#### <sup>173</sup>Yb(<sup>19</sup>F,4nγ) E=86 MeV 2010Fa19

|                 | History                                  |                   |                        |
|-----------------|------------------------------------------|-------------------|------------------------|
| Туре            | Author                                   | Citation          | Literature Cutoff Date |
| Full Evaluation | F. G. Kondev, S. Juutinen, D. J. Hartley | NDS 150, 1 (2018) | 1-Feb-2018             |

2010Fa19: <sup>173</sup>Yb(<sup>19</sup>F,4n $\gamma$ ). E=86, 90 MeV beams of <sup>19</sup>F from the Tandem accelerator facility at the Japan Atomic Energy Agency (JAEC) bombarded an enriched, 2.2 mg/cm<sup>2</sup> <sup>173</sup>Yb target. The target was backed on a 7.0 mg/cm<sup>2</sup> Pb foil. An array of 18 Compton suppressed HPGe detectors were used for the (x ray) $\gamma$ -time and  $\gamma\gamma$ -time coincidences (GEMINI array). Measured: E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , (x ray) $\gamma$  coin,  $\gamma\gamma(\theta)$ .

| <sup>188</sup> Au I | Levels |
|---------------------|--------|
|---------------------|--------|

| E(level) <sup>†</sup>                               | $J^{\pi \ddagger}$ | Comments                                                                                                                                                                                                                                                         |
|-----------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0+x <sup>#</sup>                                    | (11 <sup>-</sup> ) | Additional information 1. $J^{\pi}$ : From Adopted Levels.                                                                                                                                                                                                       |
| 314.76+x <sup><b>#</b></sup> 10                     | (12 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 447.74+x <sup>#</sup> 10                            | (13 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 804.28+x <sup>#</sup> 12                            | (14 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 1170.41+x <sup>#</sup> 12                           | (15 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 1535.97+x <sup>#</sup> 13                           | (16 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 1692.09+x <sup>&amp;</sup> 15                       | $(15^{+})$         |                                                                                                                                                                                                                                                                  |
| 1912.69+x <sup>&amp;</sup> 18                       | (16 <sup>+</sup> ) |                                                                                                                                                                                                                                                                  |
| 1958.39+x <sup>&amp;</sup> 18                       | $(17^{+})$         |                                                                                                                                                                                                                                                                  |
| 1965.17+x <sup>#</sup> 15                           | (17 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 2217.99+x <sup>&amp;</sup> 20                       | $(18^{+})$         |                                                                                                                                                                                                                                                                  |
| 2243.07+x 17                                        | (18 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| $2255.3 \pm X 4$<br>2258 19 $\pm x$ 20              | $(18^{+})$         | $J^{+}$ : (1/ <sup>+</sup> ) in table 1 of 2010Fa19, not listed in authors' level-scheme figure 2.                                                                                                                                                               |
| $2258.19 + x^{20}$                                  | $(10^{+})$         | Additional information 2                                                                                                                                                                                                                                         |
| 2200.17 + 9                                         | (20)               | E(level): this level is assumed to decay via two low-energy transitions to two (18 <sup>+</sup> ) levels at 2217.99+x and 2258.19+x. The $\gamma$ -rays are expected to be highly converted and lower than the energy threshold of the $\gamma$ -detector array. |
| 2344.5+x <sup>#</sup> 3<br>2448.6+x 7               | (18 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 2501.5+x <sup>&amp;</sup> 4                         | $(19^{+})$         |                                                                                                                                                                                                                                                                  |
| 2503.8+x <sup>#</sup> 3<br>2535.0+y 6               | (19 <sup>-</sup> ) |                                                                                                                                                                                                                                                                  |
| 2734.6+y <sup>@</sup> 3<br>2753.1+x 8               | (21+)              |                                                                                                                                                                                                                                                                  |
| 2790.50+y <sup>@</sup> 10<br>2808.0+x 4             | (22 <sup>+</sup> ) | $J^{\pi}$ : (20 <sup>-</sup> ) in table I of 2010Fa19, not listed in authors' level-scheme figure 2.                                                                                                                                                             |
| 2823.8 + x = 6                                      | $(20^{-})$         |                                                                                                                                                                                                                                                                  |
| 2938.1+x 8                                          | (20)               |                                                                                                                                                                                                                                                                  |
| $3014.0 + x^{\#} 5$                                 | $(21^{-})$         |                                                                                                                                                                                                                                                                  |
| 3130.4+y 6<br>3143.1+x 5                            |                    |                                                                                                                                                                                                                                                                  |
| 3310.6+y <sup>@</sup> 3<br>3547.6+x 6               | (23 <sup>+</sup> ) |                                                                                                                                                                                                                                                                  |
| 3567.6+y <sup>@</sup> 3<br>3575.3+x 7<br>3735.2+x 6 | (24+)              |                                                                                                                                                                                                                                                                  |

### <sup>188</sup>Au Levels (continued)

| E(level) <sup>†</sup>                                 | $J^{\pi \ddagger}$      | Comments                                                                                                              |
|-------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $4127.5 \pm v^{@}.5$                                  | $(25^{+})$              |                                                                                                                       |
| 4216.2+x 8                                            | (23))                   |                                                                                                                       |
| $4386.0 \pm y^{(0)}$ 5                                | $(26^{+})$              |                                                                                                                       |
| 44734 + x 10                                          | (20)                    |                                                                                                                       |
| z <sup>a</sup>                                        | J                       | Additional information 3.                                                                                             |
| $86.8 + z^a 3$                                        | J+1                     |                                                                                                                       |
| 359.9+z <sup>a</sup> 3                                | J+2                     |                                                                                                                       |
| 457.1+z <sup>a</sup> 3                                | J+3                     |                                                                                                                       |
| 729.5+z <sup>a</sup> 4                                | J+4                     |                                                                                                                       |
| 794.8+z <sup>a</sup> 3                                | J+5                     |                                                                                                                       |
| $1215.7 + z^a 4$                                      | J+6                     |                                                                                                                       |
| $1287.9 + z^{a}$ 4                                    | J+7                     |                                                                                                                       |
| $1806.0 + z^{a} 5$                                    | J+8                     |                                                                                                                       |
| $1885.2 + z^{a} 4$                                    | J+9                     |                                                                                                                       |
| 2483.2+z <sup>a</sup> 5                               | J+10                    |                                                                                                                       |
| $25/2.4+z^{4}$ 5                                      | J+11<br>I+12            |                                                                                                                       |
| 3328.9+Z <sup>a</sup> /                               | J+13                    |                                                                                                                       |
| u <sup>0</sup>                                        | $(10^{-})$              | Additional information 4.                                                                                             |
| 328.3+u <sup>0</sup> 3                                | $(12^{-})$              |                                                                                                                       |
| 356.0+u <sup>b</sup> 4                                | (11 <sup>-</sup> )      |                                                                                                                       |
| 688.2+u <sup>b</sup> 5                                | (13 <sup>-</sup> )      |                                                                                                                       |
| 777.8+u <sup>b</sup> 4                                | (14 <sup>-</sup> )      |                                                                                                                       |
| 1104.6+u <sup>b</sup> 5                               | (15 <sup>-</sup> )      |                                                                                                                       |
| 1296.3+u <sup>b</sup> 6                               | (16 <sup>-</sup> )      |                                                                                                                       |
| 1600.1+u <sup>b</sup> 6                               | (17 <sup>-</sup> )      |                                                                                                                       |
| 1872.2+u <sup>b</sup> 8                               | (18 <sup>-</sup> )      |                                                                                                                       |
| 2165.7+u <sup>b</sup> 8                               | (19 <sup>-</sup> )      |                                                                                                                       |
| 2502.9+u <sup>b</sup> 9                               | (20 <sup>-</sup> )      |                                                                                                                       |
| 2790.3+u <sup>b</sup> 10                              | (21 <sup>-</sup> )      |                                                                                                                       |
| <sup>†</sup> From a least<br><sup>‡</sup> From deduce | t-squares<br>ed transit | fit to E $\gamma$ data.<br>ion multipolarities using $\gamma(\theta)$ data and the observed apparent band structures. |

