		Type		History	Citation	Literature Cutoff Date		
	E.11	Evoluation	E.C. Kandan	C Instinue D I Hartlan	NDC 150 1 (2018)			
	Full	Evaluation	F. G. Kondev,	S. Juulinen, D. J. Harliey	NDS 150, 1 (2018)	1-Feb-2018		
$Q(\beta^{-}) = -2169$	<i>13</i> ; S(n)=	=7415 <i>23</i> ; S(p	p)=2975 24; Q	$(\alpha) = 4815\ 28\ 2017 \text{Wall}$				
				¹⁸⁸ Au Levels				
				Cross Reference (XRE	F) Flags			
				CIOSS Reference (ARE	ar) mags			
				A 188 Hg ε decay (3. B 173 Yb(19 F,4n γ) E	25 min) =93 MeV			
				C 173 Yb(19 F,4n γ) E	=86 MeV			
E(level) [†]	J^{π}	T _{1/2}	XREF		Commen	ıts		
0.0	1-	8.84 mi	in 6 A	$\% \varepsilon + \% \beta^+ = 100$				
				μ =-0.06/28 (1989 wall) μ : LASER-resonance ioniz	zation mass spectrosco	ny (1989Wa11 1987Wa06		
				1987Wa23). Other: 0.06	59 24 (atomic beam m	agnetic resonance, 1980Ek04).		
				$\Delta < r^2 > (197 \text{Au}, 188 \text{Au}) = -0.3$	347 fm ² 9 (1989Wa11)	,1987Wa06,1987Wa23). Other:		
				1988LeZV.				
				J^{π} : J from atomic-beam m	agnetic resonance (19	76Ek01,1978Ek05,1980Ek04) and		
				T _{1/2} : From $\beta_2/65$ 6 ₂ (t) an	$d B_{-339} 9_{\nu}(t) \text{ in } 1972$	Fil2 1970Fil6 Others: 8.8 min		
				(1978CoYZ), 9.0 min 4	$(1970Jo02), 9 \min 1$	(1969Na10), and 8 min $(1960Po07)$.		
				configuration: $\pi(s_{1/2}/d_{3/2})^{-1}$	$^{-1} \otimes \nu(p_{1/2})^{-1}$.			
16.00 7	$(2)^{-}$	0.67 ns	8 A	J^{π} : 16 γ M1+E2 to 1 ⁻ , no	ε feeding from 0 ⁺ .			
82 70 8	1+	14		$T_{1/2}$: From (ce(M) 16 γ)(c	$e(L) 66\gamma, ce(L) 98\gamma, c$	$e(K) 190\gamma)(t) (1985Ab03).$		
82.70 8	1	1.4 ns 2	2 A	$J^{\pi}: 82.7\gamma$ (E1) to 1, 00.7 $(J^{\pi}=0^{+}).$	γ (E1) to (2); strong	direct leeding in $\frac{1}{2}$ Hg ε decay		
				$T_{1/2}$: From (ce(L) 66 γ)(K	LL Auger)(t) (1985Ab	03).		
114.20 8	$(1)^{-}$		Α	J^{π} : 114.2 γ M1+E2 to 1 ⁻ ;	direct feeding in ¹⁸⁸ H	g ε decay $(J^{\pi}=0^+)$.		
114.80 8	$(2)^{-}$	0.22 ns	2 A	J^{π} : 114.8 γ M1+E2 to 1 ⁻ ;	weak population, if ar	iy, in ¹⁸⁸ Hg ε decay ($J^{\pi}=0^+$) would		
				argue against $J=0,1$.	re(K) = 190v v(t) (198)	54603)		
172.0 1	$(1)^{-}$		Α	J^{π} : 155.8 γ M1+E2 to (2) ⁻	$1, 172.1\gamma \text{ M1}+\text{E2 to } 1^{\circ}$; direct feeding in ¹⁸⁸ Hg ε decay		
				$(J^{\pi}=0^{+}).$, ,	,		
217.50 13	$(1)^{+}$		Α	J^{π} : 134.8 γ M1+E2 to 1 ⁺ ;	direct feeding in ¹⁸⁸ H	g ε decay $(J^{\pi}=0^+)$.		
297.1 3	$(0,1)^{-}$		Α	J^{π} : 182.9 γ M1+E2 to (1) ⁻	; direct feeding in ¹⁸⁸	Hg ε decay $(J^{\pi}=0^+)$.		
304.89 9	$(1)^{-}$		Α	J ⁿ : 190.1 γ M1+E2 to (2) ⁻	, 190.7 γ M1+E2 to (1); direct feeding in ¹⁸⁸ Hg ε decay		
442.7 4	$(0,1)^+$		А	J^{π} : 225.2 γ M1+E2 to (1) ⁺	: direct feeding in ¹⁸⁸	Hg ε decay $(J^{\pi}=0^+)$.		
447.10 23	$(0,1)^+$		A	J^{π} : 364.4 γ M1+E2 to 1 ⁺ ;	direct feeding in ¹⁸⁸ H	g ε decay $(J^{\pi}=0^+)$.		
566.6 <i>3</i>	(1)-		Α	J^{π} : 451.8 γ M1+E2 to (2) ⁻	; direct feeding in ¹⁸⁸	Hg ε decay $(J^{\pi}=0^+)$.		
567.26 18	$(0,1)^{-}$		Α	J ^{π} : 202.4 γ E2(+M1) to (1)) ⁻ ; direct feeding in ¹⁸	³⁸ Hg ε decay $(J^{\pi}=0^+)$.		
606.02 20	$(2)^{+}$		Α	J^{π} : 606.0 γ E1 to 1 ⁻ ; weak	c population, if any, in	¹⁸⁸ Hg ε decay ($J^{\pi}=0^+$) would		
850 8 3	$(2)^{+}$		۵	argue against J=0,1. I^{π} : 253 8v M1+F2 to (2) ⁺	weak population if	any in ¹⁸⁸ Hg c decay $(I^{\pi}-0^{+})$		
039.0 3	(2)		А	would argue against J=(, weak population, if (any, in fig ε decay $(J = 0)$		
961.3 <i>1</i>	(0-,1)		Α	J ^{π} : 944.9 γ to (2) ⁻ , 961.3 γ	to 1 ⁻ ; direct feeding	in ¹⁸⁸ Hg ε decay ($J^{\pi}=0^+$).		
1012.1 3	$(1)^{+}$		Α	J ^{π} : 152.3 γ M1+E2 to (2) ⁺	; direct feeding in ¹⁸⁸	Hg ε decay $(J^{\pi}=0^+)$.		
1047.75 22	(1)		Α	J^{π} : 1031.8 γ to (2) ⁻ ; direct	feeding in ¹⁸⁸ Hg ε do	ecay $(J^{\pi}=0^+)$.		
1103.0 3	$(1)^+$		A	J ^{<i>n</i>} : 243.2 γ M1+E2 to (2) ⁺	; direct feeding in 188	Hg ε decay $(J^{\pi}=0^+)$.		
1123.4 3	(1)		A	J : 1040./ γ to 1 ⁺ , 263.5 γ	$10(2)^{\circ}$; direct feeding	g in ¹³⁰ Hg ε decay $(J^{*}=0^{+})$.		
1205.0 5	(1)		A	$J^{\pi}=0^{+}$).	, 5+5.27 to (2); direc	n recurring in Fing & decay		
0.0+x [‡]	(11 ⁻)	>400 ns	BC	Additional information 1.				
			(Continued on next page (foot	tnotes at end of table)			

