	100	1921.11+x (15	5 ⁻) M1+1	E2 0.	.0212	$\alpha'(K)=0.01759\ 25;\ \alpha(L)=0.00276\ 4;\ \alpha(M)=0.000631\ 9;\ \alpha(N+)=0.000185\ 3$ $\alpha(N)=0.0001552\ 22;\ \alpha(O)=2.75\times10^{-5}\ 4;\ \alpha(P)=2.11\times10^{-6}\ 3$ Mult.: DCO(Q)=0.30 <i>17</i> and DCO(D)=0.68\ 28\ (2004Ba91).			
2744.77+x		456.7 <i>1</i>	100	2288.07+x (16	5-)			DCO=0.92 7 (2008Ju02).			
2761.2	(15^{+})	640	100	2121.19 (13	3+)						
2892.90+x	(18 ⁻)	338.8 1	100	2554.21+x (17	7 ⁻) M1+1	E2 0.	.202	$\alpha(K)=0.1673\ 24;\ \alpha(L)=0.0269\ 4;\ \alpha(M)=0.00619\ 9;\ \alpha(N+)=0.00181\ 3$ $\alpha(N)=0.001522\ 22;\ \alpha(O)=0.000270\ 4;\ \alpha(P)=2.04\times10^{-5}\ 3$ Mult.: DCO=0.70 3 (2008Ju02).			
2894.7	(16^{+})	676.6 <i>1</i>	100	2218.13 (14	1 ⁺)						
2946.67+x		304.2 1	100	2642.64+x (18	3-)			DCO=0.70 2 (2008Ju02).			
2987.09+x	(18^{-})	432.8 2	100 4	2554.21+x (17	7-)						
		699.1 2	91 4	2288.07+x (16	5-)						
3001.32+x		277.4 2	100	2723.92+x (16	5-)			$DCO(Q) = 1.06\ 20\ (2004Ba91).$			
3027.3	(16^{+})	674.6 2	100	2352.74 (14	1 ⁺)						
3068.52+x	(18^{-})	391.0 2	100	2677.52+x (17	7-)						
		627 <mark>b</mark>		2441.65+x (10	5-)						
3155.67+x		410.9 2	100	2744.77+x							
3223.20+x	(19^{-})	330.3 1	100 4	2892.90+x (18	3-)			DCO=0.81 1 (2008Ju02).			
		545.7 <i>1</i>	63.4 24	2677.52+x (17	7-)			DCO=0.81 9 (2008Ju02).			
3305.15+x		412.7 2	100	2892.90+x (18	3-)						
3353.0+x		351.7 2	100	3001.32+x							
3448.93+x		502.3 1	100	2946.67+x				DCO=1.14 24 (2008Ju02).			
3495.52+x		427.0 1	100	3068.52+x (18	3-)						
3520.95+x		878.0 <i>1</i>	100	2642.64+x (18	3-)			DCO=0.94 12 (2008Ju02).			
3521.90+x		575.4 <i>1</i>	100	2946.67+x				DCO=0.99 5 (2008Ju02).			
3627.0	(18^{+})	732.3	100	2894.7 (16	$5^{+})$						
3680.0	(18^{+})	652.7 2	100	3027.3 (10	5+)						
3693.79+x		389.1 ^a 2	41.2 ^{<i>a</i>} 20	3305.15+x							
		470.6 <i>1</i>	100 4	3223.20+x (19) ⁻)			DCO=0.99 9 (2008Ju02).			
		747.0 2	75 6	2946.67+x				DCO=1.05 2 (2008Ju02).			
3748.6+x		591.5 <mark>b</mark> 2	100 5	3155.67+x							
		761.5 2	65 <i>3</i>	2987.09+x (18	3-)						
3828.29+x		134.9 2	26.7 11	3693.79+x				DCO=0.99 22 (2008Ju02).			
		306.2 1	100 3	3521.90+x				DCO=0.73 3 (2008Ju02).			
		379.5 2	16 4	3448.93+x							
3907.3+x		458.4 2	100	3448.93+x							

10

 $^{188}_{77}\,{\rm Ir}_{111}\text{--}10$

From ENSDF

 $^{188}_{77}\mathrm{Ir}_{111}\mathrm{-}10$

$\gamma(^{188}$ Ir) (continued)