\* From deduced transition multipolarities using  $\gamma(\theta)$  data and the observe # Band(A):  $\pi(h_{11/2})^{-1} \otimes v(i_{13/2})^{-1}$ . @ Band(B):  $\pi(h_{11/2})^{-1} \otimes v(i_{13/2}^{-2}h_{9/2}^{-1})$ . & Band(C):  $\pi(h_{11/2})^{-1} \otimes v(i_{13/2}^{-2},(p_{3/2} \text{ or } f_{5/2})^{-1})$ . a Band(D): Possible  $\pi(h_{9/2})^{-1} \otimes v(p_{3/2} \text{ or } f_{5/2})^{-1}$ ) or  $\pi(h_{11/2})^{-1} \otimes v(h_{9/2})^{-1}$ . b Band(E): Possible  $\pi(h_{9/2})^{-1} \otimes v(i_{13/2})^{-1}$ .

### $\gamma(^{188}\mathrm{Au})$

| Eγ <sup>‡</sup>   | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Comments                                                                                                           |
|-------------------|---------------|----------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| У                 | 2258.19+y     | $(20^+)$             | 2258.19+x (18 <sup>+</sup> )             |                                                                                                                    |
| 45.7 <sup>@</sup> | 1958.39+x     | (17 <sup>+</sup> )   | 1912.69+x (16 <sup>+</sup> )             | $E_{\gamma}$ : from level-energy difference. A transition seems to be present in level-scheme figure 2 of 2010Ea19 |
| 65.3              | 794.8+z       | J+5                  | 729.5+z J+4                              | $E_{\gamma}$ : from level-energy difference; transition shown in level-scheme figure 2 of 2010Fa19.                |

# $\gamma(^{188}Au)$ (continued)

| Eγ <sup>‡</sup>                          | $I_{\gamma}^{\dagger}$            | $E_i$ (level)                    | $\mathbf{J}_i^{\pi}$             | $E_f$                                         | $\mathbf{J}_f^{\pi}$             | Mult. <sup>†</sup> | α <b>#</b>      | Comments                                                                                                                                                                                                                                                             |
|------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------|----------------------------------|--------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87.1 5                                   | >7                                | 86.8+z                           | J+1                              | Z                                             | J                                | M1+E2              | 10.76 23        | $\alpha$ (K)=8.81 <i>19</i> ; $\alpha$ (L)=1.50 <i>4</i> ; $\alpha$ (M)=0.347 <i>8</i><br>$\alpha$ (N)=0.0865 <i>19</i> ; $\alpha$ (O)=0.0159 <i>4</i> ;<br>$\alpha$ (P)=0.001073 <i>24</i><br>I <sub>y</sub> : listed as >8 <i>1</i> .                              |
| 97.7 5                                   | >4                                | 457.1+z                          | J+3                              | 359.9+z                                       | J+2                              | M1+E2              | 7.75 16         | Mult.: $R_{ADO}=0.89$ 15.<br>$\alpha(K)=6.36$ 13; $\alpha(L)=1.072$ 22; $\alpha(M)=0.249$ 5<br>$\alpha(N)=0.0620$ 13; $\alpha(O)=0.01140$ 24;<br>$\alpha(P)=0.000769$ 16<br>$I_{\gamma}$ : listed as >6 2.                                                           |
| 133.4 <i>3</i>                           | 17 2                              | 447.74+x                         | (13 <sup>-</sup> )               | 314.76+x                                      | (12 <sup>-</sup> )               | M1+E2              | 3.18            | Mult.: $R_{ADO}=0.68$ 17.<br>$\alpha(K)=2.61$ 4; $\alpha(L)=0.438$ 7; $\alpha(M)=0.1016$ 16<br>$\alpha(N)=0.0253$ 4; $\alpha(O)=0.00465$ 8;<br>$\alpha(P)=0.000314$ 5<br>Mult.: $P_{CO}=0.066$ 0                                                                     |
| 159.6 5                                  | 4.0 9                             | 2503.8+x                         | (19 <sup>-</sup> )               | 2344.5+x                                      | (18 <sup>-</sup> )               | M1+E2              | 1.91 4          | $\alpha(K)=1.57 \ 3; \ \alpha(L)=0.263 \ 5; \ \alpha(M)=0.0609 \ 11 \\ \alpha(N)=0.0152 \ 3; \ \alpha(O)=0.00279 \ 5; \\ \alpha(P)=0.000189 \ 4 \\ Mult.: \ R_{ADO}=0.87 \ 16.$                                                                                      |
| 185.1 5<br>205.1                         | 2 1                               | 2938.1+x<br>3143.1+x             |                                  | 2753.1+x<br>2938.1+x                          |                                  |                    |                 | $E_{\gamma}$ : from level-scheme figure 2 in 2010Fa19,<br>net listed in authors' table L                                                                                                                                                                             |
| 205.7                                    |                                   | 2448.6+x                         |                                  | 2243.07+x                                     | (18 <sup>-</sup> )               |                    |                 | $E_{\gamma}$ : from level-scheme figure 2 in 2010Fa19,                                                                                                                                                                                                               |
| 206.1 3                                  | 10 2                              | 3014.0+x                         | (21-)                            | 2808.0+x                                      |                                  | M1+E2              | 0.934 <i>14</i> | $\alpha(K)=0.768 \ 12; \ \alpha(L)=0.1277 \ 19; \alpha(M)=0.0296 \ 5 \alpha(N)=0.00738 \ 11; \ \alpha(O)=0.001357 \ 20; \alpha(P)=9.17\times10^{-5} \ 14$                                                                                                            |
| 220.6 1                                  | 58 5                              | 1912.69+x                        | (16+)                            | 1692.09+x                                     | (15+)                            | M1+E2              | 0.773           | Mult.: $R_{ADO}=0.75 \ I3.$<br>$\alpha(K)=0.636 \ 9; \ \alpha(L)=0.1056 \ I5;$<br>$\alpha(M)=0.0245 \ 4$<br>$\alpha(N)=0.00610 \ 9; \ \alpha(O)=0.001122 \ I6;$<br>$\alpha(P)=7.59\times10^{-5} \ I1$<br>Mult.: $R_{ADO}=0.79 \ 6$                                   |
| 243.4 5<br>257.1 5<br>257.2 5<br>258 7 5 | 2 <i>1</i><br>2 <i>1</i><br>4.0 9 | 2501.5+x<br>3567.6+y<br>4473.4+x | $(19^+)$<br>$(24^+)$<br>$(26^+)$ | 2258.19+x<br>3310.6+y<br>4216.2+x<br>4127.5+y | $(18^+)$<br>$(23^+)$<br>$(25^+)$ |                    |                 | Munt. R <sub>ADO</sub> -0.79 0.                                                                                                                                                                                                                                      |
| 259.6 <i>1</i>                           | 30 <i>3</i>                       | 4380.0+y<br>2217.99+x            | (18 <sup>+</sup> )               | 4127.3+y<br>1958.39+x                         | (17 <sup>+</sup> )               | M1+E2              | 0.493           | $\alpha$ (K)=0.406 6; $\alpha$ (L)=0.0672 10;<br>$\alpha$ (M)=0.01557 22<br>$\alpha$ (N)=0.00388 6; $\alpha$ (O)=0.000713 10;<br>$\alpha$ (P)=4.83×10 <sup>-5</sup> 7<br>Mult: P. rs = 0.04 8                                                                        |
| 266.3 1                                  | 20 2                              | 1958.39+x                        | (17+)                            | 1692.09+x                                     | (15+)                            | E2                 | 0.1470          | Mult.: $R_{ADO} = 0.94$ 8.<br>$\alpha(K) = 0.0833 \ I2; \ \alpha(L) = 0.0480 \ 7;$<br>$\alpha(M) = 0.01218 \ I8$<br>$\alpha(N) = 0.00301 \ 5; \ \alpha(O) = 0.000499 \ 7;$<br>$\alpha(P) = 8.77 \times 10^{-6} \ I3$<br>Mult.: $R_{ADO} = 0.02480 \ 7;$              |
| 269.8 5                                  | 5 1                               | 3143.1+x                         |                                  | 2873.4+x                                      | (20 <sup>-</sup> )               | M1+E2              | 0.444           | $\begin{array}{l} \alpha(\mathrm{K}) = 0.365 \ 6; \ \alpha(\mathrm{L}) = 0.0604 \ 9; \\ \alpha(\mathrm{M}) = 0.01399 \ 21 \\ \alpha(\mathrm{N}) = 0.00349 \ 6; \ \alpha(\mathrm{O}) = 0.000641 \ 10; \\ \alpha(\mathrm{P}) = 4.34 \times 10^{-5} \ 7 \\ \end{array}$ |
| 272.4 3                                  | 19 <i>3</i>                       | 729.5+z                          | J+4                              | 457.1+z                                       | J+3                              | M1+E2              | 0.432 7         | $\alpha(K)=0.356\ 5;\ \alpha(L)=0.0588\ 9;\ \alpha(M)=0.01363\ 20\ \alpha(N)=0.00340\ 5;\ \alpha(O)=0.000625\ 9;$                                                                                                                                                    |