¹⁸⁸Au Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				 E(level): estimated by evaluators as 250 keV 100, based on known high-spin isomers in neighboring odd-odd Au nuclei. The excitation energy of the π(h_{11/2})⁻¹ orbital in neighboring odd-Z Au isotopes is 223.9 keV (¹⁸⁷Au) and 247.2 keV (¹⁸⁹Au), while that for the v(i_{13/2})⁻¹ one in ¹⁸⁹Hg (N=109) is unknown, but it is located at 140.8 keV in ¹⁹³Hg (N=113). J^π: Tentative assignment, based on proposed configuration. T_{1/2}: Lower experimental limit from the γγt measurement in 1992Ja01. configuration: π(h_{11/2})⁻¹⊗v(i_{13/2})⁻¹, based on similar signature splitting characteristics of bands in nearby odd-odd Au nuclei and B(M1)/B(E2) analysis.
314.76+x [‡] 10	(12 ⁻)		BC	J^{π} : 314.8 γ M1+E2 to (11 ⁻), band member.
447.74+x [‡] 10	(13 ⁻)		BC	J^{π} : 447.7 γ E2 to (11 ⁻) and 133.4 γ M1+E2 to (12 ⁻), band member.
804.28+x [‡] 12	(14 ⁻)		BC	J^{π} : 489.5 γ E2 to (12 ⁻), 356.6 γ M1+E2 to (13 ⁻), band member.
1170.41+x [‡] <i>12</i>	(15 ⁻)		BC	J^{π} : 722.6 γ E2 to (13 ⁻), 366.3 γ M1+E2 to (14 ⁻), band member.
1535.97+x [‡] <i>13</i>	(16 ⁻)		BC	J^{π} : 731.6 γ E2 to (14 ⁻), 365.7 γ M1+E2 to (15 ⁻); band member.
1692.09+x [#] 15	(15 ⁺)		BC	J^{π} : 887.8 γ E1 to (14 ⁻).
1912.69+x [#] 18	(16 ⁺)		BC	J^{π} : 220.6 γ to (15 ⁺), band member.
1958.39+x [#] 18	(17^{+})		BC	J^{π} : 266.3 γ E2 to (15 ⁺), 422.5 γ E1 to (16 ⁻), band member.
1965.17+x [‡] 15	(17 ⁻)		BC	J^{π} : 794.7 γ E2 to (15 ⁻), 429.7 γ M1+E2 to (16 ⁻), band member.
2217.99+x [#] 20	(18^{+})		BC	J^{π} : 259.6 γ M1+E2 to (17 ⁺).
2243.07+x 17	(18-)		BC	J^{π} : 707.1 γ E2 to (16 ⁻), 278.1 γ M1+E2 to (17 ⁻).
2255.3+x 4	(10+)		C	I_{4}^{T} , 200 S., M1 + E2 to (17 ⁺)
2258.1 ± 3	(18°)		BC	$J^{*}: 299.8\gamma \text{ MI}+\text{E2 to } (17^{\circ}).$
2230.1 T Y	(20)		C	E(level): this level is assumed to decay via two low-energy transitions to two (18 ⁺) levels at 2217.99+x and 2258.1+x. The γ -rays are expected to be highly converted and lower than the energy threshold of the γ -detector array. This state could be an isomer. J ^{π} : Based on similarity to structures observed in ^{190,192} Au.
2344.5+x [‡] 3 2448.6+x 7	(18 ⁻)		BC C	J^{π} : 808.6 γ E2 to (16 ⁻), 379.6 γ M1+E2 to (17 ⁻), band member.
$2501.5 + x^{\#} 4$	(19 ⁺)		С	J^{π} : 283.7 γ to (18 ⁺), 542.8 γ to (17 ⁺); band member.
2503.8+x [‡] 3 2534.9+y 7	(19 ⁻)		BC C	J ^{π} : 159.6 γ M1+E2 to (18 ⁻), 538.5 γ E2 to (17 ⁻); band member.
2734.6+y [@] 3 2753.1+x 8	(21 ⁺)		BC C	J^{π} : 476.4 γ M1+E2 to (20 ⁺), band member.
2790.50+y [@] 10	(22^{+})		BC	J^{π} : 532.3 γ E2 to (20 ⁺), band member.
2808.0+x [‡] 5	(20 ⁻)		BC	J^{π} : 304.4 γ M1+E2 to (19 ⁻), band member.
2823.8+x [#] 7	(20^{+})		С	J^{π} : 322.3 γ to (19 ⁺); band member.
2873.4+x <i>4</i> 2938.1+x <i>8</i>	(20 ⁻)		BC C	J^{π} : 630.3 γ E2 to (18 ⁻).
3013.9+x [‡] 5 3130.4+y 6 3143.1+x 5	(21-)		BC C C	J^{π} : 206.1 γ M1+E2 to (20 ⁻); band member.
3310.59+y [@] 22	(23 ⁺)		BC	J^{π} : 520.1 γ M1+E2 to (22 ⁺) (2790.50+y).
3417.9+x [‡] 6	(22 ⁻)		В	J^{π} : 404.0 γ to (21 ⁻), 609.8 γ E2 to (20 ⁻); band member. E(level): Level not reported in 2010Fa19.
3547.6+x 6			С	· · · •
3567.6+y [@] 3 3575.3+x 7	(24 ⁺)		BC C	J^{π} : 777.1 γ E2 to (22 ⁺).
3735.2+x 6			BC	

Continued on next page (footnotes at end of table)

¹⁸⁸Au Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
3808.9+x [‡] 11	(23 ⁻)	В	E(level): Level not reported in 2010Fa19. J^{π} : 795 γ to (21 ⁻); band member.
4127.6+y [@] 5 4216.2+x 7	(25 ⁺)	BC BC	J^{π} : 560.1 γ to (23 ⁺); band member.
4385.9+y [@] 4 4473.4+x 9	(26 ⁺)	BC C	J^{π} : 818.1 γ E2 to (24 ⁺); band member.
z&	J	С	Additional information 3. E(level): Excitation energy and bandhead spin of this band are unknown.
86.8+z ^{&} 3	J+1	С	J^{π} : 87.1 γ M1+E2 to J, band member.
359.9+z ^{&} 3	J+2	С	J^{π} : 359.8 γ E2 to J, 273.1 γ M1+E2 to J+1, band member.
457.1+z ^{&} 3	J+3	С	J^{π} : 370.3 γ E2 to J+1, 97.7 γ M1+E2 to J+2, band member.
729.5+z ^{&} 5	J+4	C	J^{π} : 272.4 γ M1+E2 to J+3, band member.
794.8+z ^{&} 3	J+5	C	J^{π} : 337.7 γ E2 to J+3, band member.
$1215.7 + z^{\&} 4$	J+6	c	J^{π} : 420.8 γ M1+E2 to J+5, band member.
$1287.9+z^{\&}4$	I+7	c	I^{π} : 493 1 γ E2 to I+5 band member
$1806.0+z^{\&}5$	I+8	C	I^{π} : 590 2v E2 to J+6, 518 2v M1+E2 to J+7, hand member
$1885.2 \pm \frac{8}{2}$	J+0 I⊥0	C	I^{π} : 507.39 E2 to $I+7$ band member
2483.2 ± 2^{10}	J∓9 I±10	C C	J':
2+05.2+2 5	$J \pm 10$ $I \pm 11$	c	I^{π} : 687 20; E2 to 1.0, hand member
2372.4+2 3	$J \pm 11$ $J \pm 12$	C	$J = 087.2\gamma$ E2 to $J+9$, band member.
3328.9+Z~ /	J+13 (10 ⁻)	C	J [*] : 750.57 E2 to J+11, band member.
u	(10)	C	E(level): Excitation energy of band is unknown. $T_{\rm e}(10^{-1})$
$328.3 \pm n^{a}$	(12^{-})	C	J^{*} : (10) suggested by 2010ra19 based on proposed configuration. The assignment is tentative.
$326.9 \pm u^{-4}$ 356.0 \pm u^{-4}	(12^{-})	c	I^{π} : 356 1 \times M1+F2 to (10 ⁻), band member
$688.2 \pm u^{a}.5$	(11^{-})	c	J^{π} : 332.2 γ E2 to (11 ⁻), 359.8 γ M1+E2 to (12 ⁻), band member.
$777.8 + u^{a} 4$	(12^{-})	c	J^{π} : 449.5 γ E2 to (12 ⁻), band member.
1104.6+u ^a 5	(15^{-})	C	J^{π} : 416.4 γ E2 to (13 ⁻), 326.9 γ M1+E2 to (14 ⁻), band member.
1296.3+u ^a 6	(16 ⁻)	С	J^{π} : 518.4 γ E2 to (14 ⁻), band member.
1600.1+u ^a 6	(17^{-})	С	J^{π} : 495.5 γ E2 to (15 ⁻), band member.
1872.2+u ^a 8	(18 ⁻)	С	J^{π} : 575.9 γ E2 to (16 ⁻), band member.
2165.7+u ^a 8	(19 ⁻)	С	J^{π} : 565.6 γ E2 to (17 ⁻), band member.
2502.9+u ^a 9	(20^{-})	С	J^{π} : 630.7 γ E2 to (18 ⁻), band member.
2790.3+u ^a 10	(21^{-})	С	J^{π} : 624.6 γ to (19 ⁻), band member.

