### <sup>192</sup>At α decay (88 ms) **2006An04**

Type Author Citation Literature Cutoff Date
Full Evaluation F. G. Kondev, S. Juutinen, D. J. Hartley NDS 150, 1 (2018)

Literature Cutoff Date
NDS 150, 1 (2018)

Parent: <sup>192</sup>At: E=0+x; J<sup>π</sup>=(9<sup>-</sup>,10<sup>-</sup>); T<sub>1/2</sub>=88 ms 6; Q(α)=7696 26; %α decay=100.0 2006An04 (also 2005AnZY): <sup>192</sup>At produced in <sup>144</sup>Sm(<sup>51</sup>V,3n) reaction at E(<sup>51</sup>V)=230 MeV *I* at the middle of target (enrichment 96.5%). The evaporation residues were separated by velocity filter SHIP at GSI, and implanted into position-sensitive silicon (PSSD) detector. FWHM=25-35 keV. Measured Eα, Iα, γ, αγ coin. Gamma rays measured with a four-fold segmented Clover Ge detector. The α spectrum is complicated by summing of the ce and α signals in the PSSD detector. Analyzed correlated recoil-α1-α2 chains. GEANT Monte-Carlo simulations for ce+α summing.

#### <sup>188</sup>Bi Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | $T_{1/2}^{\ddagger}$ | Comments                                                                      |
|-----------------------|--------------------|----------------------|-------------------------------------------------------------------------------|
| 0.0                   | (3+)               | 60 ms <i>3</i>       |                                                                               |
| 0+x                   | $(10^{-})$         | 265 ms 10            | Configuration $\pi 1 h_{9/2} \otimes \nu 1 i_{13/2}$ proposed by the authors. |
| 165+x <i>1</i>        | $(9^-,10^-)$       |                      | Configuration $\pi 2f_{7/2} \otimes \nu 1i_{13/2}$ proposed by the authors.   |
| 188+x                 |                    |                      |                                                                               |

<sup>&</sup>lt;sup>†</sup> From Eγ.

#### $\alpha$ radiations

| Εα                   | E(level) | Iα‡         | HF <sup>†</sup> | Comments                                                                                                                                                      |
|----------------------|----------|-------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7195 15              | 188+x    | 4.0 7       | 52 11           |                                                                                                                                                               |
| 7224 15              | 165 + x  | 82 <i>3</i> | 3.2 4           |                                                                                                                                                               |
| 7385 <i>15</i>       | 0+x      | 14 2        | 63 12           |                                                                                                                                                               |
| 7535 <sup>#</sup> 25 | 0.0      | <1.0        | >2318           | $E\alpha$ : In the level scheme this $\alpha$ decay is placed to go to the g.s., but the authors also discuss possibility that it populates an excited state. |

<sup>†</sup>  $r_0$ =1.537 26, obtained as average of  $r_0$  values for the neighboring even-even nuclei:  $r_0(^{186}\text{Pb})$ =1.510 2,  $r_0(^{188}\text{Pb})$ =1.511 8 and  $r_0(^{190}\text{Po})$ =1.590 11, the later calculated by the evaluators from  $T_{1/2}$ =0.78 ms 16,  $E\alpha$ =7700 keV 10 and HF=1.0.

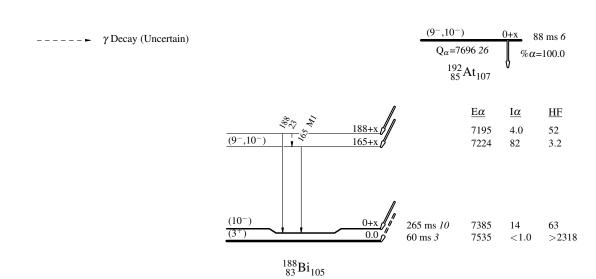
### $\gamma(^{188}\text{Bi})$

| $\mathrm{E}_{\gamma}$     | $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult. | Comments                                                                                              |
|---------------------------|--------------|----------------------|-------------------------------------|-------|-------------------------------------------------------------------------------------------------------|
| (23)                      | 188+x        |                      | $\overline{165+x} (9^-,10^-)$       |       |                                                                                                       |
| <sup>x</sup> 27 1         |              |                      |                                     |       |                                                                                                       |
| <sup>x</sup> 36 1         |              |                      |                                     |       | $E_{\gamma}$ : This $\gamma$ may be the same as observed in <sup>192</sup> At 11.5 ms $\alpha$ decay. |
| x64 1                     |              |                      |                                     |       |                                                                                                       |
| <sup>x</sup> 66 1         |              |                      |                                     |       |                                                                                                       |
| <sup>x</sup> 101 <i>I</i> |              |                      |                                     |       |                                                                                                       |
| 165 <i>1</i>              | 165 + x      | $(9^-,10^-)$         | $0+x (10^{-})$                      | M1    | Mult.: From $\alpha(K)\exp=3 1$ .                                                                     |
| 188 <i>I</i>              | 188+x        |                      | $0+x (10^{-})$                      |       | •                                                                                                     |

 $<sup>^{</sup>x}$   $\gamma$  ray not placed in level scheme.

<sup>‡</sup> From Adopted Levels.

<sup>‡</sup> Absolute intensity per 100 decays.


<sup>#</sup> Existence of this branch is questionable.

# <sup>192</sup>At α decay (88 ms) **2006**An04

 $^{188}_{83}\mathrm{Bi}_{105}\text{-}2$ 

Legend

## Decay Scheme