# $\gamma(^{188}Au)$ (continued)

| $E_{\gamma}$ ‡                   | $I_{\gamma}^{\dagger}$      | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                     | $E_f$                  | $\mathbf{J}_f^{\pi}$                     | Mult. <sup>†</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|-----------------------------|------------------------|------------------------------------------|------------------------|------------------------------------------|--------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 273.1 1                          | >34                         | 359.9+z                | J+2                                      | 86.8+z                 | J+1                                      | M1+E2              | 0.429      | $\begin{aligned} &\alpha(P) = 4.23 \times 10^{-5} \ 6 \\ &\text{Mult.: } R_{ADO} = 0.84 \ 12. \\ &\alpha(K) = 0.353 \ 5; \ \alpha(L) = 0.0584 \ 9; \ \alpha(M) = 0.01353 \\ & 19 \\ &\alpha(N) = 0.00337 \ 5; \ \alpha(O) = 0.000620 \ 9; \\ &\alpha(P) = 4.20 \times 10^{-5} \ 6 \\ &\text{L}_{\gamma}: \ \text{listed as } > 37 \ 3. \\ &\text{Mult.: } R_{ADO} = 0.53 \ 6. \end{aligned}$ |
| 276.8 5<br>278.1 5               | 1.0 2<br>9 2                | 2535.0+y<br>2243.07+x  | (18 <sup>-</sup> )                       | 2258.19+x<br>1965.17+x | (18 <sup>+</sup> )<br>(17 <sup>-</sup> ) | M1+E2              | 0.408      | $\begin{aligned} &\alpha(\text{K}) = 0.336 \ 5; \ \alpha(\text{L}) = 0.0555 \ 9; \ \alpha(\text{M}) = 0.01287 \\ &20 \\ &\alpha(\text{N}) = 0.00321 \ 5; \ \alpha(\text{O}) = 0.000590 \ 9; \\ &\alpha(\text{P}) = 3.99 \times 10^{-5} \ 6 \\ &\text{Mult.: } \text{R}_{\text{ADO}} = 0.92 \ 21. \end{aligned}$                                                                              |
| 283.7 5<br>299.8 1               | 3 1<br>33 3                 | 2501.5+x<br>2258.19+x  | (19 <sup>+</sup> )<br>(18 <sup>+</sup> ) | 2217.99+x<br>1958.39+x | (18 <sup>+</sup> )<br>(17 <sup>+</sup> ) | M1+E2              | 0.333      | $\begin{aligned} &\alpha(\text{K}) = 0.274 \ 4; \ \alpha(\text{L}) = 0.0452 \ 7; \ \alpha(\text{M}) = 0.01047 \\ &I5 \\ &\alpha(\text{N}) = 0.00261 \ 4; \ \alpha(\text{O}) = 0.000480 \ 7; \\ &\alpha(\text{P}) = 3.25 \times 10^{-5} \ 5 \\ &\text{Mult.: } \text{R}_{\text{ADO}} = 0.82 \ 7. \end{aligned}$                                                                               |
| 303.7 <i>5</i><br>304.4 <i>3</i> | 1.0 <i>3</i><br>13 <i>3</i> | 1600.1+u<br>2808.0+x   | (17-)                                    | 1296.3+u<br>2503.8+x   | (16 <sup>-</sup> )<br>(19 <sup>-</sup> ) | M1+E2              | 0.319      | $\alpha$ (K)=0.263 4; $\alpha$ (L)=0.0433 7; $\alpha$ (M)=0.01004<br><i>15</i><br>$\alpha$ (N)=0.00250 4; $\alpha$ (O)=0.000460 7;<br>$\alpha$ (P)=3.12×10 <sup>-5</sup> 5                                                                                                                                                                                                                   |
| 304.5 5                          | 4 1                         | 2753.1+x               |                                          | 2448.6+x               |                                          | M1+E2              | 0.319      | Mult.: $R_{ADO}=0.8773$ .<br>$\alpha(K)=0.2624; \alpha(L)=0.04337; \alpha(M)=0.01003$<br>15<br>$\alpha(N)=0.002504; \alpha(O)=0.0004607;$<br>$\alpha(P)=3.11\times10^{-5}5$                                                                                                                                                                                                                  |
| 314.8 <i>I</i>                   | 121 9                       | 314.76+x               | (12-)                                    | 0+x                    | (11-)                                    | M1+E2              | 0.291      | Mult.: $R_{ADO}=0.77$ 14.<br>$\alpha(K)=0.240$ 4; $\alpha(L)=0.0395$ 6; $\alpha(M)=0.00916$<br>13<br>$\alpha(N)=0.00228$ 4; $\alpha(O)=0.000420$ 6;<br>$\alpha(P)=2.84\times10^{-5}$ 4                                                                                                                                                                                                       |
| 322.3 <i>5</i><br>326.9 <i>5</i> | 3 <i>1</i><br>2 <i>1</i>    | 2823.8+x<br>1104.6+u   | (15 <sup>-</sup> )                       | 2501.5+x<br>777.8+u    | (19 <sup>+</sup> )<br>(14 <sup>-</sup> ) | M1+E2              | 0.263      | Mult.: $R_{ADO}=0.83$ 7.<br>$\alpha(K)=0.217$ 4; $\alpha(L)=0.0357$ 6; $\alpha(M)=0.00826$<br>$l_2$<br>$\alpha(N)=0.00206$ 3; $\alpha(O)=0.000379$ 6;<br>$\alpha(P)=2.57\times10^{-5}$ 4                                                                                                                                                                                                     |
| 328.3 <i>3</i>                   | 17 2                        | 328.3+u                | (12 <sup>-</sup> )                       | u                      | (10 <sup>-</sup> )                       | E2                 | 0.0786     | Mult.: $R_{ADO}=0.36$ 7.<br>$\alpha(K)=0.0498$ 7; $\alpha(L)=0.0218$ 4; $\alpha(M)=0.00546$<br>8<br>$\alpha(N)=0.001348$ 20; $\alpha(O)=0.000226$ 4;                                                                                                                                                                                                                                         |
| 332.2 5                          | 4 1                         | 688.2+u                | (13 <sup>-</sup> )                       | 356.0+u                | (11 <sup>-</sup> )                       | E2                 | 0.0760     | $\alpha(P)=5.37\times10^{-6} 8$ Mult.: R <sub>ADO</sub> =1.16 <i>I1.</i><br>$\alpha(K)=0.0484 7; \alpha(L)=0.0208 4; \alpha(M)=0.00522$ 8<br>$\alpha(N)=0.001290 20; \alpha(O)=0.000217 4;$ (D) 5 22:10=6 9                                                                                                                                                                                  |
| 337.7 1                          | 66 <i>5</i>                 | 794.8+z                | J+5                                      | 457.1+z                | J+3                                      | E2                 | 0.0725     | $\alpha(r)=5.22\times10^{-5} \delta$<br>Mult.: R <sub>ADO</sub> =1.3 4.<br>$\alpha(K)=0.0466$ 7; $\alpha(L)=0.0196$ 3; $\alpha(M)=0.00492$<br>7<br>$\alpha(N)=0.001215$ 17; $\alpha(O)=0.000204$ 3;                                                                                                                                                                                          |