[†] From least-squares fit to $E\gamma$. [‡] Band(A): $\pi(h_{11/2})^{-1} \otimes \nu(i_{13/2}^{-1})$. [#] Band(B): $\pi(h_{11/2})^{-1} \otimes \nu(i_{13/2}^{-2}, (p_{3/2} \text{ or } f_{5/2})^{-1})$. [@] Band(C): $\pi h_{11/2}^{-1} \otimes \nu(i_{13/2}^{-2}, h_{9/2}^{-1})$. [&] Band(D): Possible configurations: $\pi(h_{9/2})^{-1} \otimes \nu(p_{3/2} \text{ or } f_{5/2})^{-1})$ or $\pi(h_{11/2})^{-1} \otimes \nu(h_{9/2})^{-1}$. ^a Band(E): Possible configuration: $\pi(h_{9/2})^{-1} \otimes \nu(i_{13/2})^{-1}$. Suggested in 2010Fa19, but the observed signature splitting systematics are not consistent with this assignment.

					Ad	lopted Levels, Ga	mmas (conti	nued)
						$\gamma(^{188}$	Au)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{\#}$	α &	Comments
16.00	(2) ⁻	16.0 [‡] 1	100 [‡]	0.0 1 ⁻	M1+E2	0.044 3	352 13	B(M1)(W.u.)=0.023 3; B(E2)(W.u.)=69 13 α (L)=268 10; α (M)=64.2 25 α (N)=15.9 6; α (O)=2.85 10; α (P)=0.158 4 Mult.: From M1/M2/M3=100/21/17 in 1985Ab03.
82.70	1+	66.7 [‡] 1	100 [‡] 5	16.00 (2) ⁻	(E1)		0.248	B(E1)(W.u.)=0.00038 6 α (L)=0.190 3; α (M)=0.0446 7 α (N)=0.01086 16; α (O)=0.00182 3; α (P)=7.01×10 ⁻⁵ 11 Mult.: L1/L2/L3=100/54/68 in 1985Ab03 allows E1 or M1+E2 with δ =0.38 2.
		82.7 [‡] 1	4.1 [‡] 4	0.0 1 ⁻	(E1)		0.659	B(E1)(W.u.)=8.1×10 ⁻⁶ <i>15</i> α (K)=0.521 <i>8</i> ; α (L)=0.1060 <i>16</i> ; α (M)=0.0248 <i>4</i> α (N)=0.00605 <i>9</i> ; α (O)=0.001027 <i>15</i> ; α (P)=4.27×10 ⁻⁵ <i>6</i> Mult.: L1/L2/L3=100/41/34 in 1985Ab03 allows E1 or M1+E2 with δ =0.36 2.
114.20	(1) ⁻	98.2 [‡] 1	24 [‡] 6	16.00 (2)-	M1+E2	<0.03	7.64	α (K)=6.27 9; α (L)=1.058 16; α (M)=0.246 4 α (N)=0.0612 9; α (O)=0.01124 17; α (P)=0.000758 11 Mult.: from α (K)exp=7.6 (1985Ab03). Other: α (L)exp=0.51 (1970Fi16).
		114.2 [‡] <i>1</i>	100 [‡] 6	0.0 1-	M1+E2	2.02 +18-12	3.40 7	α (K)=1.26 <i>10</i> ; α (L)=1.61 <i>4</i> ; α (M)=0.415 <i>11</i> α (N)=0.1021 <i>25</i> ; α (O)=0.0166 <i>4</i> ; α (P)=0.000151 <i>11</i> Mult.: from K/L3=2.0 (1985Ab03).
114.80	(2) ⁻	98.8 [‡] 1	32 [‡] 3	16.00 (2)-	M1+E2	<0.17	7.48	α (K)=6.08 <i>12</i> ; α (L)=1.07 <i>4</i> ; α (M)=0.251 <i>11</i> α (N)=0.062 <i>3</i> ; α (O)=0.0114 <i>4</i> ; α (P)=0.000736 <i>14</i> B(E2)(W.u.)<5.3 Mult.: from α (K)exp=8.3 (1985Ab03).
		114.8 [‡] <i>I</i>	100 [‡] 4	0.0 1-	M1+E2	0.34 2	4.69	B(M1)(W.u.)=0.0070 8; B(E2)(W.u.)=25 4 α (K)=3.65 7; α (L)=0.790 17; α (M)=0.188 5 α (N)=0.0468 11; α (O)=0.00832 18; α (P)=0.000440 8 Mult.: from K/L3=44.5 (1985Ab03).
172.0	(1)-	155.8 [‡] <i>I</i>	100 [‡] 15	16.00 (2)-	M1+E2	0.94 18	1.52 12	$\alpha(K)=1.04 \ 15; \ \alpha(L)=0.361 \ 19; \ \alpha(M)=0.089 \ 6$ $\alpha(N)=0.0221 \ 14; \ \alpha(O)=0.00377 \ 18; \ \alpha(P)=0.000122 \ 18$ Mult.: from $\alpha(K)exp=1.15$ in 1985Ab03. Other: $\alpha(L)exp=0.59$ in 1970Fi16.
		172.1 [‡] <i>1</i>	14 [‡] 3	0.0 1-	M1+E2	< 0.3	1.51 5	α (K)=1.23 5; α (L)=0.215 5; α (M)=0.0503 13 α (N)=0.0125 4; α (O)=0.00229 5; α (P)=0.000147 6 Mult.: from α (K)exp=1.4 in 1985Ab03.
217.50	$(1)^{+}$	134.8 [‡] <i>1</i>	100 [‡]	82.70 1+	M1+E2	0.68 2	2.59 5	α (K)=1.84 4; α (L)=0.569 10; α (M)=0.140 3 α (N)=0.0346 7; α (O)=0.00595 11; α (P)=0.000219 5 Mult.: from K/L3=10.4 (1985Ab03); α (L)exp=0.20 (1970Fi16).
297.1	(0,1)-	182.9 [‡] 3	100 [‡] 10	114.20 (1)-	M1+E2	1.9 +3-2	0.68 4	$\alpha(K)=0.40$ 4; $\alpha(L)=0.215$ 4; $\alpha(M)=0.0543$ 12