E _i (level)	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	Comments
$4046.9 \pm x$	551 4 ^b 2	100	$3495\ 52+x$	
4091 43 + x	569 5 1	100	3521.90+x	$DCO=1.00.9.(2008 \ln 0.2)$
4098.36 + x	577 1 1	100	3521.90 + x 3521.90 + x	
1090.501 X	577.1 1		3520.95 + x	
4227.36+x	399.0 1	100	3828.29 + x	DCQ=0.89.8(2008Ju02).
4352.54 + x	255.0 2	10.6 15	4098.36 + x	
	830.4 1	100 6	3521.90+x	DCO=0.667(2008Ju02).
	831.6 2	4.6 15	3520.95+x	
4459.4+x	552.1 <i>1</i>	100	3907.3+x	
4690.7+x	599.3 2	100	4091.43+x	DCO=1.04 15 (2008Ju02).
4705.56+x	353.0 1	100 5	4352.54+x	$DCO=1.02 \ 9 \ (2008Ju02).$
	607.7 2	7.9 16	4098.36+x	
	614.0 2	49 6	4091.43+x	
4824.8+x	726.4 2	100	4098.36+x	
4839.4+x	741.0 2	100	4098.36+x	
4863.86+x	636.5 1	100	4227.36+x	
5046.9+x	955.5 ^a 2	100 a	4091.43+x	DCO=1.01 16 (2008Ju02).
5065.21+x	359.7 2	100 4	4705.56+x	
	837.6 2	53 6	4227.36+x	
5222.2+x	531.5 2	100	4690.7+x	
5262.3+x	1034.9 2	100	4227.36+x	DCO=0.89 25 (2008Ju02).
5354.1+x	648.5 2	100	4705.56+x	
5363.56+x	298.3 1		5065.21+x	
	658.2 2	100	4705.56+x	
5479.4+x	640	100	4839.4+x	
5516.3+x	652.4 2	100	4863.86+x	
5562.5+x	497.3 2	100	5065.21+x	
5669.7+x	979	100	4690.7+x	
5877.6+x	1013.7 2	100	4863.86+x	
5998.6+x	736.3 2	100	5262.3+x	
6002.4+x	955.5 2	100	5046.9+x	DCO=1.01 16 (2008Ju02).
6062.9+x	708.8 2	100	5354.1+x	
6127.9+x	764.3 2	100	5363.56+x	
6299.3+x	783	100	5516.3+x	

[†] Additional information 3.
[‡] From ¹⁸⁶W(⁷Li,5nγ), unless otherwise stated.
[#] From ce data in ¹⁸⁸Pt ε decay (10.2 d), deduced using the BrIccmixing program (v.23), unless otherwise stated. Uncertainties of 10% were assumed, if those were not given by the authors.
[@] From ¹⁸⁸Pt ε decay (10.2 d).

From ENSDF

 $\gamma(^{188}$ Ir) (continued)

- [&] From ¹⁸⁷Re(α,3nγ).
 ^a Multiply placed with undivided intensity.
 ^b Placement of transition in the level scheme is uncertain.

Level Scheme Intensities: Relative photon branching from each level

& Multiply placed: undivided intensity given

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

ę	
[®]	6299.3+x
⁸	
	6127 9+x
	6062.9+x
	<u>6002.4+x</u>
	<u> </u>
	5877.6+x
S	
	5669.7+x
	5562.5+x
↓	5516.3+x
	<u>5479.4+x</u>
	5363.56+x 5354.1+x
	5262 3+x
	5222.2+x
	5065.21+x
	<u> </u>
	4863 86+x
*	4839.4+x
	4824.8+x
	4705.56+x 4690.7+x
	1070.71X
	4459.4+x
	4352.54+x
	4227.261.4
	4227.30+X
	4098.36+x
	4091.43+x 4046.9+x
	2007.2 +
	2020 20.
	3828.29+x
	3693.79+x
	3521.90+x 3520.95+*
	<u>3495.52+x</u>
	3448.93+x
1	0.0

41.5 h 5

 $^{188}_{~77}\mathrm{Ir}_{111}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{188}_{77} \mathrm{Ir}_{111}$

 $^{188}_{77}\mathrm{Ir}_{111}$

2 1-