# $\gamma(^{188}Au)$ (continued)

| $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$     | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|------------------------|------------------------|----------------------|-----------|----------------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 342.6 <i>3</i>          | 10 1                   | 2255.3+x               | _                    | 1912.69+x | (16 <sup>+</sup> )   | M1+E2              | 0.232      | $\alpha(P)=5.03 \times 10^{-6} 7$ Mult.: R <sub>ADO</sub> =1.17 <i>13</i> .<br>$\alpha(K)=0.191 3; \alpha(L)=0.0314 5;$ $\alpha(M)=0.00727 11$ $\alpha(N)=0.00181 3; \alpha(O)=0.000333 5;$                                                                                                                                                                  |
| 356.1 5                 | 4 1                    | 356.0+u                | (11 <sup>-</sup> )   | u         | (10 <sup>-</sup> )   | M1+E2              | 0.209      | $\alpha(P)=2.26\times 10^{-5} 4$ Mult.: R <sub>ADO</sub> =0.88 17.<br>$\alpha(K)=0.1719 25; \alpha(L)=0.0282 4;$ $\alpha(M)=0.00654 10$ $\alpha(N)=0.001630 24; \alpha(O)=0.000300 5;$ $\alpha(P)=2.02\times 10^{-5} 3$                                                                                                                                      |
| 356.6 1                 | 135 10                 | 804.28+x               | (14 <sup>-</sup> )   | 447.74+x  | (13 <sup>-</sup> )   | M1+E2              | 0.208      | $\begin{aligned} \alpha(\mathbf{r}) &= 2.05 \times 10^{-15} \\ \text{Mult.: } \mathbf{R}_{\text{ADO}} &= 0.48 \ 6. \\ \alpha(\mathbf{K}) &= 0.1713 \ 24; \ \alpha(\mathbf{L}) &= 0.0281 \ 4; \\ \alpha(\mathbf{M}) &= 0.00652 \ 10 \\ \alpha(\mathbf{N}) &= 0.001623 \ 23; \ \alpha(\mathbf{O}) &= 0.000299 \ 5; \end{aligned}$                              |
| 359.8 <i>3</i>          | >17                    | 359.9+z                | J+2                  | Z         | J                    | E2                 | 0.0607     | $\alpha(P)=2.03\times10^{-5} 3$<br>Mult.: $R_{ADO}=0.89 7$ .<br>$\alpha(K)=0.0400 6$ ; $\alpha(L)=0.01565 23$ ;<br>$\alpha(M)=0.00391 6$<br>$\alpha(N)=0.000965 14$ ; $\alpha(O)=0.0001632 24$ ;<br>$\alpha(P)=4.35\times10^{-6} 7$<br>Ly: listed as >19.2, other:                                                                                           |
| 359.8 5                 | 4 1                    | 688.2+u                | (13 <sup>-</sup> )   | 328.3+u   | (12 <sup>-</sup> )   | M1+E2              | 0.203      | $I_{\gamma}(359.8)/I_{\gamma}(273.1)=0.58 \ I3.$ Mult.: $R_{ADO}=1.11 \ I1.$<br>$\alpha(K)=0.1672 \ 25; \ \alpha(L)=0.0275 \ 4;$<br>$\alpha(M)=0.00636 \ I0$<br>$\alpha(N)=0.001585 \ 23; \ \alpha(O)=0.000292 \ 5;$                                                                                                                                         |
| 365.7 1                 | 25 3                   | 1535.97+x              | (16 <sup>-</sup> )   | 1170.41+x | (15 <sup>-</sup> )   | M1+E2              | 0.194      | $\alpha(P)=1.98\times10^{-6}3$<br>Mult.: R <sub>ADO</sub> =0.60 9.<br>$\alpha(K)=0.1601 23; \alpha(L)=0.0263 4;$<br>$\alpha(M)=0.00609 9$<br>$\alpha(N)=0.001516 22; \alpha(O)=0.000279 4;$                                                                                                                                                                  |
| 366.3 1                 | 22 3                   | 1170.41+x              | (15 <sup>-</sup> )   | 804.28+x  | (14-)                | M1+E2              | 0.193      | $\alpha(P)=1.89\times10^{-3} 3$ Mult.: R <sub>ADO</sub> =0.79 7.<br>$\alpha(K)=0.1594 23; \alpha(L)=0.0262 4;$ $\alpha(M)=0.00606 9$ $\alpha(N)=0.001509 22; \alpha(O)=0.000278 4;$                                                                                                                                                                          |
| 370.3 1                 | >37                    | 457.1+z                | J+3                  | 86.8+z    | J+1                  | E2                 | 0.0561     | $\alpha(P)=1.88\times 10^{-5} 3$ Mult.: R <sub>ADO</sub> =0.80 8.<br>$\alpha(K)=0.0374 6; \alpha(L)=0.01415 20;$ $\alpha(M)=0.00352 5$ $\alpha(N)=0.000871 13; \alpha(O)=0.0001476 21;$ $\alpha(P)=4.07\times 10^{-6} 6$ I <sub>y</sub> : listed as >42 5, other:                                                                                            |
| 379.6 5                 | 72                     | 2344.5+x               | (18 <sup>-</sup> )   | 1965.17+x | (17 <sup>-</sup> )   | M1+E2              | 0.176 3    | $I_{\gamma}(3'/0.3)/I_{\gamma}(9'/.7)=7.0~7.$ Mult.: R <sub>ADO</sub> =1.30 <i>I2</i> .<br>α(K)=0.1449 2 <i>I</i> ; α(L)=0.0238 4;<br>α(M)=0.00550 8<br>α(N)=0.001370 20; α(O)=0.000252 4;                                                                                                                                                                   |
| 395.8 5                 | 4 1                    | 3130.4+y               |                      | 2734.6+y  | (21+)                | M1+E2              | 0.1572 23  | $\begin{aligned} &\alpha(P) = 1.712 \times 10^{-5} \ 25 \\ &\text{Mult.: } R_{\text{ADO}} = 0.94 \ 17. \\ &\alpha(K) = 0.1296 \ 19; \ \alpha(L) = 0.0212 \ 3; \\ &\alpha(M) = 0.00491 \ 7 \\ &\alpha(N) = 0.001224 \ 18; \ \alpha(O) = 0.000225 \ 4; \\ &\alpha(P) = 1.530 \times 10^{-5} \ 22 \\ &\text{Mult.: } R_{\text{ADO}} = 0.70 \ 11. \end{aligned}$ |