4

From ENSDF

 $^{188}_{79}\mathrm{Au}_{109}$ -4

I

					Adopt	ed Levels, Gam	mas (contin	ued)	
γ ⁽¹⁸⁸ Au) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ [#]	α &	Comments	
				<u> </u>				α (N)=0.0134 3; α (O)=0.00223 4; α (P)=4.5×10 ⁻⁵ 5 Mult.: from α (K)exp=0.4 in 1985Ab03.	
297.1	(0,1) ⁻	297.1 ^{‡a} 3	59 [‡] 12	0.0 1-	[M1+E2]		0.341	α (K)=0.281 4; α (L)=0.0463 7; α (M)=0.01073 16 α (N)=0.00267 4; α (O)=0.000492 7; α (P)=3.33×10 ⁻⁵ 5	
304.89	(1)-	190.1 [‡] <i>1</i>	100 [‡] 5	114.80 (2)-	M1+E2	0.06 3	1.168	$\begin{array}{l} \alpha(\mathrm{K}){=}0.960 \ 14; \ \alpha(\mathrm{L}){=}0.1603 \ 23; \ \alpha(\mathrm{M}){=}0.0372 \ 6 \\ \alpha(\mathrm{N}){=}0.00927 \ 14; \ \alpha(\mathrm{O}){=}0.001704 \ 24; \ \alpha(\mathrm{P}){=}0.0001147 \ 17 \\ \mathrm{Mult.: \ from } \ \alpha(\mathrm{K})\mathrm{exp}{=}1.0, \ \mathrm{L}12/\mathrm{L}3{=}104 \ (1985\mathrm{Ab03}), \\ \alpha(\mathrm{L})\mathrm{exp}{=}0.10 \ (1970\mathrm{Fi16}). \end{array}$	
		190.7 [‡] 1	4.5 [‡] 11	114.20 (1)-	M1+E2	>0.7	0.68 25	α (K)=0.45 26; α (L)=0.178 11; α (M)=0.045 4 α (N)=0.0110 10; α (O)=0.00186 9; α (P)=5.1×10 ⁻⁵ 32 Mult.: from L2/L3=1.7 in 1985Ab03.	
		304.9 ^{‡<i>a</i>} 3	1.1 [‡] 3	$0.0 1^{-}$					
442.7	$(0,1)^+$	225.2 [‡] 3	100 [‡]	217.50 (1) ⁺	M1+E2	<0.2	0.721 14	α (K)=0.592 <i>13</i> ; α (L)=0.0996 <i>15</i> ; α (M)=0.0231 <i>4</i> α (N)=0.00576 <i>9</i> ; α (O)=0.001057 <i>16</i> ; α (P)=7.05×10 ⁻⁵ <i>16</i> Mult.: from α (K)exp=0.73 in 1985Ab03.	
447.10	(0,1)+	229.6 [‡] 3	100 [‡] <i>10</i>	217.50 (1) ⁺	M1+E2	<0.18	0.685 13	α (K)=0.562 <i>11</i> ; α (L)=0.0943 <i>14</i> ; α (M)=0.0219 <i>4</i> α (N)=0.00546 <i>8</i> ; α (O)=0.001002 <i>15</i> ; α (P)=6.70×10 ⁻⁵ <i>13</i> Mult.: from α (K)exp=0.94 in 1985Ab03.	
		364.4 [‡] <i>3</i>	99 [‡] 10	82.70 1+	M1+E2	<0.6	0.178 <i>19</i>	α (K)=0.145 <i>17</i> ; α (L)=0.0250 <i>16</i> ; α (M)=0.0058 <i>4</i> α (N)=0.00145 <i>9</i> ; α (O)=0.000265 <i>17</i> ; α (P)=1.71×10 ⁻⁵ <i>20</i> Mult.: from α (K)exp=0.15 in 1985Ab03.	
566.6	(1) ⁻	451.8 [‡] 3	100 [‡]	114.80 (2)-	M1+E2	<0.3	0.107 4	$\alpha(K)=0.088 \ 3; \ \alpha(L)=0.0146 \ 4; \ \alpha(M)=0.00337 \ 9$ $\alpha(N)=0.000840 \ 21; \ \alpha(O)=0.000154 \ 4; \ \alpha(P)=1.04\times10^{-5} \ 4$ Mult.: from $\alpha(K)$ exp=0.10 in 1985Ab03.	
567.26	(0,1) ⁻	262.4 [‡] 2	100 [‡] 5	304.89 (1)-	E2(+M1)	3.5 +12-7	0.178 <i>13</i>	α (K)=0.110 <i>12</i> ; α (L)=0.0520 <i>10</i> ; α (M)=0.01308 <i>21</i> α (N)=0.00323 <i>6</i> ; α (O)=0.000541 <i>10</i> ; α (P)=1.19×10 ⁻⁵ <i>15</i> Mult.: from α (K)exp=0.11 in 1985Ab03.	
		567.2 [‡] 3	38 [‡] 5	0.0 1 ⁻	M1+E2	<0.5	0.057 5	α (K)=0.047 4; α (L)=0.0077 5; α (M)=0.00178 11 α (N)=0.00044 3; α (O)=8.1×10 ⁻⁵ 5; α (P)=5.5×10 ⁻⁶ 5 Mult.: from α (K)exp=0.05 in 1985Ab03.	
606.02	(2) ⁺	523.3 [‡] 3	100 [‡] <i>13</i>	82.70 1+	M1+E2	<0.5	0.070 6	α (K)=0.057 5; α (L)=0.0095 6; α (M)=0.00221 13 α (N)=0.00055 4; α (O)=0.000101 6; α (P)=6.7×10 ⁻⁶ 6 Mult.: from α (K)exp=0.06 in 1985Ab03.	
		606.0 [‡] <i>3</i>	60 [‡] 7	0.0 1 ⁻	E1		0.00576	α (K)=0.00481 7; α (L)=0.000737 11; α (M)=0.0001691 24 α (N)=4.19×10 ⁻⁵ 6; α (O)=7.61×10 ⁻⁶ 11; α (P)=4.82×10 ⁻⁷ 7 Mult.: from α (K)exp<0.006 in 1985Ab03.	
859.8	(2)+	253.8 [‡] 3	100 [‡]	606.02 (2) ⁺	M1+E2	0.57 19	0.44 5	α (K)=0.35 5; α (L)=0.0682 19; α (M)=0.0161 4 α (N)=0.00401 9; α (O)=0.000721 22; α (P)=4.1×10 ⁻⁵ 5 Mult.: from α (K)exp=0.35 in 1985Ab03.	

S

From ENSDF

 $^{188}_{79}\mathrm{Au}_{109}$ -5

L

						Adopted Lev	vels, Gamma	s (continue	<u>d)</u>
						$\gamma(^{18}$	⁸⁸ Au) (contir	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [@]	$\delta^{\#}$	α ^{&}	Comments
961.3	(0^-,1)	944.9 [‡] <i>3</i> 961.3 [‡] <i>3</i>	59 [‡] 15 100 [‡] 24	16.00 0.0	$(2)^{-}$ 1 ⁻				
1012.1	$(1)^{+}$	152.3 [‡] <i>I</i>	45 [‡] 10	859.8	(2)+	M1+E2	1.08 <i>16</i>	1.54 10	α (K)=1.00 <i>12</i> ; α (L)=0.408 <i>17</i> ; α (M)=0.102 <i>5</i> α (N)=0.0251 <i>13</i> ; α (O)=0.00425 <i>17</i> ; α (P)=0.000117 <i>15</i> Mult.: from α (K)exp=1.0 in 1985Ab03.
		406.1 [‡] <i>3</i>	100 [‡] 25	606.02	(2)+	(M1+E2)		0.1467	$\alpha(K)=0.1210 \ 18; \ \alpha(L)=0.0198 \ 3; \ \alpha(M)=0.00458 \ 7 \ \alpha(N)=0.001142 \ 17; \ \alpha(O)=0.000210 \ 3; \ \alpha(P)=1.428 \times 10^{-5} \ 21 \ Mult.; \ from \ \alpha(K)exp<0.2 \ in \ 1985Ab03.$
1047.75	(1)	1031.8 [‡] 3	36 [‡] 9	16.00	(2)-				
1102.0	(1)+	1047.7 + 3	100 * 8	0.0	1^{-}	M1 . E2	.0.21	0.592.12	
1103.0	(1).	243.2* 3	100*	859.8	(2)	MI+E2	<0.21	0.582 12	$\alpha(K)=0.478$ 11; $\alpha(L)=0.0802$ 12; $\alpha(M)=0.0186$ 3 $\alpha(N)=0.00464$ 7; $\alpha(O)=0.000852$ 13; $\alpha(P)=5.69\times10^{-5}$ 13 Mult.: from $\alpha(K)\exp=0.63$ in 1985Ab03.
1123.4	(1)	263.5 3		859.8	$(2)^{+}$				E_{γ} : From ¹⁸⁸ Hg ε decay.
		1040.7 [‡] 3	100 [‡]	82.70	1^{+}				
1205.0	$(1)^{+}$	102.0 [‡] 1	30 [‡] 8	1103.0	$(1)^{+}$	M1+E2	<0.2	6.82 11	$\alpha(K)=5.53\ 13;\ \alpha(L)=0.99\ 5;\ \alpha(M)=0.231\ 12$ $\alpha(N)=0.058\ 3;\ \alpha(O)=0.0105\ 5;\ \alpha(P)=0.000668\ 15$ Mult.: from $\alpha(K)\exp=6.9$ in 1985Ab03.
		192.9 [‡] 1	32 [‡] 8	1012.1	(1)+	[M1+E2]		1.124	$\alpha(K)=0.924 \ 13; \ \alpha(L)=0.1538 \ 22; \ \alpha(M)=0.0357 \ 5 \\ \alpha(N)=0.00889 \ 13; \ \alpha(O)=0.001634 \ 23; \ \alpha(P)=0.0001104 \ 16$
		345.2 [‡] 3	100 [‡] 11	859.8	$(2)^{+}$	[M1+E2]		0.227	$\alpha(K)=0.187 \ 3; \ \alpha(L)=0.0307 \ 5; \ \alpha(M)=0.00712 \ 11 \ \alpha(N)=0.00177 \ 3; \ \alpha(\Omega)=0.000326 \ 5; \ \alpha(P)=2.21\times10^{-5} \ 4$
314.76+x	(12 ⁻)	314.8 1	100	0.0+x	(11 ⁻)	M1+E2		0.291	$\alpha(K) = 0.240 \ 4; \ \alpha(L) = 0.0395 \ 6; \ \alpha(M) = 0.00916 \ 13 \ \alpha(N) = 0.00228 \ 4; \ \alpha(O) = 0.000420 \ 6; \ \alpha(P) = 2.84 \times 10^{-5} \ 4$
447.74+x	(13 ⁻)	133.4 <i>3</i>	10.5 12	314.76+x	(12 ⁻)	M1+E2		3.18	$\alpha(K)=2.61 4; \alpha(L)=0.438 7; \alpha(M)=0.1016 16 \alpha(N)=0.0253 4; \alpha(O)=0.00465 8; \alpha(P)=0.000314 5$
		447.7 1	100 8	0.0+x	(11 ⁻)	E2		0.0340	α (K)=0.0241 4; α (L)=0.00748 11; α (M)=0.00184 3 α (N)=0.000456 7; α (O)=7.82×10 ⁻⁵ 11; α (P)=2.66×10 ⁻⁶ 4
804.28+x	(14 ⁻)	356.6 1	100 7	447.74+x	(13 ⁻)	M1+E2		0.208	α (K)=0.1713 24; α (L)=0.0281 4; α (M)=0.00652 10 α (N)=0.001623 23; α (O)=0.000299 5; α (P)=2.03×10 ⁻⁵ 3
		489.5 <i>3</i>	11.1 15	314.76+x	(12 ⁻)	E2		0.0272	α (K)=0.0198 3; α (L)=0.00564 8; α (M)=0.001380 20 α (N)=0.000342 5; α (O)=5.90×10 ⁻⁵ 9; α (P)=2.19×10 ⁻⁶ 3
1170.41+x	(15 ⁻)	366.3 1	34 5	804.28+x	(14-)	M1+E2		0.193	$\alpha(K)=0.1594\ 23;\ \alpha(L)=0.0262\ 4;\ \alpha(M)=0.00606\ 9$ $\alpha(N)=0.001509\ 22;\ \alpha(O)=0.000278\ 4;\ \alpha(P)=1.88\times10^{-5}\ 3$
		722.6 1	100 8	447.74+x	(13-)	E2		0.01117	$\alpha(K)=0.00872\ 13;\ \alpha(L)=0.00187\ 3;\ \alpha(M)=0.000446\ 7$ $\alpha(N)=0.0001107\ 16;\ \alpha(O)=1.96\times10^{-5}\ 3:\ \alpha(P)=9.69\times10^{-7}\ 14$
1535.97+x	(16 ⁻)	365.7 1	86 10	1170.41+x	(15 ⁻)	M1+E2		0.194	$\alpha(K)=0.1601\ 23;\ \alpha(L)=0.0263\ 4;\ \alpha(M)=0.00609\ 9$ $\alpha(N)=0.001516\ 22;\ \alpha(O)=0.000279\ 4;\ \alpha(P)=1.89\times10^{-5}\ 3$
		731.6 <i>1</i>	100 10	804.28+x	(14-)	E2		0.01088	$\alpha(K)=0.00851\ 12;\ \alpha(L)=0.00181\ 3;\ \alpha(M)=0.000432\ 6$ $\alpha(N)=0.0001072\ 15;\ \alpha(O)=1.90\times10^{-5}\ 3;\ \alpha(P)=9.45\times10^{-7}\ 14$