# $\gamma(^{188}Au)$ (continued)

| Eγ <sup>‡</sup>                  | $I_{\gamma}^{\dagger}$ | $E_i$ (level)        | $\mathbf{J}_i^{\pi}$ | $E_f$                | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup> | α#        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|------------------------|----------------------|----------------------|----------------------|------------------------|--------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 404.7 5                          | 4 1                    | 3547.6+x             |                      | 3143.1+x             |                        | M1+E2              | 0.1481 22 | $\alpha(K)=0.1221 \ 18; \ \alpha(L)=0.0200 \ 3; \\ \alpha(M)=0.00463 \ 7 \\ \alpha(N)=0.001153 \ 17; \ \alpha(O)=0.000212 \ 3; \\ \alpha(P)=1.441\times10^{-5} \ 21 \\ \alpha(P)=0.00121 \ \alpha(P)=0.000212 \ 3; \\ \alpha(P)=0.000212 \ \alpha(P)=0.00$ |
| 416.4 5                          | 6 1                    | 1104.6+u             | (15 <sup>-</sup> )   | 688.2+u              | (13 <sup>-</sup> )     | E2                 | 0.0410    | Mult.: $R_{ADO}=0.66 I^{7}$ .<br>$\alpha(K)=0.0284 4; \alpha(L)=0.00949 14;$<br>$\alpha(M)=0.00234 4$<br>$\alpha(N)=0.000580 9; \alpha(O)=9.91\times10^{-5} 15;$<br>$\alpha(P)=3.12\times10^{-6} 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 420.8 <i>3</i>                   | 15 2                   | 1215.7+z             | J+6                  | 794.8+z              | J+5                    | M1+E2              | 0.1335    | Mult.: $R_{ADO}=1.4$ 3.<br>$\alpha(K)=0.1101$ 16; $\alpha(L)=0.0180$ 3;<br>$\alpha(M)=0.00417$ 6<br>$\alpha(N)=0.001038$ 15; $\alpha(O)=0.000191$ 3;<br>$\alpha(P)=1.298\times10^{-5}$ 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 422.5 3                          | 17 2                   | 1958.39+x            | (17 <sup>+</sup> )   | 1535.97+x            | (16 <sup>-</sup> )     | E1                 | 0.01233   | Mult.: $R_{ADO}=0.53$ 9.<br>$\alpha(K)=0.01023$ 15; $\alpha(L)=0.001617$ 23;<br>$\alpha(M)=0.000372$ 6<br>$\alpha(N)=9.21\times10^{-5}$ 13; $\alpha(O)=1.661\times10^{-5}$ 24;<br>$\alpha(P)=1.003\times10^{-6}$ 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 429.7 3                          | 13 <i>3</i>            | 1965.17+x            | (17-)                | 1535.97+x            | (16 <sup>-</sup> )     | M1+E2              | 0.1262    | Mult.: $R_{ADO}=0.75$ 9.<br>$\alpha(K)=0.1041$ 15; $\alpha(L)=0.01702$ 24;<br>$\alpha(M)=0.00394$ 6<br>$\alpha(N)=0.000981$ 14; $\alpha(O)=0.000181$ 3;<br>$\alpha(P)=1.227 \times 10^{-5}$ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 432.2 5                          | 4 1                    | 3575.3+x             |                      | 3143.1+x             |                        | M1+E2              | 0.1243    | Mult.: $R_{ADO}=0.66 \ 11.$<br>$\alpha(K)=0.1025 \ 15; \ \alpha(L)=0.01675 \ 24;$<br>$\alpha(M)=0.000388 \ 6$<br>$\alpha(N)=0.000966 \ 14; \ \alpha(O)=0.000178 \ 3;$<br>$\alpha(P)=1.208 \times 10^{-5} \ 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 447.7 1                          | 162 <i>13</i>          | 447.74+x             | (13-)                | 0+x                  | (11 <sup>-</sup> )     | E2                 | 0.0340    | Mult.: $R_{ADO}=0.85$ 17.<br>$\alpha(K)=0.0241$ 4; $\alpha(L)=0.00748$ 11;<br>$\alpha(M)=0.00184$ 3<br>$\alpha(N)=0.000456$ 7; $\alpha(O)=7.82\times10^{-5}$ 11;<br>$\alpha(P)=2.66\times10^{-6}$ 4<br>Mult.: $R_{ADO}=1.12$ 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 449.5 3                          | 13 2                   | 777.8+u              | (14-)                | 328.3+u              | (12 <sup>-</sup> )     | E2                 | 0.0336    | I <sub>γ</sub> : other: Iγ(447.7)/Iγ(133.4)=8.8 6.<br>$\alpha$ (K)=0.0239 4; $\alpha$ (L)=0.00738 11;<br>$\alpha$ (M)=0.00182 3<br>$\alpha$ (N)=0.000450 7; $\alpha$ (O)=7.72×10 <sup>-5</sup> 11;<br>$\alpha$ (P)=2.64×10 <sup>-6</sup> 4<br>Mult : P + p = 1.26 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 476.4 <i>3</i>                   | 13 1                   | 2734.6+y             | (21+)                | 2258.19+y            | (20 <sup>+</sup> )     | M1+E2              | 0.0961    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 481.0 <i>5</i><br>489.5 <i>3</i> | 4 2<br>15 2            | 4216.2+x<br>804.28+x | (14 <sup>-</sup> )   | 3735.2+x<br>314.76+x | (12 <sup>-</sup> )     | E2                 | 0.0272    | $\alpha(K)=0.0198 \ 3; \ \alpha(L)=0.00564 \ 8; \\ \alpha(M)=0.001380 \ 20 \\ \alpha(N)=0.000342 \ 5; \ \alpha(O)=5.90\times10^{-5} \ 9; \\ \alpha(P)=2.19\times10^{-6} \ 3 \\ Mult.: \ R_{ADO}=1.24 \ 23.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 493.1 <i>1</i>                   | 52 6                   | 1287.9+z             | J+7                  | 794.8+z              | J+5                    | E2                 | 0.0267    | I <sub>γ</sub> : other: Iγ(489.5)/Iγ(356.6)=0.12 <i>1</i> .<br>$\alpha$ (K)=0.0195 <i>3</i> ; $\alpha$ (L)=0.00552 <i>8</i> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# $\gamma(^{188}Au)$ (continued)