6

 $^{188}_{79}\mathrm{Au}_{109}$ -6

¹⁸⁸₇₉Au₁₀₉-6

From ENSDF

$\gamma(^{188}Au)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [@]	α &	Comments
1692.09+x	(15 ⁺)	887.8 1	100	804.28+x	(14 ⁻)	E1	0.00275	$\alpha(K) = 0.00230 \ 4; \ \alpha(L) = 0.000344 \ 5; \ \alpha(M) = 7.86 \times 10^{-5} \ 11$
1912.69+x	(16 ⁺)	220.6 1	100	1692.09+x	(15 ⁺)	M1+E2	0.773	$\alpha(K) = 1.95 \times 10^{-5}$; $\alpha(C) = 5.30 \times 10^{-5}$; $\alpha(F) = 2.35 \times 10^{-5}$ 4 $\alpha(K) = 0.636$ 9; $\alpha(L) = 0.1056$ 15; $\alpha(M) = 0.0245$ 4
1958.39+x	(17 ⁺)	266.3 1	100 10	1692.09+x	(15 ⁺)	E2	0.1470	$\alpha(N)=0.00610\ 9;\ \alpha(O)=0.001122\ 16;\ \alpha(P)=7.59\times10^{-5}\ 11$ $\alpha(K)=0.0833\ 12;\ \alpha(L)=0.0480\ 7;\ \alpha(M)=0.01218\ 18$
		422.5 <i>3</i>	85 10	1535.97+x	(16 ⁻)	E1	0.01233	α (N)=0.00301 5; α (O)=0.000499 7; α (P)=8.77×10 ⁻⁶ 13 α (K)=0.01023 15; α (L)=0.001617 23; α (M)=0.000372 6
1965.17+x	(17 ⁻)	429.7 <i>3</i>	62 14	1535.97+x	(16 ⁻)	M1+E2	0.1262	$\alpha(N)=9.21\times10^{-5} \ 13; \ \alpha(O)=1.661\times10^{-5} \ 24; \ \alpha(P)=1.003\times10^{-6} \ 15$ $\alpha(K)=0.1041 \ 15; \ \alpha(L)=0.01702 \ 24; \ \alpha(M)=0.00394 \ 6$
		794.7 <i>1</i>	100 14	1170.41+x	(15 ⁻)	E2	0.00914	α (N)=0.000981 <i>14</i> ; α (O)=0.000181 <i>3</i> ; α (P)=1.227×10 ⁻⁵ <i>18</i> α (K)=0.00722 <i>11</i> ; α (L)=0.001469 <i>21</i> ; α (M)=0.000349 <i>5</i>
2217 99+x	(18^{+})	259.6.1	100	1958 39+x	(17^{+})	M1+F2	0 493	$\alpha(N)=8.65\times10^{-5}$ 13; $\alpha(O)=1.541\times10^{-5}$ 22; $\alpha(P)=8.01\times10^{-7}$ 12 $\alpha(K)=0.406$ 6; $\alpha(I)=0.0572$ 10; $\alpha(M)=0.01557$ 22
2217.99 TK	(10^{-})	239.01	22.7	1065 17 Lv	(17^{-})	M1+E2	0.100	$\alpha(N)=0.00388 6; \alpha(O)=0.00713 10; \alpha(P)=4.83 \times 10^{-5} 7$ $\alpha(N)=0.236 5; \alpha(O)=0.00713 10; \alpha(P)=4.83 \times 10^{-5} 7$
2245.07+X	(10)	270.1 J	327	1905.17+x	(17)		0.400	$\alpha(\mathbf{K}) = 0.536$ 3, $\alpha(\mathbf{L}) = 0.0535$ 9, $\alpha(\mathbf{M}) = 0.01287$ 20 $\alpha(\mathbf{N}) = 0.00321$ 5; $\alpha(\mathbf{O}) = 0.000590$ 9; $\alpha(\mathbf{P}) = 3.99 \times 10^{-5}$ 6 $\alpha(\mathbf{K}) = 0.000412$ 7
		/0/.1 /	100 18	1535.97+x	(16)	E2	0.01170	$\alpha(\text{K})=0.0091113; \alpha(\text{L})=0.001983; \alpha(\text{M})=0.0004737$ $\alpha(\text{N})=0.000117317; \alpha(\text{O})=2.07\times10^{-5}3; \alpha(\text{P})=1.012\times10^{-6}15$
2255.3+x		342.6 3	100	1912.69+x	(16+)	M1+E2	0.232	$\alpha(K)=0.191 \ 3; \ \alpha(L)=0.0314 \ 5; \ \alpha(M)=0.00727 \ 11 \\ \alpha(N)=0.00181 \ 3; \ \alpha(O)=0.000333 \ 5; \ \alpha(P)=2.26\times10^{-5} \ 4$
2258.1+x	(18+)	299.8 4	100	1958.39+x	(17 ⁺)	M1+E2	0.333	$\alpha(K)=0.274$ 4; $\alpha(L)=0.0452$ 7; $\alpha(M)=0.01047$ 16 $\alpha(N)=0.00261$ 4; $\alpha(O)=0.000480$ 7; $\alpha(P)=3.25\times10^{-5}$ 5
2344.5+x	(18 ⁻)	379.6 5	37 11	1965.17+x	(17 ⁻)	M1+E2	0.176 3	$\alpha(\mathbf{K})=0.1449\ 21;\ \alpha(\mathbf{L})=0.0238\ 4;\ \alpha(\mathbf{M})=0.00550\ 8$ $\alpha(\mathbf{N})=0.001370\ 20;\ \alpha(\mathbf{O})=0.000252\ 4;\ \alpha(\mathbf{P})=1.712\times10^{-5}\ 25$
		808.6 3	100 21	1535.97+x	(16 ⁻)	E2	0.00882	$\alpha(K) = 0.00698 \ 10; \ \alpha(L) = 0.001407 \ 20; \ \alpha(M) = 0.000334 \ 5$ $\alpha(N) = 8 \ 28 \times 10^{-5} \ 12; \ \alpha(O) = 1.476 \times 10^{-5} \ 21; \ \alpha(P) = 7.74 \times 10^{-7} \ 11$
2448.6+x		205.7	100	2243.07 + x	(18^{-})			$u(1) = 0.20 \times 10^{-12}$; $u(0) = 1.470 \times 10^{-21}$; $u(1) = 7.74 \times 10^{-11}$
2501.5 + x	(19^{+})	243.4 5	40 20	2258.1 + x	(18^+)			
		283.7 5	60 20	2217.99+x	(18^+)			
		542.8 5	100 20	1958.39+x	(17^{+})			
2503.8+x	(19 ⁻)	159.6 5	31 7	2344.5+x	(18-)	M1+E2	1.91 4	$\alpha(K)=1.57 \ 3; \ \alpha(L)=0.263 \ 5; \ \alpha(M)=0.0609 \ 11 \ \alpha(N)=0.0152 \ 3; \ \alpha(O)=0.00279 \ 5; \ \alpha(P)=0.000189 \ 4$
		538.5 <i>3</i>	100 23	1965.17+x	(17 ⁻)	E2	0.0216	$\alpha(K)=0.01606\ 23;\ \alpha(L)=0.00423\ 6;\ \alpha(M)=0.001027\ 15$ $\alpha(N)=0.000254\ 4;\ \alpha(Q)=4.42\times10^{-5}\ 7;\ \alpha(P)=1\ 78\times10^{-6}\ 3$
2534.9+v		276.8.5	100	2258.1+x	(18^{+})			$u(1)=0.0002511, u(0)=1.12\times10^{-1}, u(1)=1.10\times10^{-5}$
2734.6+v	(21^{+})	476.4 3	100	2258.1+v	(20^{+})	M1+E2	0.0961	$\alpha(K) = 0.0793$ 12: $\alpha(L) = 0.01291$ 19: $\alpha(M) = 0.00299$ 5
2751.01 y	(21)	204.5.5	100	2230.1 Fy	(20)	M1 - E2	0.0701	$\alpha(N) = 0.000744 \ 11; \ \alpha(O) = 0.0001370 \ 20; \ \alpha(P) = 9.32 \times 10^{-6} \ 14$
2/53.1+x	(a a t :	304.5 5	100	2448.6+x	(act)	MI+E2		
2790.50+y	(22+)	532.3 1	100	2258.1+y	(20 ⁺)	E2	0.0222	$\alpha(K)=0.01647\ 23;\ \alpha(L)=0.00437\ 7;\ \alpha(M)=0.001064\ 15$ $\alpha(N)=0.000264\ 4;\ \alpha(O)=4.58\times10^{-5}\ 7;\ \alpha(P)=1.83\times10^{-6}\ 3$
2808.0+x	(20 ⁻)	304.4 <i>3</i>	100	2503.8+x	(19-)	M1+E2	0.319	α (K)=0.262 4; α (L)=0.0433 7; α (M)=0.01003 15 α (N)=0.00250 4; α (O)=0.000460 7; α (P)=3.11×10 ⁻⁵ 5

 \neg

$\gamma(^{188}Au)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [@]	α ^{&}	Comments
2823.8+x	(20^{+})	322.3.5	100	2501.5 + x	(19^{+})			
2873.4+x	(20^{-})	630.3 <i>3</i>	100	2243.07+x	(18 ⁻)	E2	0.01506	α (K)=0.01152 <i>17</i> ; α (L)=0.00269 <i>4</i> ; α (M)=0.000648 <i>10</i> α (N)=0.0001607 <i>23</i> ; α (O)=2.82×10 ⁻⁵ <i>4</i> ; α (P)=1.280×10 ⁻⁶ <i>18</i>
2938.1+x		185.1 5	100	2753.1+x				
3013.9+x	(21 ⁻)	206.1 3	100 20	2808.0+x	(20 ⁻)	M1+E2	0.934 14	$\alpha(K)=0.768 \ 12; \ \alpha(L)=0.1277 \ 19; \ \alpha(M)=0.0296 \ 5 \ \alpha(N)=0.00738 \ 11; \ \alpha(Q)=0.001357 \ 20; \ \alpha(P)=9.17\times10^{-5} \ 14$
		509.8.5	20.7	2503.8+x	(19^{-})			
3130.4+y		395.8 5	100	2734.6+y	(21 ⁺)	M1+E2	0.1572 23	α (K)=0.1296 <i>19</i> ; α (L)=0.0212 <i>3</i> ; α (M)=0.00491 <i>7</i> α (N)=0.001224 <i>18</i> ; α (O)=0.000225 <i>4</i> ; α (P)=1.530×10 ⁻⁵ 22
3143.1+x		205.1		2938.1+x				
		269.8.5	100 20	2873.4 + x	(20^{-})	M1+E2		
		694.5		2448.6+x	(=•)	E2		
3310.59+y	(23+)	520.1 3	100	2790.50+y	(22+)	M1+E2	0.0762	α (K)=0.0629 9; α (L)=0.01023 15; α (M)=0.00237 4 α (N)=0.000589 9; α (O)=0.0001085 16; α (P)=7.39×10 ⁻⁶ 11
3417.9+x	(22^{-})	404.0 3	100 33	3013.9+x	(21^{-})			
	. ,	609.8 4	57 12	2808.0+x	(20 ⁻)	E2	0.01622	α (K)=0.01234 <i>18</i> ; α (L)=0.00295 <i>5</i> ; α (M)=0.000712 <i>10</i> α (N)=0.0001765 <i>25</i> ; α (O)=3.09×10 ⁻⁵ <i>5</i> ; α (P)=1.371×10 ⁻⁶ <i>20</i>
3547.6+x		404.7 5	100 25	3143.1+x		M1+E2		
		674.1 5	75 10	2873.4+x	(20^{-})			
3567.6+y	(24^{+})	257.1 5	20 10	3310.59+y	(23^{+})			
5		777.1 3	100 10	2790.50+y	(22+)	E2	0.00958	$\alpha(K)=0.00755 \ II; \ \alpha(L)=0.001554 \ 22; \ \alpha(M)=0.000369 \ 6 \ \alpha(N)=9.16\times10^{-5} \ I3; \ \alpha(O)=1.629\times10^{-5} \ 23; \ \alpha(P)=8.37\times10^{-7} \ I2$
3575.3+x		432.2 5	100	3143.1+x		M1+E2		
3735.2+x		861.8.5	100	2873.4 + x	(20^{-})			
3808.9 + x	(23^{-})	795 /	100	3013.9 + x	(21^{-})			
4127.6+v	(25^+)	560 1 5	100	3567.6+v	(24^+)			
4216.2 + x	(25)	481.0.5	100	3735.2+x	(21)			
$4385.9 \pm v$	(26^{+})	258 7 5	60.20	$4127.6 \pm v$	(25^{+})			
1505.719	(20)	818.1 5	100 20	3567.6+y	(23^{+}) (24^{+})	E2	0.00861	α (K)=0.00682 <i>10</i> ; α (L)=0.001367 <i>20</i> ; α (M)=0.000324 <i>5</i> α (N)=8.04×10 ⁻⁵ <i>12</i> ; α (O)=1.434×10 ⁻⁵ <i>21</i> ; α (P)=7.56×10 ⁻⁷ <i>11</i>
4473.4+x		257.2 5	100	4216.2+x				
86.8+z	J+1	87.1 5	100	Z	J	M1+E2	10.76 23	α (K)=8.81 <i>19</i> ; α (L)=1.50 <i>4</i> ; α (M)=0.347 <i>8</i> α (N)=0.0865 <i>19</i> ; α (O)=0.0159 <i>4</i> ; α (P)=0.001073 <i>24</i>
359.9+z	J+2	273.1 <i>1</i>	100	86.8+z	J+1	M1+E2	0.429	$\alpha(K)=0.3535; \alpha(L)=0.05849; \alpha(M)=0.0135319$ $\alpha(N)=0.003375; \alpha(Q)=0.0006209; \alpha(P)=4.20\times10^{-5}6$
		359.8 <i>3</i>	58 13	Z	J	E2	0.0607	$\alpha(X) = 0.0400 \ 6; \ \alpha(L) = 0.01565 \ 23; \ \alpha(M) = 0.00391 \ 6$ $\alpha(M) = 0.00095 \ 14; \ \alpha(D) = 0.0001622 \ 24; \ \alpha(M) = 4.25 \times 10^{-6} \ 7$
457.1+z	J+3	97.7 5	14.3 13	359.9+z	J+2	M1+E2	7.75 16	$\alpha(N) = 0.000905 14; \alpha(O) = 0.0001052 24; \alpha(P) = 4.55 \times 10^{-7}$ $\alpha(K) = 6.36 13; \alpha(L) = 1.072 22; \alpha(M) = 0.249 5$ $\alpha(N) = 0.0620 13; \alpha(O) = 0.01140 24; \alpha(P) = 0.000760 16$
		370.3 1	100	86.8+z	J+1	E2	0.0561	$\alpha(X) = 0.0374 6; \alpha(L) = 0.01415 20; \alpha(M) = 0.00375 5$ $\alpha(K) = 0.00971 42; \alpha(D) = 0.001476 21; \alpha(M) = 4.07 \times 10^{-6} 6$
729.5+z	J+4	272.4 3	100	457.1+z	J+3	M1+E2	0.432 7	$\alpha(N)=0.00087175; \alpha(O)=0.000147621; \alpha(P)=4.07\times10^{-5}6$ $\alpha(K)=0.3565; \alpha(L)=0.05889; \alpha(M)=0.0136320$ $\alpha(N)=0.003405; \alpha(O)=0.0006259; \alpha(P)=4.23\times10^{-5}6$