| E <sub>γ</sub> ‡   | $I_{\gamma}^{\dagger}$   | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                     | $E_f$                | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                          |
|--------------------|--------------------------|------------------------|------------------------------------------|----------------------|----------------------|--------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 495.5 5            | 5 1                      | 1600.1+u               | (17 <sup>-</sup> )                       | 1104.6+u             | (15 <sup>-</sup> )   | E2                 | 0.0264     | $\alpha(M)=0.001349 \ I9$<br>$\alpha(N)=0.000334 \ 5; \ \alpha(O)=5.77\times10^{-5} \ 8;$<br>$\alpha(P)=2.15\times10^{-6} \ 3$<br>Mult.: R <sub>ADO</sub> =1.18 11.<br>$\alpha(K)=0.0192 \ 3; \ \alpha(L)=0.00543 \ 8;$<br>$\alpha(M)=0.000329 \ 5; \ \alpha(O)=5.69\times10^{-5} \ 9;$                           |
| 500 8 5            | 207                      | 2014 0 L v             | (21-)                                    | 2502 8 1 8           | $(10^{-})$           |                    |            | $\alpha(P)=2.13\times10^{-6}3^{-6}$<br>Mult.: R <sub>ADO</sub> =1.00 23.                                                                                                                                                                                                                                          |
| 518.2 5            | 9 2                      | 1806.0+z               | (21)<br>J+8                              | 2303.8+x<br>1287.9+z | (19)<br>J+7          | M1+E2              | 0.0770     | $\alpha$ (K)=0.0635 9; $\alpha$ (L)=0.01033 15;<br>$\alpha$ (M)=0.00239 4<br>$\alpha$ (N)=0.000595 9; $\alpha$ (O)=0.0001095 16;<br>$\alpha$ (P)=7.46×10 <sup>-6</sup> 11                                                                                                                                         |
| 518.4 5            | 92                       | 1296.3+u               | (16 <sup>-</sup> )                       | 777.8+u              | (14 <sup>-</sup> )   | E2                 | 0.0237     | Mult.: $R_{ADO}=0.62$ 15.<br>$\alpha(K)=0.01744$ 25; $\alpha(L)=0.00473$ 7;<br>$\alpha(M)=0.001154$ 17<br>$\alpha(N)=0.00286$ 4; $\alpha(O)=4.96\times10^{-5}$ 7;                                                                                                                                                 |
| 520.1 <i>3</i>     | 10 <i>I</i>              | 3310.6+y               | (23+)                                    | 2790.50+y            | (22+)                | M1+E2              | 0.0762     | $\begin{array}{l} \alpha(\mathrm{P})=1.93\times10^{-6} \ 3\\ \mathrm{Mult.:}\ \mathrm{R}_{\mathrm{ADO}}=1.13 \ 11.\\ \alpha(\mathrm{K})=0.0629 \ 9; \ \alpha(\mathrm{L})=0.01023 \ 15;\\ \alpha(\mathrm{M})=0.00237 \ 4\\ \alpha(\mathrm{N})=0.000589 \ 9; \ \alpha(\mathrm{O})=0.0001085 \ 16; \end{array}$      |
| 532.3 1            | 27 3                     | 2790.50+y              | (22+)                                    | 2258.19+y            | (20+)                | E2                 | 0.0222     | $\alpha$ (P)=7.39×10 <sup>-6</sup> <i>11</i><br>Mult.: R <sub>ADO</sub> =0.89 <i>10</i> .<br>$\alpha$ (K)=0.01647 <i>23</i> ; $\alpha$ (L)=0.00437 <i>7</i> ;<br>$\alpha$ (M)=0.001064 <i>15</i><br>$\alpha$ (N)=0.000264 <i>4</i> : $\alpha$ (O)=4 58×10 <sup>-5</sup> 7:                                        |
| 538.5 <i>3</i>     | 13 3                     | 2503.8+x               | (19 <sup>-</sup> )                       | 1965.17+x            | (17 <sup>-</sup> )   | E2                 | 0.0216     | $\begin{aligned} \alpha(P) = 1.83 \times 10^{-6} \ 3 \\ \text{Mult.: } R_{\text{ADO}} = 1.26 \ 13. \\ \alpha(K) = 0.01606 \ 23; \ \alpha(L) = 0.00423 \ 6; \\ \alpha(M) = 0.001027 \ 15 \\ \alpha(N) = 0.000254 \ 4; \ \alpha(O) = 4.42 \times 10^{-5} \ 7; \\ \alpha(P) = 1.78 \times 10^{-6} \ 3 \end{aligned}$ |
| 542.8.5            | 51                       | 2501.5+x               | (19 <sup>+</sup> )                       | 1958.39+x            | (17 <sup>+</sup> )   |                    |            | Mult.: $R_{ADO}=1.29 \ I8.$<br>I <sub><math>\gamma</math></sub> : other: I $\gamma$ (538.5)/I $\gamma$ (159.6)=3.5 3.                                                                                                                                                                                             |
| 560.1 5<br>565.6 5 | 4 <i>1</i><br>3 <i>1</i> | 4127.5+y<br>2165.7+u   | (25 <sup>+</sup> )<br>(19 <sup>-</sup> ) | 3567.6+y<br>1600.1+u | $(24^+)$<br>$(17^-)$ | E2                 | 0.0193     | $\alpha(K)=0.01446\ 21;\ \alpha(L)=0.00366\ 6;\alpha(M)=0.000887\ 13\alpha(N)=0.000220\ 4;\ \alpha(O)=3.83\times10^{-5}\ 6;$                                                                                                                                                                                      |
| 575.9 5            | 4 2                      | 1872.2+u               | (18-)                                    | 1296.3+u             | (16 <sup>-</sup> )   | E2                 | 0.0185     | $\alpha$ (P)=1.605×10 <sup>-6</sup> 23<br>Mult.: R <sub>ADO</sub> =1.09 19.<br>$\alpha$ (K)=0.01392 20; $\alpha$ (L)=0.00347 5;<br>$\alpha$ (M)=0.000841 12<br>$\alpha$ (N)=0.000208 3; $\alpha$ (O)=3.64×10 <sup>-5</sup> 6;                                                                                     |
| 590.2 5            | 6 2                      | 1806.0+z               | J+8                                      | 1215.7+z             | J+6                  | E2                 | 0.01747    | $\begin{aligned} \alpha(P) = 1.546 \times 10^{-6} \ 22 \\ \text{Mult.: } R_{\text{ADO}} = 1.17 \ 16. \\ \alpha(\text{K}) = 0.01322 \ 19; \ \alpha(\text{L}) = 0.00324 \ 5; \\ \alpha(\text{M}) = 0.000783 \ 12 \end{aligned}$                                                                                     |
| 597.3 1            | 33 4                     | 1885.2+z               | J+9                                      | 1287.9+z             | J+7                  | E2                 | 0.01700    | $\begin{aligned} &\alpha(N) = 0.000194 \ 3; \ \alpha(O) = 3.39 \times 10^{-5} \ 5; \\ &\alpha(P) = 1.468 \times 10^{-6} \ 21 \\ &\text{Mult.: } R_{\text{ADO}} = 1.1 \ 3. \\ &\alpha(K) = 0.01289 \ 18; \ \alpha(L) = 0.00313 \ 5; \\ &\alpha(M) = 0.000756 \ 11 \end{aligned}$                                   |