 ∞

From ENSDF

γ (¹⁸⁸Au) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [@]	α &	Comments
794.8+z	J+5	337.7 1	100	457.1+z J	+3	E2	0.0725	$\alpha(K)=0.0466\ 7;\ \alpha(L)=0.0196\ 3;\ \alpha(M)=0.00492\ 7$
1215.7+z	J+6	420.8 <i>3</i>	100	794.8+z J	+5	M1+E2	0.1335	α (N)=0.001215 <i>17</i> ; α (O)=0.000204 <i>3</i> ; α (P)=5.03×10 ⁻⁶ <i>7</i> α (K)=0.1101 <i>16</i> ; α (L)=0.0180 <i>3</i> ; α (M)=0.00417 <i>6</i> α (N)=0.001038 <i>15</i> ; α (O)=0.000191 <i>3</i> ; α (P)=1.298×10 ⁻⁵ <i>19</i>
1287.9+z	J+7	493.1 <i>1</i>	100	794.8+z J	+5	E2	0.0267	a(K)=0.01953; a(L)=0.005713; a(K)=0.00134979 a(K)=0.01953; a(L)=0.005528; a(M)=0.00134979 $a(K)=0.0003345; a(C)=577\times10^{-5}8; a(R)=2.15\times10^{-6}3$
1806.0+z	J+8	518.2 5	100 22	1287.9+z J	+7	M1+E2	0.0770	$\begin{array}{l} \alpha(\mathbf{X}) = 0.00354 \ 9; \ \alpha(\mathbf{U}) = 0.173410 \ \ \ 9; \ \alpha(\mathbf{X}) = 0.00239 \ 4 \\ \alpha(\mathbf{X}) = 0.000556 \ 9; \ \alpha(\mathbf{U}) = 0.001005 \ \ 16; \ \alpha(\mathbf{M}) = 0.00239 \ 4 \\ \alpha(\mathbf{X}) = 0.0005056 \ 9; \ \alpha(\mathbf{U}) = 0.001005 \ \ 16; \ \alpha(\mathbf{M}) = 7.46 \times 10^{-6} \ \ 11 \\ \alpha(\mathbf{X}) = 0.000505 \ \ 10^{-6} \ \ 10^{-6} \ \ 11 \\ \alpha(\mathbf{X}) = 0.001005 \ \ 10^{-6} \ \ 10^{-6} \ \ 11 \\ \alpha(\mathbf{X}) = 0.001005 \ \ 10^{-6} $
		590.2 5	67 22	1215.7+z J	+6	E2	0.01747	$\alpha(K) = 0.003939$; $\alpha(L) = 0.003109376$; $\alpha(K) = 0.00078372$ $\alpha(K) = 0.0132279$; $\alpha(L) = 0.003245$; $\alpha(M) = 0.00078372$ $\alpha(K) = 0.000142$; $\alpha(L) = 0.0032410^{-5}$ 5.
1885.2+z	J+9	597.3 <i>1</i>	100	1287.9+z J	+7	E2	0.01700	$\begin{aligned} \alpha(N) &= 0.000194 \ 5; \ \alpha(O) &= 3.39 \times 10^{-5} \ 5; \ \alpha(P) &= 1.408 \times 10^{-5} \ 21 \\ \alpha(K) &= 0.01289 \ 18; \ \alpha(L) &= 0.00313 \ 5; \ \alpha(M) &= 0.000756 \ 11 \\ \alpha(N) &= 0.000187 \ 3; \ \alpha(O) &= 3.28 \times 10^{-5} \ 5; \ \alpha(P) &= 1.432 \times 10^{-6} \ 20 \end{aligned}$
2483.2+z	J+10	598.0 5 677.1 5	100 <i>40</i> 100 <i>40</i>	1885.2+z J- 1806.0+z J-	+9 +8			
2572.4+z	J+11	687.2 <i>3</i>	100	1885.2+z J	+9	E2	0.01245	$\alpha(\mathbf{K})=0.00965\ 14;\ \alpha(\mathbf{L})=0.00213\ 3;\ \alpha(\mathbf{M})=0.000511\ 8$ $\alpha(\mathbf{N})=0.0001266\ 18;\ \alpha(\mathbf{O})=2.24\times10^{-5}\ 4;\ \alpha(\mathbf{P})=1.072\times10^{-6}\ 15$
3328.9+z	J+13	756.5 5	100	2572.4+z J	+11	E2	0.01014	$a(K) = 0.00796 \ 12; \ \alpha(L) = 0.001663 \ 24; \ \alpha(M) = 0.00396 \ 6$ $\alpha(K) = 0.82 \times 10^{-5} \ 14; \ \alpha(D) = 1.744 \times 10^{-5} \ 25; \ \alpha(P) = 8.83 \times 10^{-7} \ 13$
328.3+u	(12 ⁻)	328.3 <i>3</i>	100	u (1	10-)	E2	0.0786	$\alpha(N) = 5.82 \times 10^{-17} + 3.0 \times 10^{-17$
356.0+u	(11 ⁻)	356.1 5	100	u ()	10-)	M1+E2	0.209 8	$\alpha(N)=0.001548\ 20;\ \alpha(O)=0.000226\ 4;\ \alpha(P)=3.5/\times10^{-5}\ 8$ $ce(K)/(\gamma+ce)=0.1423\ 18;\ ce(L)/(\gamma+ce)=0.0234\ 4;\ ce(M)/(\gamma+ce)=0.00541\ 8$ $ce(N)/(\gamma+ce)=0.001348\ 20;\ ce(O)/(\gamma+ce)=0.000248\ 4;\ ce(P)/(\gamma+ce)=1.683\times10^{-5}\ 25$ $\alpha(K)=0.1719\ 25;\ \alpha(L)=0.0282\ 4;\ \alpha(M)=0.00654\ 10$ $\alpha(L)=0.021620\ 5=0.002200\ 5=0.000248\ 4;\ ce(P)/(\gamma+ce)=1.683\times10^{-5}\ 25$
688.2+u	(13 ⁻)	332.2 5	100 25	356.0+u (1	11-)	E2	0.0760	$\alpha(N)=0.001630\ 24;\ \alpha(O)=0.000300\ 5;\ \alpha(P)=2.03\times10^{-5}\ 3$ $\alpha(K)=0.0484\ 7;\ \alpha(L)=0.0208\ 4;\ \alpha(M)=0.00522\ 8$ $\alpha(N)=0.001200\ 20;\ \alpha(O)=0.000217\ 4;\ \alpha(D)=5\ 22\times10^{-6}\ 8$
		359.8 5	100 25	328.3+u (1	12-)	M1+E2	0.203	$\alpha(N)=0.001250\ 20,\ \alpha(O)=0.000217\ 4,\ \alpha(P)=0.22\times10^{-5}\ 3$ $\alpha(K)=0.1672\ 25;\ \alpha(L)=0.0275\ 4;\ \alpha(M)=0.00636\ 10$ $\alpha(N)=0.0015223;\ \alpha(D)=0.002025;\ \alpha(D)=1.08\times10^{-5}\ 3$
777.8+u	(14-)	449.5 <i>3</i>	100	328.3+u (12-)	E2	0.0336	$\begin{array}{l} \alpha(\mathbf{K}) = 0.001363 \ 2.5, \ \alpha(\mathbf{C}) = 0.000292 \ 3, \ \alpha(\mathbf{K}) = 1.98\times10^{-5} \\ \alpha(\mathbf{K}) = 0.0239 \ 4; \ \alpha(\mathbf{L}) = 0.00738 \ 11; \ \alpha(\mathbf{M}) = 0.00182 \ 3 \\ \alpha(\mathbf{M}) = 0.00450 \ 7; \ \alpha(\mathbf{C}) = 7.72\times10^{-5} \ 11; \ \alpha(\mathbf{M}) = 2.64\times10^{-6} \ 4 \end{array}$
1104.6+u	(15 ⁻)	326.9 5	33 17	777.8+u (1	14-)	M1+E2	0.263	$\begin{array}{l} \alpha(N)=0.00450 \ 7, \ \alpha(D)=7.72\times10^{-1} \ 11, \ \alpha(P)=2.54\times10^{-4} \ 4 \\ \alpha(K)=0.217 \ 4; \ \alpha(L)=0.0357 \ 6; \ \alpha(M)=0.0026 \ 12 \\ \alpha(N)=0.00206 \ 2 \times 10^{-5} \ 4 \end{array}$
		416.4 5	100 17	688.2+u (13-)	E2	0.0410	$\begin{array}{l} \alpha(N)=0.00206\ 5;\ \alpha(O)=0.000579\ 6;\ \alpha(P)=2.57\times10^{-6}\ 4\\ \alpha(K)=0.0284\ 4;\ \alpha(L)=0.00949\ 14;\ \alpha(M)=0.00234\ 4\\ \alpha(M)=0.002389\ 0;\ \alpha(O)=0.001410^{-5}\ 15;\ \alpha(D)=2.12\times10^{-6}\ 5\\ \alpha(D)=0.000570\ 0;\ \alpha(D)=0.000570\ 0;\$
1296.3+u	(16 ⁻)	518.4 5	100	777.8+u (1	14-)	E2	0.0237	$\alpha(N)=0.000380 \ 9; \ \alpha(O)=9.91\times10^{-5} \ 15; \ \alpha(P)=3.12\times10^{-5} \ 5$ $\alpha(K)=0.01744 \ 25; \ \alpha(L)=0.00473 \ 7; \ \alpha(M)=0.001154 \ 17$ $\alpha(N)=0.000286 \ 4; \ \alpha(O)=4.96\times10^{-5} \ 7; \ \alpha(P)=1.93\times10^{-6} \ 3$
1600.1+u	(17 ⁻)	303.7 <i>5</i> 495.5 <i>5</i>	20 <i>6</i> 100 <i>20</i>	1296.3+u (1 1104.6+u (1	16 ⁻) 15 ⁻)	E2	0.0264	$\alpha(K)=0.0192 \ 3; \ \alpha(L)=0.00543 \ 8; \ \alpha(M)=0.001328 \ 19$
1872.2+u	(18 ⁻)	575.9 <i>5</i>	100	1296.3+u (1	16-)	E2	0.0185	α (N)=0.000329 5; α (O)=5.69×10 ⁻⁵ 9; α (P)=2.13×10 ⁻⁶ 3 α (K)=0.01392 20; α (L)=0.00347 5; α (M)=0.000841 12 α (N)=0.000208 3; α (O)=3.64×10 ⁻⁵ 6; α (P)=1.546×10 ⁻⁶ 22

9

						A	dopted Lev	vels, Gammas (continued)			
γ ⁽¹⁸⁸ Au) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [@]	α ^{&}	Comments			
2165.7+u	(19 ⁻)	565.6 5	100	1600.1+u	(17-)	E2	0.0193	$\alpha(K)=0.01446\ 21;\ \alpha(L)=0.00366\ 6;\ \alpha(M)=0.000887\ 13$ $\alpha(N)=0.000220\ 4;\ \alpha(O)=3.83\times10^{-5}\ 6;\ \alpha(P)=1.605\times10^{-6}\ 23$			
2502.9+u	(20 ⁻)	630.7 5	100	1872.2+u	(18-)	E2	0.01503	$\alpha(K) = 0.01151 \ 17; \ \alpha(L) = 0.00269 \ 4; \ \alpha(M) = 0.000647 \ 10 \ \alpha(N) = 0.0001604 \ 23; \ \alpha(\Omega) = 2.82 \times 10^{-5} \ 4; \ \alpha(P) = 1.279 \times 10^{-6} \ 18$			
2790.3+u	(21 ⁻)	624.6 5	100	2165.7+u	(19 ⁻)						

[†] From 2010Fa19 (¹⁷³Yb(¹⁹F,4n γ) E=86 MeV), unless otherwise noted. [‡] From ¹⁸⁸Hg ε decay. [#] From ce data in ¹⁸⁸Hg ε decay using the BrIccMixing code. [@] For levels populated in (¹⁹F,4n γ), assignments are from $\gamma(\theta)$ data (1992Ja01) and R_{ADO}(γ)=I γ (40°)/I γ (98°) ratios (2010Fa19). R_{ADO} > 1 are expected for $\Delta J = 2$ E2 transitions, while R_{ADO} < 1 are expected for $\Delta J = 1$ dipole transitions. For levels populated in ¹⁸⁸Hg ε decay, assignments are from ce data.

[&] Additional information 5. ^a Placement of transition in the level scheme is uncertain.

From ENSDF

Level Scheme

Intensities: Relative photon branching from each level

¹⁸⁸₇₉Au₁₀₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁸₇₉Au₁₀₉

 $^{188}_{79}{\rm Au}_{109}$

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁸₇₉Au₁₀₉

¹⁸⁸₇₉Au₁₀₉

¹⁸⁸₇₉Au₁₀₉