# $\gamma(^{188}Au)$ (continued)

| E <sub>γ</sub> ‡          | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$         | $E_f$                | $\mathbf{J}_f^{\pi}$      | Mult. <sup>†</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|------------------------|------------------------|----------------------------|----------------------|---------------------------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                        |                        |                            |                      |                           |                    |            | $\alpha$ (N)=0.000187 3; $\alpha$ (O)=3.28×10 <sup>-5</sup> 5;<br>$\alpha$ (P)=1.432×10 <sup>-6</sup> 20<br>Mult.: R <sub>ADO</sub> =1.22 11.                                                                                                                                                                                                                                |
| 598.0 5<br>624.6 5        | 52<br>21               | 2483.2+z<br>2790.3+u   | J+10<br>(21 <sup>-</sup> ) | 1885.2+z<br>2165.7+u | J+9<br>(19 <sup>-</sup> ) |                    |            | $E_{\gamma}$ : from table I of 2010Fa19. $E_{\gamma}$ =624.9 in                                                                                                                                                                                                                                                                                                              |
| 630.3 <i>3</i>            | 19 <i>3</i>            | 2873.4+x               | (20 <sup>-</sup> )         | 2243.07+x            | (18 <sup>-</sup> )        | E2                 | 0.01506    | $\alpha(K)=0.01152 \ 17; \ \alpha(L)=0.00269 \ 4; \ \alpha(M)=0.000648 \ 10 \ \alpha(N)=0.0001607 \ 23; \ \alpha(O)=2.82\times10^{-5} \ 4;$                                                                                                                                                                                                                                  |
| 630.7 <i>5</i>            | 2 1                    | 2502.9+u               | (20-)                      | 1872.2+u             | (18-)                     | E2                 | 0.01503    | $\alpha(P)=1.280\times10^{-6} I8$ Mult.: $R_{ADO}=1.2 3$ .<br>$\alpha(K)=0.01151 I7$ ; $\alpha(L)=0.00269 4$ ;<br>$\alpha(M)=0.000647 I0$<br>$\alpha(N)=0.0001604 23$ ; $\alpha(O)=2.82\times10^{-5} 4$ ;<br>$\alpha(P)=1.279\times10^{-6} I8$                                                                                                                               |
| 674.1 5                   | 3.0 4                  | 3547.6+x               |                            | 2873.4+x             | (20 <sup>-</sup> )        |                    |            | Mult.: $R_{ADO} = 1.4$ S.                                                                                                                                                                                                                                                                                                                                                    |
| 677.1 5<br>687.2 <i>3</i> | 52<br>163              | 2483.2+z<br>2572.4+z   | J+10<br>J+11               | 1806.0+z<br>1885.2+z | J+8<br>J+9                | E2                 | 0.01245    | $\alpha(K)=0.00965 \ 14; \ \alpha(L)=0.00213 \ 3;$<br>$\alpha(M)=0.000511 \ 8$<br>$\alpha(N)=0.0001266 \ 18; \ \alpha(O)=2.24\times10^{-5} \ 4;$<br>(D) 1.072:10=6 15                                                                                                                                                                                                        |
| 694.5                     |                        | 3143.1+x               |                            | 2448.6+x             |                           | E2                 | 0.01217    | $\alpha(P)=1.072\times10^{\circ} TS$ Mult.: R <sub>ADO</sub> =1.2 2.<br>$\alpha(K)=0.00945 \ 14; \ \alpha(L)=0.00207 \ 3;$ $\alpha(M)=0.000496 \ 7$ $\alpha(N)=0.0001231 \ 18; \ \alpha(O)=2.17\times10^{-5} \ 3;$                                                                                                                                                           |
| 707.1 <i>1</i>            | 28 5                   | 2243.07+x              | (18-)                      | 1535.97+x            | (16 <sup>-</sup> )        | E2                 | 0.01170    | $\alpha(P)=1.049\times10^{-6} I5$ Mult.: R <sub>ADO</sub> =1.24 24.<br>$\alpha(K)=0.00911 I3; \alpha(L)=0.00198 3;$<br>$\alpha(M)=0.000473 7$<br>$\alpha(N)=0.0001173 I7; \alpha(O)=2.07\times10^{-5} 3;$                                                                                                                                                                    |
| 722.6 1                   | 65 <i>5</i>            | 1170.41+x              | (15 <sup>-</sup> )         | 447.74+x             | (13 <sup>-</sup> )        | E2                 | 0.01117    | $\alpha$ (P)=1.012×10 <sup>-6</sup> <i>15</i><br>Mult.: R <sub>ADO</sub> =1.21 <i>15</i> .<br>I <sub>y</sub> : other: I <sub>Y</sub> (707.1)/I <sub>Y</sub> (278.1)=2.9 <i>3</i> .<br>$\alpha$ (K)=0.00872 <i>13</i> ; $\alpha$ (L)=0.00187 <i>3</i> ;<br>$\alpha$ (M)=0.000446 <i>7</i><br>$\alpha$ (N)=0.0001107 <i>16</i> ; $\alpha$ (O)=1.96×10 <sup>-5</sup> <i>3</i> : |
| 731.6 1                   | 29 <i>3</i>            | 1535.97+x              | (16 <sup>-</sup> )         | 804.28+x             | (14-)                     | E2                 | 0.01088    | $\alpha(P)=9.69\times10^{-7} \ 14$<br>Mult.: R <sub>ADO</sub> =1.19 10.<br>I <sub>y</sub> : other: I <sub>Y</sub> (722.6)/I <sub>Y</sub> (366.6)=2.22 22.<br>$\alpha(K)=0.00851 \ 12; \ \alpha(L)=0.00181 \ 3; \ \alpha(M)=0.000432 \ 6$                                                                                                                                     |
| 756.5 5                   | 5 2                    | 3328.9+z               | J+13                       | 2572.4+z             | J+11                      | E2                 | 0.01014    | $\begin{array}{l} \alpha(N)=0.0001072 \ 15; \ \alpha(O)=1.90\times10^{-5} \ 3; \\ \alpha(P)=9.45\times10^{-7} \ 14 \\ \text{Mult.: } R_{\text{ADO}}=1.08 \ 11. \\ \text{I}_{\gamma}: \ \text{other: } \text{I}_{\gamma}(731.6)/\text{I}_{\gamma}(365.7)=1.16 \ 12. \\ \alpha(K)=0.00796 \ 12; \ \alpha(L)=0.001663 \ 24; \\ \alpha(M)=0.000396 \ 6 \end{array}$              |
| 777.1 3                   | 10 <i>1</i>            | 3567.6+y               | (24+)                      | 2790.50+y            | (22+)                     | E2                 | 0.00958    | $\alpha(N)=9.82\times10^{-3} \ 14; \ \alpha(O)=1.744\times10^{-3} \ 25; \alpha(P)=8.83\times10^{-7} \ 13 Mult.: R_{ADO}=1.2 \ 3. \alpha(K)=0.00755 \ 11; \ \alpha(L)=0.001554 \ 22; \alpha(M)=0.000369 \ 6$                                                                                                                                                                  |

#### $\gamma(^{188}Au)$ (continued)

| Eγ <sup>‡</sup>                  | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$                | $\mathbf{J}_f^{\pi}$                     | Mult. <sup>†</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------|------------------------|------------------------|----------------------|----------------------|------------------------------------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 794.7 1                          | 21 3                   | 1965.17+x              | (17 <sup>-</sup> )   | 1170.41+x            | (15 <sup>-</sup> )                       | E2                 | 0.00914    | $\begin{aligned} &\alpha(\mathrm{N}) = 9.16 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 1.629 \times 10^{-5} \ 23; \\ &\alpha(\mathrm{P}) = 8.37 \times 10^{-7} \ 12 \\ &\mathrm{Mult.:} \ \mathrm{R}_{\mathrm{ADO}} = 1.07 \ 13. \\ &\alpha(\mathrm{K}) = 0.00722 \ 11; \ \alpha(\mathrm{L}) = 0.001469 \ 21; \\ &\alpha(\mathrm{M}) = 0.000349 \ 5 \\ &\alpha(\mathrm{N}) = 8.65 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 1.541 \times 10^{-5} \ 22; \end{aligned}$ |
| 808.6 <i>3</i>                   | 19 <i>4</i>            | 2344.5+x               | (18 <sup>-</sup> )   | 1535.97+x            | (16 <sup>-</sup> )                       | E2                 | 0.00882    | $\alpha(P)=8.01\times10^{-7} 12$ Mult.: R <sub>ADO</sub> =1.07 12.<br>I <sub>γ</sub> : other: I <sub>γ</sub> (794.7)/I <sub>γ</sub> (429.7)=3.2 3.<br>$\alpha(K)=0.00698 10; \alpha(L)=0.001407 20;$<br>$\alpha(M)=0.000334 5$<br>$\alpha(N)=8.28\times10^{-5} 12; \alpha(O)=1.476\times10^{-5} 21;$<br>(D) 7.74×10 <sup>-7</sup> 11                                                                                                                                     |
| 818.1 5                          | 5 1                    | 4386.0+y               | (26+)                | 3567.6+y             | (24+)                                    | E2                 | 0.00861    | $\alpha(P)=7.74\times10^{-7} II$ Mult.: R <sub>ADO</sub> =1.3 3.<br>I <sub>γ</sub> : other: I <sub>γ</sub> (808.6)/I <sub>γ</sub> (379.6)=2.6 6.<br>$\alpha(K)=0.00682 I0; \alpha(L)=0.001367 20;$<br>$\alpha(M)=0.000324 5$<br>$\alpha(N)=8.04\times10^{-5} I2; \alpha(O)=1.434\times10^{-5} 2I;$<br>$\alpha(P)=7.56\times10^{-7} II$                                                                                                                                   |
| 861.8 <i>5</i><br>887.8 <i>1</i> | 5.0 8<br>100 8         | 3735.2+x<br>1692.09+x  | (15 <sup>+</sup> )   | 2873.4+x<br>804.28+x | (20 <sup>-</sup> )<br>(14 <sup>-</sup> ) | E1                 | 0.00275    | Mult.: $R_{ADO}=1.4$ 3.<br>$\alpha(K)=0.00230$ 4; $\alpha(L)=0.000344$ 5;<br>$\alpha(M)=7.86\times10^{-5}$ 11<br>$\alpha(N)=1.95\times10^{-5}$ 3; $\alpha(O)=3.56\times10^{-6}$ 5;<br>$\alpha(P)=2.35\times10^{-7}$ 4<br>Mult.: $R_{ADO}=0.75$ 6. The absence of<br>transition to the (13 <sup>-</sup> ) level would argue<br>against Mult.=M1.                                                                                                                          |

<sup>†</sup> From 2010Fa19.  $R_{ADO}(\gamma)=I\gamma(40^{\circ})/I\gamma(98^{\circ})$ , extracted from  $\gamma$ -ray intensities at 40° and 98° in the coin spectra gated by  $\gamma$  transitions (on the y axis) of any multipolarity in the two matrices sorted from  $\gamma\gamma$  coin data:  $\gamma$  rays detected at all angles (y axis) against those observed at 47°, 147° (x axis) for one matrix and against those observed at 90° and 105° (x axis) for the second matrix. Expected  $R_{ADO} > 1$  for  $\Delta J=2$ , quadrupole (E2), with an average value of 1.16 *15* for known transitions and significantly <1 for  $\Delta J=1$ , dipole transitions. The apparent band structures were also used to assign Mult.

<sup>‡</sup> From 2010Fa19 where  $\Delta(E\gamma)=0.1-0.5$  keV was quoted, depending on I $\gamma$ . Uncertainties assigned here are as follows: 0.1 keV for I $\gamma$ >20, 0.3 keV for I $\gamma$ =10-20, and 0.5 keV for I $\gamma$ <10.

# Additional information 5.

<sup>@</sup> Placement of transition in the level scheme is uncertain.





<sup>188</sup><sub>79</sub>Au<sub>109</sub>





<sup>188</sup><sub>79</sub>Au<sub>109</sub>



<sup>188</sup><sub>79</sub>Au<sub>109</sub>

### <sup>173</sup>Yb(<sup>19</sup>F,4nγ) E=86 MeV 2010Fa19





 $^{188}_{79}{\rm Au}_{109}$ 



<sup>188</sup><sub>79</sub>Au<sub>109</sub>